Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-22T07:17:07.110Z Has data issue: false hasContentIssue false

5 - The symbiosis between galaxies and SMBHs

from Part II - Co-evolution of black holes and galaxies

Published online by Cambridge University Press:  10 November 2010

Vincenzo Antonuccio-Delogu
Affiliation:
Istituto Nazionale di Astrofisica (INAF), Catania, Italy
Joseph Silk
Affiliation:
University of Oxford
Get access

Summary

Introduction

A fundamental issue when modeling the evolution of galaxies in a cosmological context is that the majority of the processes driving baryonic evolution (such as star formation, various feedback mechanisms, accretion onto supermassive black holes (SMBHs)) operate or originate on scales well below the resolution of any feasible simulation in a cosmic box. Moreover, these processes are highly nonlinear, poorly understood from a physical point of view, and approximated by means of simplified, often phenomenological, and thus uncertain subgrid prescriptions. Unfortunately, yet unsurprisingly, a number of studies have clearly demonstrated that the results of these models are heavily affected by different choices for such prescriptions (e.g. Benson et al. 2003; Di Matteo et al. 2005), or for parameter values (e.g. Zavala et al. 2008). It is fair to say that first principles or ab-initio models do not exist.

Standard SAMs, their successes and their failures

Extensive comparisons between different scenarios and data are generally conducted by means of semi-analytic modeling (SAMs) for baryons, often grafted onto gravity-only simulations for the dark matter (DM) evolution. By the definition of SAMs, the general behavior of the system is outlined a priori, and then translated into a set of (somewhat) physically grounded analytical recipes – suitable for numerical computation over cosmological timescales – for the processes that are thought to be more relevant to galaxy formation and evolution.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×