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ABSTRACT. Solar oscillations provide a probe of the internal magnetic field of the Sun if 
the field has sufficient intensity. Using the oscillation data of Libbrecht, we find evidence 
for a 2 ± 1 megagauss quadrupole toroidal field centered at 0.7 of the solar radius which is 
barely beneath the base of the convection zone. This field, by its location and symmetry, 
may be associated with the dynamo that drives the Sun's 22-year activity cycle. 

1. Introduction 

Helioseismology is the science by which solar oscillations are used to determine internal 
properties of the Sun. In particular, helioseismological techniques have yielded detailed 
information about the interior rotation of the Sun [Duvall, et al (1984), Duvall, Harvey 
and Pomerantz (1986), Brown, et al (1989), Christensen-Dalsgaard and Shou (1988), and 
Dziembowski, Goode, and Libbrecht (1989)] and the radial dependence of the speed of 
sound [Christensen-Dalsgaard, et al (1985) and Brodsky and Vorontsov (1988)]. It is our 
purpose here to discuss the use of solar oscillations to extract information about the Sun's 
internal magnetic field. In the long run, the study of solar oscillations is our only real hope 

j for determining the internal magnetism of the Sun. 
Before the advent of more detailed solar oscillation data, the size of the magnetic field 

1 throughout the radiative interior was more open to question. At one extreme, XJlrich and 
Rhodes (1985) assumed a relic field of 300 MG, centered in the core, in an effort to describe 
some gross structures in oscillation data. At the other extreme, Spruit (1987) has argued 
that magnetic torques would preclude a steady-state field of more than a few Gauss in the 
interior. 
Recent oscillation data like those due to Duvall, Harvey and Pomerantz (1986), Brown and 
Morrow (1987), and Libbrecht (1989) have shed some light on this situation. These data best 
sample the region near the base of the convection zone (0.73 of the radius). From these data, 
Brown, et al (1989), Christensen-Dalsgaard and Shou (1988) and Dziembowski, Goode, and 
Libbrecht (1989) calculated rotation laws which show no significant gradient above the base 
of the convection zone. Rather, near the base of the convection zone, there is a fairly sharp 
transition from surface-like differential rotation just above to solid body-like rotation just 
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beneath. Brown, et al (1989) used this result to suggest that the dynamo driving the 22-year 
activity cycle is seated just beneath the convection zone. Since differential rotation may 
persist into the outer radiative zone, there one may naively expect that a small poloidal field 
could be sheared into a sizeable quadrupole toroidal field. In fact, Dziembowski and Goode 
(1989) used the data of Libbrecht (1989) to calculate such a toroidal field of amplitude 
2 ± 1 MG centered just beneath the convection zone. This field may be associated with the 
dynamo since it has the proper symmetry and proximity. However, the calculated field is 
two orders of magnitude more intense than generally expected for the dynamo field [Parker 
(1987)]. Since the 104G dynamo field is expected at the base of the convection zone, the 
calculated field could be a slightly deeper lying reservoir for the dynamo. We shall see that 
that oscillation data can be used, as well, to place limits on the toroidal field considerably 
deeper than the base of the convection zone. 
A megagauss toroidal field fed by differential rotation is not in steady state and, therefore, 
is not precluded by Spruit's argument. Kuhn (1988) has argued that the symmetric part 
of the oscillation spectrum changes over the 22-year solar activity cycle. If he were correct, 
synchronous, large variations in the calculated field would be a source of the changes. 

2. Solar Oscillations in the Presence of a Magnetic Field 

Global solar oscillations are sound waves which sample the interior of the Sun. An individual 
oscillation is characterized by the product of a radial part, labelled by n the radial order, 
and a single y/™(#,<£), where t is it angular degree and m is it azimuthal order. In the 
absence of a perturbing force the (n,£)-multiplets are (21 + l)-fold degenerate in m. A 
magnetic field lifts this degeneracy. For an axially symmetric field, the structure of each 
(n,£)-multiplet is described by a polynomial in m2 having its order equal to the multipole 
order of the field. The coefficients of this polynomial are a quadratic function in, separately, 
the poloidal and toroidal field components. Consistent with the oscillation data, it will be 
assumed here that the axis of symmetry of the field is aligned with the rotation axis. Then, 
contributions to the coefficients come from the quadratic and higher effects of rotation, as 
well. 

3. Data 

We used the data obtained by Libbrecht (1989). His frequency splittings, vnim — uneo, are 
given in terms of the a,-coefficients from 

5 

Vnlw. ~ J-VO - l ^ U i P i ( — ) , 

i=l 

where P; is a Legendre polynomial. This Legendre expansion is a convenient way of repre­
senting the power series in m which includes the m2 terms discussed in the previous section. 
The data set covers the Grange 10 — 60 and the frequency range 1.5 — 4.0 mHz. These data 
best sample the region between x = 0.5 and 0.9, where x = r/R. Lower degree oscilla­
tions would sample more deeply and higher degree oscillations would provide the contrast 
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Figure 1. Weighted averages of Libbrecht's a2 - and a4 -
coefficients (nHz) vs I. The solid lines represent the calcu­
lated effect of distortion. 
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to probe closer to the surface. Libbrecht's odd a-coefficients were used by Christensen-
Dalsgaard and Shou (1988) and Dziembowski, Goode and Libbrecht (1989) to calculate the 
internal rotation of the Sun as a function of radius and latitude from x = 0.4 to 1.0. The 
even a-coefficients reflect centrifugal distortion and, for instance, an aligned axisymmetric 
magnetic field. 

Figure 1 shows the measured values of the 02- and 04-coefficients averaged over n and 
grouped in bins 5 ^-values wide. The solid line represents the calculated effect of rotational 
distortion - this effect is subsequently subtracted from each multiplet. From the original 
data set covering 678 multiplets we removed 22 corresponding to the modes that could have 
been effected by an accidental degeneracy. We emphasize that if Libbrecht's data were 
averaged over n, like the other available sets, we could not have determined a magnetic field 
from it. 

4. The Inverse Problem for a Toroidal Magnetic Field 

The aligned, axisymmetric toroidal magnetic field we assumed is given by 

B% = 4xp(x) sin2 d J2 Pk(x) cos2*"2 0, 
fc=i 

where p(x) is the gas pressure. We assumed that the fik and their derivatives vanish at 
x = 0 and 1. The lowest order linear perturbation of the hydrostatic equation arising from 
the toroidal field yields our inverse problem 

1 

an = ^2 (Pk&ii,k + x-j^D2i,k ) dx. 

The kernels E and D were determined from the mode eigenfunctions evaluated for a stan­
dard solar model. Examples of such kernels are shown in Figure 2 for i = 1 and 2 and 
k = 2. If we eliminate the dfik/dx- term by integrating by parts, the resulting kernel, 

^2i,k - E2,,fc - -j-(a;D2i,jfe), 

exhibits rapid sign changes - see the dashed lines shown in Figure 2. This latter property 
makes the kernel for each multiplet more orthogonal to those for the other multiplets. Since 
the success of the helioseismology depends critically on a differential sampling of the interior, 
the rapid sign changes greatly increase the prospects for the seismology. The inverse problem 
for the field closely resembles the one for differential rotation. Having two sets of even-a 
coefficients, we could have attempted to first determine /?2 from the a-coefficients and, 
subsequently, j3\ from /?2 and the 02-coefficients. We found, however, that within the errors 
the /?2-term suffices. In the following, we consider this term alone and drop the subscript k 
from /3 and F . 
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Figure 2. Sample a) D2 - , b) E2 - , c) D4 - and d) E4 -
kernels vs. the fractional radius. The kernels are for 1 = 2(1 and are 
given in fiHz. The dashed line ( ) is for n = 14 and the 
solid ( —— ) is for the average over n in the five - minute period 
oscillation band. 
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5. Evidence for a Megagauss Magnetic Field Near the Base of the Solar Con-
vective Envelope 

The inverse problem for the toroidal field was solved using two methods. Our primary 
approach employed the method of Backus and Gilbert (1970) in which a unimodular kernel, 
K, is constructed from a linear combination of the F kernels which are calculated for each 
mode present in the data set. The linear combination must be localized at a selected point, 
xo- We thus write 

K2i(x,x0) = ^2c2i,j(xo)F2i,j(x), 

3 

where j is the mode counter. The two sets of c-coefficients for each XQ - one from the a2-
data and the other from the a.j-data - were determined by a compromise between maximal 
sharpness and minimal amplification of the errors from the data. If K is indeed sharp, one 
may expect that 

3 

However, if the field is more confined than the K-kernel sampling it, then the field will 
always be underestimated. The results for inversions at three selected locations are shown 
in Figure 3. Only the results for xo = 0.7 are significant, where we have 

P = (4.1 ± 1.1) X 10~3 and (4.9 ± 1.7) X 1 0 - 3 

following from the a2- and 04-data, respectively. These values correspond to a quadrupole 
toroidal field of amplitude 2 ± IMG. At XQ = 0.55 and 0.90, the K-kernels are not so sharp 
and the average /3-values are consistent with zero, however, the calculated errors in P may 
be used to place limits on the average quadrupole toroidal field. At x — 0.55, the limit is 4 
MG and at x = 0.9 the limit is 0.2 MG. 
In the second method of inversion, we employed a discretization of P(x) in terms of cubic 
spline functions and solved the inverse problem by a least squares method. Since the 
functional form of P{x) was assumed, we calculated dp/dx explicitly rather than performing 
an integration by parts. The significant results of the inversions occur at xo = 0.7 and are 
P - (1.7±0.6) X 10~3 and (3.2± 1.6) X 1 0 - 3 , respectively. These numbers are in reasonable 
agreement with those from the Backus-Gilbert method. 

6. Implications 

If a megagauss toroidal field were centered just beneath the convection zone, it would cause 
no observable dynamical effect. The ratio of the magnetic pressure to the gas pressure 
would be about 1 0 - 3 - having no perceptible effect on the speed of sound near the base of 
the convection zone. The quadrupole moment would be comparable to that which would 
result from a rigidly rotating Sun. On the other hand, such a field would have far reaching 
consequences on our understanding of solar activity. In this regard, we emphasize that the 
magnetic energy density for P — 1 0 - 3 at x = 0.7 is six times the corresponding rotational 
energy density. Such a field may have consequences for neutrino propagation - see the 
review by Smirnov (1989) in these proceedings. 
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Figure 3. Unimodular Backus - Gilbert kernels, 
a) K2(x,0.55), b) K4(x,0.55), c) K2(x,0.7), 
d) K4(x,0.7), e) K2(x,0.9), f) K4(x,0.9) 
vs the fractional radius. 
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