Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-20T17:41:21.605Z Has data issue: false hasContentIssue false

Part II - Advances and challenges

Published online by Cambridge University Press:  23 November 2018

Sergey V. Gaponenko
Affiliation:
National Academy of Sciences of Belarus
Hilmi Volkan Demir
Affiliation:
Nanyang Technological University, Singapore
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Applied Nanophotonics , pp. 227 - 428
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Further reading

Dimitrov, S., and Haas, H. (2015). Principles of LED Light Communications: Towards Networked Li-Fi. Cambridge University Press.CrossRefGoogle Scholar
Docampo, P., and Bein, T. (2016). A long-term view on perovskite optoelectronics. Acc Chem Res, 49, 339346.Google Scholar
Erdem, T., and Demir, H. V. (2013). Color science of nanocrystal quantum dots for lighting and displays. Nanophotonics, 2, 5781.CrossRefGoogle Scholar
Gaponenko, S. V. (1998). Optical Properties of Semiconductor Nanocrystals. Cambridge University Press.Google Scholar
Gaponenko, S. V. (2010). Introduction to Nanophotonics. Cambridge University Press.Google Scholar
Khan, T. Q., and Bodrogi, P. (eds.) (2015). LED Lighting: Technology and Perception. John Wiley & Sons.Google Scholar
Klimov, V. I. (ed.) (2010). Nanocrystal Quantum Dots. CRC Press.Google Scholar
Pietryga, J. M., Park, Y. S., Lim, J., et al. (2016). Spectroscopic and device aspects of nanocrystal quantum dots. Chem Rev, 116, 1051310622.Google Scholar
Schubert, E. F. (2006). Light-Emitting Diodes. Cambridge University Press.Google Scholar
Su, L., Zhang, X., Zhang, Y., and Rogach, A. L., (2016). Recent progress in quantum dot based white light-emitting devices. Top Curr Chem, 374, 125.Google ScholarPubMed
Wood, V., and Bulović, V. (2010). Colloidal quantum dot light-emitting devices. Nano Rev, 1, 52025210.Google Scholar
Wood, V., and Bulović, V. (2013). Colloidal quantum dot light-emitting devices. In Konstantatos, G. and Sargent, E. H. (eds.), Colloidal Quantum Dot Optoelectronics and Photovoltaics. Cambridge University Press.Google Scholar
Yang, X., Zhao, D., Leck, K. S., et al. (2012). Full visible range covering InP/ZnS nanocrystals with high photometric performance and their application to white quantum dot light-emitting diodes. Adv Mater, 24, 41804185.Google Scholar

References

Anc, M. J., Pickett, N. L., Gresty, N. C., Harris, J. A., and Mishra, K. C. (2013). Progress in non-Cd quantum dot development for lighting applications. ECS J Solid State Sci Technol, 2, R3071R3082.Google Scholar
Bae, W. K., Kwak, J., Park, J. W., et al. (2009). Highly efficient green-light-emitting diodes based on CdSe@ZnS quantum dots with a chemical-composition gradient. Adv Mater, 21, 16901694.Google Scholar
Bae, W. K., Lim, J., Lee, D., et al. (2014). R/G/B/natural white light thin colloidal quantum dot-based light-emitting devices. Adv Mater, 26, 63876393.Google Scholar
Chen, Y., Vela, J., Htoon, H., et al. (2008). “Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking. J Amer Chem Soc, 130, 50265027.Google Scholar
Chepic, D. I., Efros, Al. L., Ekimov, A. I., et al. (1990). Auger ionization of semiconductor quantum drops in a glass matrix. J Lumin, 47, 113127.Google Scholar
CIE (1931). Commission Internationale de l’Eclairage Proceedings, 1931. Cambridge University Press.Google Scholar
CIE (2016). The Use of Terms and Units in Photometry: Implementation of the CIE System for Mesopic Photometry. CIE. Available at http://files.cie.co.at/841_CIE_TN_004-2016.pdf (accessed December 20, 2016).Google Scholar
Cragg, G. E., and Efros, A. L. (2010). Suppression of Auger processes in confined structures. Nano Letters, 10, 313317.CrossRefGoogle ScholarPubMed
Docampo, P., and Bein, T. (2016). A long-term view on perovskite optoelectronics. Acc Chem Res, 49, 339346.Google Scholar
Erchak, A. A., Ripin, D. J., Fan, S., et al. (2001). Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode. Appl Phys Lett, 78, 563565.Google Scholar
Gonzalez-Carrero, S., Galian, R. E., and Pérez-Prieto, J. (2016). Organic–inorganic and all-inorganic lead halide nanoparticles [Invited]. Opt Expr, 24, A285A301.Google Scholar
Guzatov, D. V., Gaponenko, S. V., and Demir, H. V. (2018). Plasmonic enhancement of electroluminescence. AIP Advances, 8, 015324.Google Scholar
Hines, M. A., and Guyot-Sionnest, P. (1996). Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J Phys Chem, 100, 468471.Google Scholar
Jang, E., Jun, S., Jang, H., et al. (2010). White-light-emitting diodes with quantum dot color converters for display backlights. Adv Mater, 22, 30763080.Google Scholar
Khurgin, J. B., Sun, G., and Soref, R. A. (2008). Electroluminescence enhancement using metal nanoparticles. Appl Phys Lett, 93, 021120.CrossRefGoogle Scholar
Lim, J., Bae, W. K., Lee, D., et al. (2011). InP–ZnSeS core–composition gradient shell quantum dots with enhanced stability. Chem Mater, 23, 44594463.CrossRefGoogle Scholar
Mahler, B., Spinicelli, P., Buil, S., et al. (2008). Towards non-blinking colloidal quantum dots. Nature Mater, 7, 659664.CrossRefGoogle ScholarPubMed
Priolo, F., Gregorkiewicz, T., Galli, M., and Krauss, T. F. (2014). Silicon nanostructures for photonics and photovoltaics. Nature Nanotechn, 9, 1926.Google Scholar
Reckmeier, C. J., Schneider, J., Susha, A. S., and Rogach, A. L. (2016). Luminescent colloidal carbon dots: optical properties and effects of doping [Invited]. Opt Expr, 24, A312A340.Google Scholar
Robel, I., Gresback, R., Kortshagen, U., Schaller, R. D., and Klimov, V. I. (2009). Universal size-dependent trend in Auger recombination in direct-gap and indirect-gap semiconductor nanocrystals. Phys Rev Lett, 102, 177404.Google Scholar
Shi, H., Zhu, C., Huang, J., et al. (2014). Luminescence properties of YAG:Ce, Gd phosphors synthesized under vacuum condition and their white LED performances. Opt Mater Expr, 4, 649655.Google Scholar
Shirasaki, Y., Supran, G. J., Bawendi, M. G., and Bulović, V. (2013). Emergence of colloidal quantum-dot light-emitting technologies. Nature Photonics, 7, 1323.Google Scholar
Song, W. S., and Yang, H. (2012). Fabrication of white light-emitting diodes based on solvothermally synthesized copper indium sulfide quantum dots as color converters. Appl Phys Lett, 100, 183104.CrossRefGoogle Scholar
Talapin, D. V., Mekis, I., Götzinger, S., et al. (2004). CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core–shell–shell nanocrystals. J Phys Chem B, 108, 1882618831.Google Scholar
Xing, J., Yan, F., Zhao, Y., et al. (2016). High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles. ACS Nano, 10, 66236630.Google Scholar
Yang, X., Hernandez-Martinez, P. L., Dang, C., et al. (2015). Electroluminescence efficiency enhancement in quantum dot light-emitting diodes by embedding a silver nanoisland layer. Adv Opt Mater, 3, 14391445.CrossRefGoogle Scholar
Zan, F., and Ren, J. (2012). Gas–liquid phase synthesis of highly luminescent InP/ZnS core/shell quantum dots using zinc phosphide as a new phosphorus source. J Mater Chem, 22, 17941799.Google Scholar
Zhang, F., Zhong, H., Chen, C., et al. (2015). Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano, 9, 45334542.Google Scholar
Zhmakin, A. I. (2011). Enhancement of light extraction from light emitting diodes. Phys Rep, 498, 189241.Google Scholar
Zhou, J., and Xia, Zh (2015). Luminescence color tuning of Ce3+, Tb3+ and Eu3+ codoped and tri-doped BaY2Si3O10 phosphors via energy transfer. J Mater Chem, C3, 75527560.Google Scholar

Further reading

Alferov, Z. I. (1998). The history and future of semiconductor heterostructures. Semiconductors, 32, 114.Google Scholar
Carroll, J. E., Whiteaway, J., and Plumb, D. (1998). Distributed Feedback Semiconductor Lasers, vol. 10. IET.Google Scholar
Chow, W. W., and Jahnke, F. (2013). On the physics of semiconductor quantum dots for applications in lasers and quantum optics. Prog Quantum Electron, 37, 109184.Google Scholar
Coleman, J., Young, J., and Garg, A. (2011). Semiconductor quantum dot lasers: a tutorial. J Lightwave Technol, 29, 499510.Google Scholar
Gmachl, C., Capasso, F., Sivco, D. L., and Cho, A. Y. (2001). Recent progress in quantum cascade lasers and applications. Rep Prog Phys, 64, 15331601.Google Scholar
Iga, K. (2000). Surface-emitting laser: its birth and generation of new optoelectronics field. IEEE J Sel Top Quantum Electron, 6, 12011215.Google Scholar
Kazarinov, R. F., and Suris, R. A. (1971). Possibility of amplification of electromagnetic waves in a semiconductor with a superlattice. Sov Phys Semicond, 5, 707709.Google Scholar
Kazarinov, R. F., and Suris, R. A. (1972/1973). Injection heterojunction laser with a diffraction grating on its contact surface. Sov Phys Semicond, 6, 1184.Google Scholar
Keller, U. (2010). Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight. Appl Phys B: Lasers Opt, 100, 1528.Google Scholar
Ledentsov, N. N., Ustinov, V. M., Shchukin, V. A., et al. (1998). Quantum dot heterostructures: fabrication, properties, lasers (review). Semiconductors, 32, 343365.CrossRefGoogle Scholar
Liu, J. M. (2009). Photonic Devices. Cambridge University Press.Google Scholar
Michalzik, R. (ed.) (2013). VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers. Springer.Google Scholar
Morthier, G., and Vankwikelberge, P. (2013). Handbook of Distributed Feedback Laser Diodes. Artech House.Google Scholar
Ning, C.-Z. (2010). Semiconductor nanolasers (a tutorial). Phys Status Solidi B, 247, 774788.Google Scholar
Okhotnikov, O. G. (ed.) (2010). Semiconductor Disk Lasers: Physics and Technology. Wiley-VCH.Google Scholar
Rafailov, E. U. (2014). The Physics and Engineering of Compact Quantum Dot-Based Lasers for Biophotonics. Wiley-VCH.Google Scholar
Rafailov, E. U., Cataluna, M. A., and Avrutin, E. A. (2011). Ultrafast Lasers Based on Quantum Dot Structures: Physics and Devices. John Wiley & Sons.Google Scholar
Svelto, O. (1998). Principles of Lasers. Springer-Verlag.Google Scholar
Ustinov, V. M., Zhukov, A. E., Egorov, A. Y., and Maleev, N. A. (2003). Quantum Dot Lasers. Oxford University Press.Google Scholar
Zhukov, A. E., and Kovsh, A. R. (2008). Quantum dot diode lasers for optical communication systems. Quantum Electron, 38, 409423.Google Scholar

References

Altug, H., Englund, D., and Vuckovic, E. (2006). Ultrafast photonic crystal nanocavity laser. Nature Physics, 2, 484488.Google Scholar
Arakawa, Y., and Sakaki, H. (1982). Multidimensional quantum well laser and temperature dependence of its threshold current. Appl Phys Lett, 40, 939941.Google Scholar
Bányai, L., and Koch, S. W. (1993). Semiconductor Quantum Dots. World Scientific Publishers.Google Scholar
Bek, R., Kahle, H., Schwarzbäck, T., Jetter, M., and Michler, P. (2013). Mode-locked red-emitting semiconductor disk laser with sub-250 fs pulsesAppl Phys Lett, 103(24), 242101.CrossRefGoogle Scholar
Bek, R., Baumgärtner, S., Sauter, F., et al. (2015). Intra-cavity frequency-doubled mode-locked semiconductor disk laser at 325 nm. Opt Express, 23, 1994719953.Google Scholar
Butkus, M., Wilcox, K. G., Rautiainen, J., et al. (2009). High-power quantum-dot-based semiconductor disk laser. Opt Lett, 34, 16721674.Google Scholar
Calvez, S., Hastie, J. E., Guina, M., Okhotnikov, O. G., and Dawson, M. D. (2009). Semiconductor disk lasers for the generation of visible and ultraviolet radiation. Laser Photonics Rev, 3(5), 407434.CrossRefGoogle Scholar
Casel, O., Woll, D., Tremont, M. A., et al. (2005). Blue 489-nm picosecond pulses generated by intracavity frequency doubling in a passively mode-locked optically pumped semiconductor disk laser. Applied Phys B, 81, 443446.CrossRefGoogle Scholar
Cosendey, G., Castiglia, A., Rossbach, G., Carlin, J. F., and Grandjean, N. (2012). Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate. Appl Phys Lett, 101, 151113.Google Scholar
Dang, C., Lee, J., Breen, C., et al. (2012). Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nat Nanotechnol, 7, 335339.CrossRefGoogle ScholarPubMed
Ellis, B., Mayer, M. A., Shambat, G., et al. (2011). Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser. Nat Photonics, 5, 297300.Google Scholar
Faist, J., Capasso, F., Sivco, D. L., et al. (1994). Quantum cascade laser. Science, 264(5158), 553556.Google Scholar
Gaponenko, S. V. (1998). Optical Properties of Semiconductor Nanocrystals. Cambridge University Press.Google Scholar
Gaponenko, S. V. (2010). Introduction to Nanophotonics. Cambridge University Press.Google Scholar
Germann, T. D., Strittmatter, A., Pohl, J., et al. (2008). High-power semiconductor disk laser based on InAs/GaAs submonolayer quantum dots. Appl Phys Lett, 92, 101123.Google Scholar
Germann, T. D., Strittmatter, A., Pohl, J., et al. (2008). Temperature-stable operation of a quantum dot semiconductor disk laser. Appl Phys Lett, 93, 051104.Google Scholar
Guzelturk, B., Kelestemur, Y., Olutas, M., Delikanli, S., and Demir, H. V. (2014). Amplified spontaneous emission and lasing in colloidal nanoplatelets. ACS Nano, 8, 65996605.Google Scholar
Guzelturk, B., Kelestemur, Y., Gungor, K., et al. (2015). Stable and low-threshold optical gain in CdSe/CdS quantum dots: an all-colloidal frequency up-converted laser. Adv Mater, 27, 27412746.Google Scholar
Haglund, E. P., Kumari, S., Westbergh, P., et al. (2015). Silicon-integrated short-wavelength hybrid-cavity VCSEL. Opt Express, 23, 3363433640.Google Scholar
Hirose, K., Liang, Y., Kurosaka, Y., et al. (2014). Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat Photonics, 8, 406411.Google Scholar
Hoffmann, M., Sieber, O. D., Wittwer, V. J., et al. (2011). Femtosecond high-power quantum dot vertical external cavity surface emitting laser. Opt Express, 19, 81088116.Google Scholar
Hu, Y. Z., Koch, S. W., and Peyghambarian, N. (1996). Strongly confined semiconductor quantum dots: pair excitations and optical properties. J Luminescence, 70, 185202.Google Scholar
Hugi, A., Maulini, R., and Faist, J. (2010). External cavity quantum cascade laser. Semicond Sci Technol, 25, 083001.Google Scholar
Iga, K. (2008). Vertical-cavity surface-emitting laser: its conception and evolutionJpn J Appl Phys, 47, 111.CrossRefGoogle Scholar
Imada, M., Chutinan, A., Noda, S., and Mochizuki, M. (2002). Multidirectionally distributed feedback photonic crystal lasers. Physical Review B, 65, 195306.Google Scholar
Jung, I. D., Brovelli, L. R., Kamp, M., Keller, U., and Moser, M. (1995). Scaling of the antiresonant Fabry–Perot saturable absorber design toward a thin saturable absorberOpt Lett20(14), 15591561.Google Scholar
Kapon, E., and Sirbu, A. (2009). Long-wavelength VCSELs: power-efficient answer. Nat Photonics, 3, 2729.Google Scholar
Kasahara, D., Morita, D., Kosugi, T., et al. (2011). Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature. Appl Phys Express, 4, 072103.Google Scholar
Kim, J., and Chuang, S. L. (2006). Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p-doped quantum-dot lasers. IEEE J Quantum Electron, 42, 942952.Google Scholar
Klimov, V. I., Ivanov, S. A., Nanda, J., et al. (2007). Single-exciton optical gain in semiconductor nanocrystals. Nature, 447, 441446.Google Scholar
Kogelnik, H., and Shank, C. V. (1971). Stimulated emission in a periodic structure. Appl Phys Lett, 18, 152154.Google Scholar
Lagatsky, A. A., Leburn, C. G., Brown, C. T. A., et al. (2004). Passive mode-locking of a Cr4+: YAG laser by PbS quantum-dot-doped glass saturable absorber. Optics Commun, 241, 449454.Google Scholar
Lagatsky, A. A., Leburn, C. G., Brown, C. T. A., et al. (2010). Ultrashort-pulse lasers passively mode locked by quantum-dot-based saturable absorbers. Prog Quantum Electron, 34, 145.Google Scholar
Larsson, A. (2011). Advances in VCSELs for communication and sensing. IEEE J Sel Top Quantum Electron, 17,15521567.Google Scholar
Liu, A. Y., Srinivasan, S., Norman, J., Gossard, A. C., and Bowers, J. E. (2015). Quantum dot lasers for silicon photonics. Photonics Res, 3, B1B9.Google Scholar
Loiko, P. A., Rachkovskaya, G. E., Zacharevich, G. B., et al. (2012). Optical properties of novel PbS and PbSe quantum-dot-doped alumino-alkali-silicate glasses. J Non-Cryst Solids, 358, 18401845.Google Scholar
Lott, J. A., Ledentsov, N. N., Ustinov, V. M., et al. (2000). Electron Lett, 36, 13841386.Google Scholar
Maas, D. J. H. C., Bellancourt, A.-R., Rudin, B., et al. (2007). Vertical integration of ultrafast semiconductor lasers. Appl Phys B, 88, 493497.Google Scholar
Malyarevich, A. M., Yumashev, K. V., and Lipovskii, A. A. (2008). Semiconductor-doped glass saturable absorbers for near-infrared solid-state lasersJ Appl Phys, 103(8), 414.Google Scholar
Mangold, M., Golling, M., Gini, E., Tilma, B. W., and Keller, U. (2015). Sub-300-femtosecond operation from a MIXSEL. Opt Express, 23(17), 2204322059.Google Scholar
Nakamura, M., Yariv, A., Yen, H. W., Somekh, S., and Garvin, H. L. (1973). Optically pumped GaAs surface laser with corrugation feedbackAppl Phys Lett22(10), 515516.Google Scholar
Painter, O., Lee, R. K., Scherer, A., et al. (1999). Two-dimensional photonic band-gap defect mode laser. Science, 284, 18191821.Google Scholar
QD Laser, Inc. (2015). Technical Data Laser Diode QLF131 F-P16. www.qdlaser.com (accessed May 1, 2017).Google Scholar
Quarterman, A. H., Wilcox, K. G., Apostolopoulos, V., et al. (2009). A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses. Nat Photonics, 3, 729731.Google Scholar
Rahim, M., Khiar, A., Felder, F., et al. (2010). 5-μm vertical external-cavity surface-emitting laser (VECSEL) for spectroscopic applications. Appl Phys B: Lasers Opt, 100, 261264.Google Scholar
Rudin, B., Wittwer, V. J., Maas, D. J. H. C., et al. (2010). High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power. Opt Express, 18, 2758227588.CrossRefGoogle ScholarPubMed
Scheller, M., Wang, T. L., Kunert, B., et al. (2012). Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power. Electron Lett, 48, 588589.Google Scholar
Seufert, J., Fischer, M., Legge, M., et al. (2004). DFB laser diodes in the wavelength range from 760 nm to 2.5 μm. Spectrochim Acta, Part A, 60, 32433247.Google Scholar
Shchekin, O. B., and Deppe, D. G. (2002). Low-threshold high-T0 1.3-µm InAs quantum-dot lasers due to p-type modulation doping of the active region. IEEE Photon Technol Lett, 14, 12311233.CrossRefGoogle Scholar
Siegman, A. E. (1986). Lasers. University Science Books.Google Scholar
Spühler, G. J., Weingarten, K. J., Grange, R., et al. (2005). Semiconductor saturable absorber mirror structures with low saturation fluence. Applied Physics B, 81, 2732.Google Scholar
Svelto, O. (1998). Principles of Lasers. Springer-Verlag.Google Scholar
Takahashi, T., and Arakawa, Y. (1988). Theoretical analysis of gain and dynamic properties of quantum well box lasers. Optoelectron Dev Technol, 3, 155162.Google Scholar
Tandaechanurat, A., Ishida, S., Guimard, D., et al. (2011). Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap. Nat Photonics, 5, 9194.Google Scholar
Tilma, B. W., Mangold, M., Zaugg, C. A., et al. (2015). Recent advances in ultrafast semiconductor disk lasers. Light Sci Appl, 4, e310.Google Scholar
Ustinov, V. M., Maleev, N. A., Kovsh, A. R., and Zhukov, A. E. (2005). Quantum dot VCSELs. Physica Status Solidi (a), 202, 396402.Google Scholar
Vandyshev, Y. V., Dneprovskii, V. S., Klimov, V. I., and Okorokov, D. K. (1991). Laser generation in semiconductor quasi-zero-dimensional structure on a transition between size quantization levels. JETP Lett, 54, 441444.Google Scholar
Vurgaftman, I., Weih, R., Kamp, M., et al. (2015). Interband cascade lasers. J Phys D: Appl Phys, 48, 123001.Google Scholar
Weng, G., Mei, Y., Liu, J., et al. (2016). Low threshold continuous-wave lasing of yellow–green InGaN-QD vertical-cavity surface-emitting lasers. Opt Express, 24, 1554615553.Google Scholar
Williams, B. S. (2007). Terahertz quantum-cascade lasers. Nat Photonics, 1, 517525.CrossRefGoogle Scholar
Zeller, W., Naehle, L., Fuchs, P., et al. (2010). DFB lasers between 760 nm and 16 µm for sensing applications. Sensors, 10, 24922510.CrossRefGoogle Scholar
Zhao, P., Xu, B., van Leeuwen, R., et al. (2014). Compact 4.7 W, 18.3% wall-plug efficiency green laser based on an electrically pumped VECSEL using intracavity frequency doubling. Opt Lett, 39, 47664768.Google Scholar
Zhukov, A. E., and Kovsh, A. R. (2008). Quantum dot diode lasers for optical communication systems. Quantum Electron, 38, 409423.Google Scholar

Further reading

Bozhevolnyi, S. I. (ed.) (2009). Plasmonic Nanoguides and Circuits. Pan Stanford Publishing.Google Scholar
Gilardi, G., and Smit, M. K. (2014). Generic InP-based integration technology: present and prospects. Progr Electromagnetics Res, 147, 2335.Google Scholar
Gramotnev, D. K., and Bozhevolnyi, S. I. (2010). Plasmonics beyond the diffraction limit. Nat Photonics, 4, 8391.Google Scholar
Jin, C. Y., and Wada, O. (2014). Photonic switching devices based on semiconductor nanostructures. J Physics D: Applied Physics, 47, 133001.Google Scholar
Krauss, T. F. (2008). Why do we need slow light? Nat Photonics, 2, 448450.Google Scholar
MacDonald, K. F., and Zheludev, N. I. (2010). Active plasmonics: current status. Laser Photonics Rev, 4, 562567.Google Scholar
Miller, D. A. B. (2009). Device requirements for optical interconnects to silicon chips. Proc IEEE, 97, 11661185.Google Scholar
Mingaleev, S. F., Miroshnichenko, A. E., and Kivshar, Yu. S (2007). Low-threshold bistability of slow light in photonic-crystal waveguides. Opt Express, 15, 1238012385.Google Scholar
Niemi, T, Frandsen, L. H., Hede, K. K., et al. (2006). Wavelength division de-multiplexing using photonic crystal waveguides. IEEE Photon Technol Lett, 11, 226228.Google Scholar
Notomi, M. (2010). Manipulating light with strongly modulated photonic crystals. Rep Prog Phys, 73, 096501.Google Scholar
Peiponen, K. E., Vartiainen, E. M., and Asakura, T. (1998). Dispersion, Complex Analysis and Optical Spectroscopy: Classical Theory. Springer Science & Business Media.Google Scholar
Priolo, F., Gregorkiewicz, T., Galli, M., and Krauss, T. F. (2014). Silicon nanostructures for photonics and photovoltaics. Nature Nanotechn, 9, 1932.Google Scholar
Smit, M., van der Tol, J., and Hill, M. (2012). Moore’s law in photonics. Laser Photonics Rev, 6, 113.Google Scholar
Sorger, V. J., Oulton, R. F., Ma, R.-M., and Zhang, X. (2012). Toward integrated plasmonic circuits. MRS Bulletin, 37, 728738.Google Scholar

References

Achtstein, A. W., Prudnikau, A. V., Ermolenko, M. V., et al. (2014). Electroabsorption by 0D, 1D, and 2D nanocrystals: a comparative study of CdSe colloidal quantum dots, nanorods, and nanoplatelets. ACS Nano, 8, 76787686.Google Scholar
Borel, P. I., Frandsen, L. H., Harpøth, A., et al. (2005). Topology optimised broadband photonic crystal Y-splitter. Electron Lett, 41, 6971.Google Scholar
Boyd, R. W. (2008). Nonlinear Optics. Academic Press.Google Scholar
Chen, L., Doerr, C. R., Dong, P., and Chen, Y. K. (2011). Monolithic silicon chip with 10 modulator channels at 25 Gbps and 100-GHz spacing. Opt Express, 19, B946B951.Google Scholar
Dong, P., Chen, L., and Chen, Y. K. (2012). High-speed low-voltage single-drive push–pull silicon Mach–Zehnder modulators. Opt Express, 20, 61636169.Google Scholar
Frandsen, L. H., Harpøth, A., Borel, P. I., et al. (2004). Broadband photonic crystal waveguide 60°- bend obtained utilizing topology optimization. Opt Express, 12, 59165921.Google Scholar
Frandsen, L. H., Lavrinenko, A. V., Fage-Pedersen, J., and Borel, P. I. (2006). Photonic crystal waveguides with semi-slow light and tailored dispersion properties. Opt Express, 14, 94449450.Google Scholar
Gardes, F. Y., Thomson, D. J., Emerson, N. G., and Reed, G. T. (2011). 40 Gb/s silicon photonics modulator for TE and TM polarisations. Opt Express, 19, 1180411814.Google Scholar
Hermann, D., Schillinger, M., Mingaleev, S. F., and Busch, K. (2008). Wannier-function based scattering-matrix formalism for photonic crystal circuitry. J Opt Soc Amer B, 25, 202209.Google Scholar
Ishizaki, K., Koumura, M., Suzuki, K., Gondaira, K., and Noda, S. (2013). Realization of three-dimensional guiding of photons in photonic crystals. Nat Photonics, 7, 133137.CrossRefGoogle Scholar
Kuo, Y. H., Lee, Y. K., Ge, Y., et al. (2005). Strong quantum-confined Stark effect in germanium quantum-well structures on silicon. Nature, 437, 13341336.Google Scholar
Lin, Q., Zhang, J., Piredda, G., et al. (2007). Dispersion of silicon nonlinearities in the near infrared region. Appl Phys Lett, 91, 021111.CrossRefGoogle Scholar
Nozaki, K., Tanabe, T., Shinya, A., et al. (2010). Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat Photonics, 4, 477483.Google Scholar
Olbright, G. R., and Peyghambarian, N. (1986). Interferometric measurement of the nonlinear index of refraction, n2, of CdSxSe1-x-doped glasses. Appl Phys Lett, 48, 11841186.Google Scholar
Soref, R. A., and Bennett, B. R. (1986). Kramers–Kronig analysis of electro-optical switching in silicon. Proc SPIE, 704, 3237.Google Scholar
Thomson, D. J., Gardes, F. Y., Fedeli, J. M., et al. (2012). 50-Gb/s silicon optical modulator. IEEE Photonics Technol Lett, 24, 234236.Google Scholar
Timurdogan, E., Sorace-Agaskar, C. M., Sun, J., et al. (2014). An ultralow power athermal silicon modulator. Nature Commun, 5(4008), 111.Google Scholar
Vlasov, Y., Green, W. M., and Xia, F. (2008). High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nat Photonics, 2, 242246.Google Scholar
Xu, Q., Schmidt, B., Pradhan, S., and Lipson, M. (2005). Micrometre-scale silicon electro-optic modulator. Nature, 435, 325327.Google Scholar

Further reading

Beard, M. C., Luther, J. M., Semonin, O. E., and Nozik, A. J. (2012). Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors. Acc Chem Res, 46, 12521260.Google Scholar
Borchert, H. (2014). Solar Cells Based on Colloidal Nanocrystals. Springer.Google Scholar
Chattopadhyay, S., Huang, Y. F., Jen, Y. J., et al. (2010). Anti-reflecting and photonic nanostructures. Mater Sci Eng, R, 69, 135.Google Scholar
Kim, J. Y., Voznyy, O., Zhitomirsky, D., and Sargent, E. H. (2013). 25th anniversary article: colloidal quantum dot materials and devices – a quarter-century of advances. Adv Mater, 25, 49865010.Google Scholar
Kramer, I. J., and Sargent, E. H. (2014). The architecture of colloidal quantum dot solar cells: materials to devices. Chem Rev, 114, 863882.Google Scholar
Otnes, G., and Borgström, M. T. (2016). Towards high efficiency nanowire solar cells. Nano Today, 12, 3145.Google Scholar
Polman, A., Knight, A., Garnett, E. K., Ehrler, B., and Sinke, W. C. (2016). Photovoltaic materials: present efficiencies and future challenges. Science, 352, 307318.Google Scholar

References

Arinze, E., Qiu, B., Nyirjesy, G., and Thon, S. M. (2016). Plasmonic nanoparticle enhancement of solution-processed solar cells: practical limits and opportunities. ACS Photonics, 3, 158173.Google Scholar
Atwater, H. A., and Polman, A. (2010). Plasmonics for improved photovoltaic devices. Nat Mater, 9, 205213.Google Scholar
Beard, M. C., Luther, J. M., and Nozik, A. J. (2014). The promise and challenge of nanostructured solar cells. Nat Nanotechnol, 9, 951954.Google Scholar
Carey, G. H., Levina, L., Comin, R., Voznyy, O., and Sargent, E. H. (2015). Record charge carrier diffusion length in colloidal quantum dot solids via mutual dot-to-dot surface passivation. Adv Mater, 27, 33253330.Google Scholar
Chuang, C.-H. M., Brown, P. R., Bulović, V., and Bawendi, M. G. (2014). Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat Mater, 13, 796801.Google Scholar
Clapham, P. B., and Hutley, M. C. (1973). Reduction of lens reflexion by the “moth eye” principle. Nature, 244, 281282.Google Scholar
Ellingson, R. J., Beard, M. C., Johnson, J. C., et al. (2005). Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett, 5, 865871.Google Scholar
Grätzel, M. (2009). Recent advances in sensitized mesoscopic solar cells. Acc Chem Res, 42, 17881798.Google Scholar
Green, M. A., Emery, K., Hishikawa, Y., et al. (2017). Solar cell efficiency tables (version 49). Prog Photovoltaics: Res Appl, 25, 313.Google Scholar
Ip, A. H., Thon, S. M., Hoogland, S., et al. (2012). Hybrid passivated colloidal quantum dot solids. Nature Nanotechn, 7, 577582.Google Scholar
Kamat, P. V. (2008). Quantum dot solar cells: semiconductor nanocrystals as light harvesters. J Phys Chem C, 112, 1873718753.Google Scholar
Kamat, P. V. (2013). Quantum dot solar cells: the next big thing in photovoltaics. J Phys Chem Lett, 4, 908918.Google Scholar
Kholmicheva, N., Moroz, P., Rijal, U., et al. (2014). Plasmonic nanocrystal solar cells utilizing strongly confined radiation. ACS Nano, 8, 1254912559.CrossRefGoogle ScholarPubMed
Lin, G. J., Lai, K. Y., Lin, C. A., Lai, Y.-L., and He, J. H. (2011). Efficiency enhancement of InGaN-based multiple quantum well solar cells employing antireflective ZnO nanorod arrays. IEEE Electron Device Lett, 32, 11041106.Google Scholar
McDonald, S. A., Konstantatos, G., Zhang, S., et al. (2005). Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat Mater, 4, 138142.Google Scholar
Meinardi, F., Colombo, A., Velizhanin, K. A., et al. (2014). Large-area luminescent solar concentrators based on “Stokes-shift-engineered” nanocrystals in a mass-polymerized PMMA matrix. Nat Photonics, 8, 392399.Google Scholar
Min, W.-L., Jiang, B., and Jiang, P. (2008a). Bioinspired self-cleaning antireflection coatings. Adv Mater, 20, 15.Google Scholar
Min, W.-L., Betancourt, A. P., Jiang, P., and Jiang, B. (2008b). Bioinspired broadband antireflection coatings on GaSb. Appl Phys Lett, 92, 141109.Google Scholar
Nozik, A. J. (2008). Multiple exciton generation in semiconductor quantum dots. Chem Phys Lett, 457, 311.Google Scholar
NREL (2017). Best research-cell efficiency chart. Available at https://www.nrel.gov/pv/assets/images/efficiency-chart.png (accessed June 22, 2017).Google Scholar
Piliego, C., Protesescu, L., Bisri, S. Z., Kovalenko, M. V., and Loi, M. A. (2013). 5.2% efficient PbS nanocrystal Schottky solar cells. Energy Environ Sci, 6, 30543059.Google Scholar
Pryce, I. M., Koleske, D. D., Fischer, A. J., and Atwater, H. A. (2010). Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells. Appl Phys Lett, 96, 153501.Google Scholar
Schaller, R. D., and Klimov, V. I. (2004). High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys Rev Lett, 92, 186601.Google Scholar
Sun, C.-H., Jiang, P., and Jiang, B. (2008). Broadband moth-eye antireflection coating on silicon. Appl Phys Lett, 92, 061112.Google Scholar
Wilson, S. J., and Hutley, M. C. (1982). The optical properties of “moth eye” antireflection surfaces. Optica Acta, 29, 9931009.Google Scholar
Yu, P., Chang, C. H., Chiu, C. H., et al. (2009). Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns. Adv Mater, 21, 16181621.Google Scholar

Further reading

Berini, P. (2014). Surface plasmon photodetectors and their applications. Laser Photonics Rev, 8, 197220.Google Scholar
Cornet, C., Léger, Y., and Robert, C. (2016). Integrated Lasers on Silicon. Elsevier.Google Scholar
Duan, G. H., Jany, C., Le Liepvre, A., et al. (2014). Hybrid III–V on silicon lasers for photonic integrated circuits on silicon. IEEE J Select Topics Quantum Electronics, 20, 158170.Google Scholar
Duarte, F. J. (2014). Quantum Optics for Engineers. CRC.Google Scholar
Enoch, S., and Bonod, N. (eds.) (2012). Plasmonics: From Basics to Advanced Topics, vol. 167. Springer.Google Scholar
Gaponenko, S. V., Gaiduk, A. A., Kulakovich, O. S., et al. (2001). Raman scattering enhancement using crystallographic surface of a colloidal crystal. JETP Lett, 74, 309313.Google Scholar
Gerasimos, K., and Sargent, E. H. (eds.) (2013). Colloidal Quantum Dot Optoelectronics and Photovoltaics. Cambridge University Press.Google Scholar
Khriachtchev, L. (2009). Silicon Nanophotonics: Basic Principles, Current Status and Perspectives. Pan Stanford Publishing.Google Scholar
Kira, M., and Koch, S. W. (2011). Semiconductor Quantum Optics. Cambridge University Press.Google Scholar
Kneipp, J., Kneipp, H., and Kneipp, K. (2008). SERS: a single-molecule and nanoscale tool for bioanalytics. Chem Soc Rev, 37, 10521060.Google Scholar
Kovalenko, M. V., Manna, L., Cabot, A., et al. (2015). Prospects of nanoscience with nanocrystals. ACS Nano, 9, 10121057.Google Scholar
Le Ru, E., and Etchegoin, P. (2008). Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects. Elsevier.Google Scholar
Li, Z. Y. (2015). Optics and photonics at nanoscale: principles and perspectives. Europhysics Lett, 110, 14001.Google Scholar
Liao, H., Nehl, C. L., and Hafner, J. H. (2006). Biomedical applications of plasmon resonant metal nanoparticles. Nanomedicine, 1, 201208.Google Scholar
Liu, A. Y., Zhang, C., Norman, J., et al. (2014). High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl Phys Lett, 104, 041104.Google Scholar
Lu, T., Peng, W., Zhu, S., and Zhang, D. (2016). Bio-inspired fabrication of stimuli-responsive photonic crystals with hierarchical structures and their applications. Nanotechnology, 27, 122001.Google Scholar
Mayer, K. M., and Hafner, J. H. (2011). Localized surface plasmon resonance sensors. Chem Rev, 111, 38283857.Google Scholar
Miller, D. A. B. (2017). Attojoule optoelectronics for low-energy information processing and communications: a tutorial review. J Lightwave Technol, 35, 346396.Google Scholar
Priolo, F., Gregorkiewicz, T., Galli, M., and Krauss, T. F. (2014). Silicon nanostructures for photonics and photovoltaics. Nature Nanotechn, 9, 1932.Google Scholar
Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R., and Nann, T. (2008). Quantum dots versus organic dyes as fluorescent labels. Nat Methods, 5, 763775.Google Scholar
Sarychev, A. K., and Shalaev, V. M. (2007). Electrodynamics of Metamaterials. World Scientific.Google Scholar
Shamirian, A., Ghai, A., and Snee, P. T. (2015). QD-based FRET probes at a glance. Sensors, 15, 1302813051.Google Scholar
Starkey, T., and Vukusic, P. (2013). Light manipulation principles in biological photonic systems. Nanophotonics, 2, 289307.Google Scholar
Veselago, V. G. (2009). Energy, linear momentum and mass transfer by an electromagnetic wave in a negative-refraction medium. Physics-Uspekhi, 52, 649654.Google Scholar
Yamamoto, Y., Tassone, F., and Cao, H. (2000). Semiconductor Cavity Quantum Electrodynamics. Springer.Google Scholar
Zenkevich, E., and von Borczyskowski, C. (eds.) (2016). Self-Assembled Organic–Inorganic Nanostructures: Optics and Dynamics. Pan Stanford Publishing.Google Scholar

References

Absil, P. P., Verheyen, P., De Heyn, P., et al. (2015). Silicon photonics integrated circuits: a manufacturing platform for high density, low power optical I/O’s. Optics Expr, 23, 93699378.Google Scholar
Achtstein, A. W., Schliwa, A., Prudnikau, A., et al. (2012). Electronic structure and exciton–phonon interaction in two-dimensional colloidal CdSe nanosheets. Nano Lett, 12, 31513157.Google Scholar
Achtstein, A. W., Prudnikau, A. V., Ermolenko, M. V., et al. (2014). Electroabsorption by 0D, 1D, and 2D nanocrystals: a comparative study of CdSe colloidal quantum dots, nanorods, and nanoplatelets. ACS Nano, 8, 76787686.Google Scholar
Artemyev, M. V., Bibik, A. I., Gurinovich, L. I., Gaponenko, S. V., and Woggon, U. (1999). Evolution from individual to collective electron states in a dense quantum dot ensemble. Phys Rev B, 60, 1504.Google Scholar
Bae, W. K., Brovelli, S., and Klimov, V. I. (2013). Spectroscopic insights into the performance of quantum dot light-emitting diodes. MRS Bull, 38, 721730.Google Scholar
Borrelli, N. F., Hall, D. W., Holland, H. J., and Smith, D. W. (1987). Quantum confinement effects of semiconducting microcrystallites in glass. J Appl Phys, 61, 53995409.Google Scholar
Bruchez, M., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A. P. (1998). Semiconductor nanocrystals as fluorescent biological labels. Science, 281, 20132016.Google Scholar
Brus, L. E. (1983). A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J Chem Physics, 79, 55665571.Google Scholar
Brus, L. E. (1984). Electron–electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys, 80, 44034409.Google Scholar
Busch, K., von Freymann, G., Linden, S., et al. (2007). Periodic nanostructures for photonics. Phys Rep, 444, 101202.Google Scholar
Bykov, V. P. (1972). Spontaneous emission in a periodic structure. Soviet Physics-JETP, 35 269273.Google Scholar
Bykov, V. P. (1993). Radiation of Atoms in a Resonant Environment. World Scientific.Google Scholar
Cai, W., and Shalaev, V. M. (2010). Optical Metamaterials, vol. 10. Springer.Google Scholar
Chan, W. C. W., and Nie, S. (1998). Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 281, 20162018.Google Scholar
Chen, M., Shao, L., Kershaw, S. V., et al. (2014). Photocurrent enhancement of HgTe quantum dot photodiodes by plasmonic gold nanorod structures. ACS Nano, 8, 82088216.Google Scholar
Chung, K., Yu, S., Heo, C.-J., et al. (2012). Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings. Adv Mater, 24, 23752379.Google Scholar
Colvin, V. L., Schlamp, M. C., and Alivisatos, A. P. (1994). Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature, 357, 354357.Google Scholar
Dang, C., Lee, J., Breen, C., et al. (2012). Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nat Nanotechnol, 7(5), 335339.Google Scholar
Demir, H. V., Nizamoglu, S., Erdem, T., et al. (2011). Quantum dot integrated LEDs using photonic and excitonic color conversion. Nano Today, 6, 632647.Google Scholar
Deng, Z., Jeong, K. S., and Guyot-Sionnes, P. (2014). Colloidal quantum dots intraband photodetectors. ACS Nano, 8, 1170711714.Google Scholar
Dennis, A. M., Rhee, W. J., Sotto, D., Dublin, S. N., and Bao, G. (2012). Quantum dot-fluorescent protein FRET probes for sensing intracellular pH. ACS Nano, 6, 29172924.CrossRefGoogle ScholarPubMed
Docampo, P., and Bein, T. (2016). A long-term view on perovskite optoelectronics. Acc Chem Res, 49, 339346.Google Scholar
Duarte, F. J. (2014). Quantum Optics for Engineers. CRC.Google Scholar
Efros, A. L., and Efros, A. L. (1982). Interband absorption of light in a semiconductor sphere. Soviet Physics Semiconductors-USSR, 16, 772775.Google Scholar
Ekimov, A. I., and Onushchenko, A. A. (1981). Quantum size effect in three-dimensional microscopic semiconductor crystals. JETP Lett, 34, 345349.Google Scholar
Ekimov, A. I., and Onushchenko, A. A. (1984). Size quantization of the electron energy spectrum in a microscopic semiconductor crystal. JETP Lett, 40, 11361139.Google Scholar
Ellingson, R. J., Beard, M. C., Johnson, J. C., et al. (2005). Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett, 5, 865871.Google Scholar
Erdem, T., and Demir, H. V. (2013). Color science of nanocrystal quantum dots for lighting and displays. Nanophotonics, 2, 5781.Google Scholar
Gaponenko, N. V. (2001). Sol-gel derived films in mesoporous matrices: porous silicon, anodic alumina and artificial opals. Synth Met, 124, 125130.Google Scholar
Gaponenko, S. V. (1998). Optical Properties of Semiconductor Nanocrystals. Cambridge University Press.Google Scholar
Gaponenko, S. V. (2010). Introduction to Nanophotonics. Cambridge University Press.Google Scholar
Gaponenko, S. V., and Guzatov, D. V. (2009). Possible rationale for ultimate enhancement factor in single molecule Raman spectroscopy. Chem Phys Lett, 477, 411414.Google Scholar
Gaponenko, S. V., Germanenko, I. N., Petrov, E. P., et al. (1994). Time-resolved spectroscopy of visibly emitting porous silicon. Appl Phys Lett, 64, 8587.Google Scholar
Gaponenko, S. V., Kapitonov, A. M., Bogomolov, V. N., et al. (1998). Electrons and photons in mesoscopic structures: quantum dots in a photonic crystal. JETP Lett, 68, 142147.Google Scholar
Goldman, E. R., Medintz, I. L., Whitley, J. L., et al. (2005). A hybrid quantum dot–antibody fragment fluorescence resonance energy transfer-based TNT sensor (2005). J Amer Chem Soc, 127, 67446751.Google Scholar
Gonzalez-Carrero, S., Galian, R. E., and Pérez-Prieto, J. (2016). Organic–inorganic and all-inorganic lead halide nanoparticles [Invited]. Opt Expr, 24, A285A301.Google Scholar
Gramotnev, D. K., and Bozhevolnyi, S. I. (2010). Plasmonics beyond the diffraction limit. Nat Photonics, 4, 8391.Google Scholar
Guha, B., Kyotoku, B. B., and Lipson, M. (2010). CMOS-compatible athermal silicon microring resonators. Opt Express, 18, 34873493.Google Scholar
Guzelturk, B., Martinez, P. L. H., Zhang, Q., et al. (2014a). Excitonics of semiconductor quantum dots and wires for lighting and displays. Laser Photonics Rev, 8, 7393.Google Scholar
Guzelturk, B., Kelestemur, Y., Olutas, M., Delikanli, S., and Demir, H. V. (2014b). Amplified spontaneous emission and lasing in colloidal nanoplatelets. ACS Nano, 8, 65996605.Google Scholar
He, L., Özdemir, S. K., Zhu, J., Kim, W., and Yang, L. (2011). Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat Nanotechnol, 6, 428432.Google Scholar
Jain, J. R., Hryciw, A., Baer, T. M., et al. (2012). A micromachining-based technology for enhancing germanium light emission via tensile strain. Nat Photonics, 6, 398405.Google Scholar
Jain, P. K., and El-Sayed, M. A. (2007). Surface plasmon resonance sensitivity of metal nano-structures: physical basis and universal scaling in metal nanoshells. J Phys Chem C, 111, 1745117454.Google Scholar
Kamat, P. V. (2008). Quantum dot solar cells: semiconductor nanocrystals as light harvesters. J Phys Chem C, 112, 1873718753.Google Scholar
Kira, M., and Koch, S. W. (2011). Semiconductor Quantum Optics. Cambridge University Press.Google Scholar
Klimov, V. I., Ivanov, S. A., Nanda, J., et al. (2007). Single-exciton optical gain in semiconductor nanocrystals. Nature, 447, 441446.Google Scholar
Klyachkovskaya, E., Strekal, N., Motevich, I., et al. (2011). Enhanced Raman scattering of ultramarine on Au-coated Ge/Si-nanostructures. Plasmonics, 6, 413418.Google Scholar
Kneipp, K., Kneipp, H., and Kneipp, J. (2006). Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates from single-molecule Raman spectroscopy to ultrasensitive probing in live cells. Acc Chem Res, 39, 443450.Google Scholar
Knight, M. W., Sobhani, H., Nordlander, P., and Halas, N. J. (2011). Photodetection with active optical antennas. Science, 332, 702704.Google Scholar
Kolle, M., Lethbridge, A., Kreysing, M., et al. (2013). Bio-inspired band-gap tunable elastic optical multilayer fibers. Adv Mater, 25, 22392245.Google Scholar
Konstantatos, G., and Sargent, E. H. (2009). Solution-processed quantum dot photodetectors. Proceedings IEEE, 97, 16661683.Google Scholar
Kovalenko, M. V., Manna, L., Cabot, A., et al. (2015). Prospects of nanoscience with nanocrystals. ACS Nano9, 10121057.Google Scholar
Kulakovich, O. S., Shabunya-Klyachkovskaya, E. V., Matsukovich, A. S., et al. (2016). Nanoplasmonic Raman detection of bromate in waterOpt Expr24(2), A174A179.Google Scholar
Kuo, Y. H., Lee, Y. K., Ge, Y., et al. (2005). Strong quantum-confined Stark effect in germanium quantum-well structures on silicon. Nature, 437, 13341336.Google Scholar
Lee, J. S., Kovalenko, M. V., Huang, J., Chung, D. S., and Talapin, D. V. (2011). Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arraysNat Nanotechnol6(6), 348353.CrossRefGoogle ScholarPubMed
Lesnyak, V., Gaponik, N., and Eychmüller, A. (2013). Colloidal semiconductor nanocrystals: the aqueous approach. Chem Soc Rev, 42, 29052929.Google Scholar
Liao, H., Nehl, C. L., and Hafner, J. H. (2006). Biomedical applications of plasmon resonant metal nanoparticles. Nanomedicine, 1, 201208.Google Scholar
Liu, A. Y., Zhang, C., Norman, J., et al. (2014). High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl Phys Lett, 104, 041104.Google Scholar
Lodahl, P., Mahmoodian, R., and Stobbe, S. (2015). Interfacing single photons and single quantum dots with photonic nanostructures. Rev Mod Phys, 87, 347400.Google Scholar
Lounis, B., and Orrit, M. (2005). Single-photon sources. Rep Progr Physics, 68, 11291179.Google Scholar
Lounis, B., Bechtel, H. A., Gerion, D., Alivisatos, P., and Moerner, W. E. (2000). Photon antibunching in single CdSe/ZnS quantum dot fluorescence. Chem Phys Lett, 329, 399404.Google Scholar
Lu, T., Peng, W., Zhu, S., and Zhang, D. (2016). Bio-inspired fabrication of stimuli-responsive photonic crystals with hierarchical structures and their applications. Nanotechnology, 27, 122001.Google Scholar
Mahmoud, K. H., and Zourob, M. (2013). Fe3O4/Au nanoparticles/lignin modified microspheres as effectual surface enhanced Raman scattering (SERS) substrates for highly selective and sensitive detection of 2,4,6-trinitrotoluene (TNT). Analyst, 138, 27122719.Google Scholar
Mayer, K. M., and Hafner, J. H. (2011). Localized surface plasmon resonance sensors, Chem Rev, 111, 38283857.Google Scholar
Medintz, I. L., Uyeda, H. T., Goldman, E. R., and Mattoussi, H. (2005). Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater, 4, 435446.Google Scholar
Miller, M. M., and Lazarides, A. A. (2005). Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment, J Phys Chem B, 109, 2155621565.Google Scholar
Mogilevtsev, D. S., and Kilin, S. Ya. (2007). Quantum Optics Methods of Structured Reservoirs. Belorusskaya Nauka. In Russian.Google Scholar
Mogilevtsev, D., Moreira, F., Cavalcanti, S. B., and Kilin, S. (2007). Field–emitter bound states in structured thermal reservoirs. Phys Rev A, 75, 043802.Google Scholar
Murray, C. B., Kagan, C. R., and Bawendi, M. G. (1995). Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science, 270, 13351338.Google Scholar
Nizamoglu, S., Gather, M. C., and Yun, S. H. (2013). All-biomaterial laser using vitamin and biopolymers. Adv Mater, 25, 59435947.Google Scholar
Nudelman, S. (1962). The detectivity of infrared photodetectors, Appl Opt, 1, 627636.Google Scholar
Page, L. E., Zhang, X., Jawaid, A. M., and Snee, P. T. (2011). Detection of toxic mercury ions using a ratiometric CdSe/ZnS nanocrystal sensor. Chem Commun, 47, 77737775.Google Scholar
Palui, G., Aldeek, F., Wang, W., and Mattoussi, H. (2015). Strategies for interfacing inorganic nanocrystals with biological systems based on polymer-coating. Chem Soc Rev, 44, 193227.Google Scholar
Panarin, A. Yu, Khodasevich, I. A., Gladkova, O. L., and Terekhov, S. N. (2014). Determination of antimony by surface-enhanced Raman spectroscopy. Appl Spectr, 68, 297306.Google Scholar
Parker, A. R. (2000). 515 million years of structural color. J Optics A, 2, R15R28.Google Scholar
Pavesi, L., Gaponenko, S., and Dal Negro, L. (eds.) (2012). Towards the First Silicon Laser. Springer Science & Business Media.Google Scholar
Pendry, J. B. (2000). Negative refraction makes a perfect lens. Phys Rev Lett, 85, 39663969.Google Scholar
Petrov, E. P., Bogomolov, V. N., Kalosha, I. I., and Gaponenko, S. V. (1998). Spontaneous emission of organic molecules in a photonic crystal. Phys Rev Lett, 81, 7780.Google Scholar
Pompa, P. P., Martiradonna, L., Della Torre, A., et al. (2006). Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale controlNat Nanotechnol1(2), 126130.Google Scholar
Reckmeier, C. J., Schneider, J., Susha, A. S., and Rogach, A. L. (2016). Luminescent colloidal carbon dots: optical properties and effects of doping [Invited]. Opt Express, 24, A312A340.Google Scholar
Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R., and Nann, T. (2008). Quantum dots versus organic dyes as fluorescent labels. Nat Methods, 5, 763775.Google Scholar
Roelkens, G., Abassi, A., Cardile, P., et al. (2015). III–V-on-silicon photonic devices for optical communication and sensing. Photonics, 2, 9691004.Google Scholar
Rumyantseva, A., Kostcheev, S., Adam, P. M., et al. (2013). Nonresonant surface-enhanced Raman scattering of ZnO quantum dots with Au and Ag nanoparticles. ACS Nano, 7, 34203426.Google Scholar
Sargent, E. H. (2012). Colloidal quantum dot solar cells. Nat Photonics, 6, 133135.Google Scholar
Schaller, R. D., and Klimov, V. I. (2004). High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys Rev Lett, 92, 186601.Google Scholar
Shabunya-Klyachkovskaya, E., Kulakovich, O., Gaponenko, S., Vaschenko, S., and Guzatov, D. (2016). Surface enhanced Raman spectroscopy application for art materials identification. Eur J Sci Theol, 12, 211220.Google Scholar
Shirasaki, Y., Supran, G. J., Bawendi, M. G., and Bulović, V. (2013). Emergence of colloidal quantum-dot light-emitting technologies. Nat Photonics, 7, 1323.Google Scholar
Smith, G., Gentle, A., Arnold, M., and Cortie, M. (2016). Nanophotonics-enabled smart windows, buildings and wearables. Nanophotonics, 5, 5573.Google Scholar
Srinivasarao, M. (1999). Nano-optics in the biological world: beetles, butterflies, birds, and moths Chem Rev, 99, 19351961.Google Scholar
Starkey, T., and Vukusic, P. (2013). Light manipulation principles in biological photonic systems. Nanophotonics, 2, 289307.Google Scholar
Stern, B., Zhu, X., Chen, C. P., et al. (2015). On-chip mode-division multiplexing switch. Optica, 2, 530535.Google Scholar
Su, L., Zhang, X., Zhang, Y., and Rogach, A. L. (2016). Recent progress in quantum dot based white light-emitting devices. Top Curr Chem, 374, 125.Google Scholar
Sun, Y., and Xia, Y. (2002). Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Anal Chem, 74 52975305.Google Scholar
Talapin, D. V., Lee, J. S., Kovalenko, M. V., and Shevchenko, E. V. (2009). Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev, 110, 389458.Google Scholar
Tam, F., Moran, C., and Halas, N. (2004). Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment, J Phys Chem B, 108, 1729017294.Google Scholar
Tan, S. J., Campolongo, M. J., Luo, D., and Cheng, W. (2011). Building plasmonic nanostructures with DNA. Nat Nanotechnol, 6, 268276.Google Scholar
Tang, Y., Yang, Q., Wu, T., et al. (2014). Fluorescence enhancement of cadmium selenide quantum dots assembled on silver nanoparticles and its application for glucose detection. Langmuir, 30, 63246330.Google Scholar
Törmä, P., and Barnes, W. L. (2015). Strong coupling between surface plasmon polaritons and emitters: a review. Rep Prog Phys, 78, 013901.Google Scholar
Turner-Foster, A. C., Foster, M. A., Levy, J. S., et al. (2010). Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides. Opt Express, 18, 35823591.Google Scholar
Veselago, V. G. (1968). The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi, 10, 509514.Google Scholar
Veselago, V. G., and Narimanov, E. E. (2006). The left hand of brightness: past, present and future of negative index materials. Nat Mater, 5, 759766.Google Scholar
Vogel, N., Weiss, C. K., and Landfester, K. (2012). From soft to hard: the generation of functional and complex colloidal monolayers for nanolithography. Soft Matter, 8, 40444061.Google Scholar
Vollmer, F., and Arnold, S. (2008). Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat Methods, 5, 591596.Google Scholar
Vukusic, P., and Hooper, I. (2005). Directionally controlled fluorescence emission in butterfliesScience310(5751), 1151.Google Scholar
Wang, Y., Li, X., Song, J., et al. (2015). All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics. Adv Mater, 27, 71017108.Google Scholar
Werner, J., Oehme, M., Schmid, M., et al. (2011). Germanium–tin p–i–n photodetectors integrated on silicon grown by molecular beam epitaxy. Appl Phys Lett, 98, 061108.Google Scholar
Woggon, U. (1997). Optical Properties of Semiconductor Quantum Dots. Springer.Google Scholar
Wood, V., and Bulović, V. (2010). Colloidal quantum dot light-emitting devices. Nano Rev, 1, 52025210.Google Scholar
Yakunin, S., Protesescu, L., Krieg, F., et al. (2015). Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat Commun, 6, 80568060.Google Scholar
Yamamoto, Y., Tassone, F., and Cao, H. (2000). Semiconductor Cavity Quantum Electrodynamics. Springer.Google Scholar
Zenkevich, E. I., Gaponenko, S. V., Sagun, E. I., and Borczyskowski, C. V. (2013). Bioconjugates based on semiconductor quantum dots and porphyrin ligands: properties, exciton relaxation pathways and singlet oxygen generation efficiency for photodynamic therapy applications. Rev Nanosci Nanotechnol, 2, 184207.Google Scholar
Zheludev, N. I., and Kivshar, Y. S. (2012). From metamaterials to metadevices. Nat Mater, 11, 917924.Google Scholar
Zhmakin, A. I. (2011). Enhancement of light extraction from light emitting diodes. Phys Rep, 498, 189241.Google Scholar
Zhu, J., Zhang, F., Li, J., and Zhao, J. (2013). Optimization of the refractive index plasmonic sensing of gold nanorods by non-uniform silver coating, Sens Actuators, B: Chem, 183, 143150.Google Scholar
Zhukovsky, S. V., Ozel, T., Mutlugun, E., et al. (2014). Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocompositesOpt Express22(15), 1829018298.Google Scholar
Zimin, L. G., Gaponenko, S. V., Lebed, V. Y., Malinovskii, I. E., and Germanenko, I. N. (1990). Nonlinear optical absorption of CuCl and CdSxSe1-x microcrystallites under quantum confinement. J Luminescence, 46, 101107.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×