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Abstract. An integer n � 2 is said to be a genus of a finite group G if there is a
compact Riemann surface of genus n on which G acts as a group of automorphisms.
In this paper, formulae are given for the minimum genus, minimum stable genus and
the gap sequence, i.e., the (finite) set of non-genera, for a split metacyclic group of
order pq, where p and q are primes. This information completely determines the
genus spectrum for such groups.
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1. Introduction. The genus spectrum of a finite group G is the set of all integers
n � 2 such that G acts effectively as a group of biholomorphic homeomorphisms
(automorphisms) of some compact Riemann surface of genus n. It was shown by
Kulkarni [7] that, given a finite group G, there exists a positive integer NG, deter-
mined by the Sylow subgroup structure of G, such that the following statements
hold.

. The genus spectrum contains only integers of the form 1þ mNG, where m is a
positive integer.

. Except for finitely many m, all integers of this form belong to the genus spec-
trum.

If 1þ mNG belongs to the genus spectrum, m is called a reduced genus of G.
There is a minimum reduced genus, �0, and a minimum stable reduced genus; that is,
a smallest integer �0 such that all m � �0 are reduced genera for G. The integers in
the interval ½�0; �0� that are not reduced genera are called, collectively, the reduced
gap sequence of G. The genus spectrum is completely determined by �0 and the
reduced gap sequence (�0 being one more than the last element in the reduced gap
sequence).

The minimum genus has been determined for several families of groups, namely,
cyclic [6], non-cyclic abelian [10], alternating and symmetric [2], metacyclic [4] (with
an error), PSL2ðpÞ [5], SL2ðFqÞ [12], and most of the sporadic simple groups [3]. (In
some of these cases, the elements of the group are allowed to reverse the orientation
of the surface.) The complete genus spectrum is known only for cyclic groups of
order a power of a prime [8], elementary abelian p-groups, p-groups of cyclic p-
deficiency � 2, and certain other p-groups [11]. In this paper, we determine the genus
spectrum of a semi-direct product of a cyclic group of order p with a cyclic group of
order q, where p and q are primes. In the special case in which q ¼ 2p þ 1, these
groups arise as the maximal solvable subgroups of PSL2ðqÞ.
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For the groups under consideration in this paper, and indeed all finite groups
whose Sylow subgroups are all cyclic, NG ¼ 1. It is convenient, in these cases, to
avoid the adjective ‘‘reduced’’, since a reduced genus is just an actual genus, less 1.
Accordingly, in this paper, � denotes the (actual) minimum genus, � the (actual)
minimum stable genus; the gap sequence is the set of genera in the interval ½�; �� in
which the group does not act.

2. Fuchsian Groups. In discussing Riemann surface automorphism groups it is
convenient to use the language of Fuchsian groups. We sketch the necessary back-
ground. For further details, the reader is referred to [9].

A group � is said to have signature ðh; r1; . . . rnÞ if it is generated by 2h þ n ele-
ments

a1; b1; . . . ; ah; bh; x1; . . . ; xn;

where xi has order ri > 1 (i ¼ 1; . . . ; n) and

Yh

i¼1

½ai; bi�
Yn

j¼1

xj ¼ 1:

The ri are called, collectively, the periods of �. If the Euler characteristic

�ð�Þ ¼ 2h 	 2þ
Xn

i¼1

�
1	

1

ri

�

is positive, � is called Fuchsian. In this case, � can be realized as a group of iso-
metries of the hyperbolic plane, acting properly discontinuously with fundamental
domain having area equal to 2��ð�Þ. A Fuchsian group with no periods is called a
surface group, since it is isomorphic to the fundamental group of a compact surface
of genus h. A surface group of genus h (i.e., having signature ðh;	Þ), is denoted by
Kh.

A finite group G acts as a group of automorphisms of a compact Riemann sur-
face of genus g � 2 if and only if G is the image of a Fuchsian group � under a
surface-kernel epimorphism (epimorphism whose kernel is a surface group) with
kernel Kg. We say that � covers the action of G. The signature of � is also called the
data of the G action. The data and the order jGj of G are related by the Riemann
Hurwitz relation

�ðKgÞ ¼ jGj � �ð�Þ: ð1Þ

3. Split metacyclic groups. Let p and q be primes. The split metacyclic group Dpq

of order pq has presentation

Dpq ¼ ha; b j aq ¼ bp ¼ 1; bab	1 ¼ ari;

where r is any solution (other than 1) to the congruence
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rp � 1mod q:

Such solutions exist if and only if p divides q 	 1. There are exactly p 	 1 non-trivial
solutions; different non-trivial solutions give rise to isomorphic groups [1]. When
p ¼ 2, r ¼ 	1 is a non-trivial solution for all q. In this case, the group is dihedral of
order 2q.

The commutator subgroup of Dpq is the cyclic group of order q generated by the
element a. All other proper subgroups constitute a single conjugate class of cyclic
groups of order p, generated by the elements ajba	j, j ¼ 1; . . . ; q 	 1, respectively.
Thus the Sylow subgroups are cyclic. Every element of Dpq can be written in the
form bjai, for some 0 � j < p, 0 � i < q; an element has order q if and only if j ¼ 0;
otherwise, it has order p.

If there exists a surface-kernel epimorphism from a Fuchsian group � to Dpq,
the periods of �, if any, are p and q. Let � have signature ðh; p½t�; q½s�Þ, where the
bracketed superscripts give the number of occurrences of the periods p and q. Thus
� has generators

a1; b1; . . . ; ah; bh; x1; . . . ; xt; y1; . . . ; ys

and relations

x
p
i ¼ 1; y

q
j ¼ 1;

Yh

k¼1

½ak; bk�
Yt

i¼1

xi

Ys

j¼1

yj ¼ 1: ð2Þ

The existence of a surface-kernel epimorphism from � requires that Dpq be gener-
ated by h pairs of arbitrary elements (the images of the ak; bk under the epimorph-
ism), t elements of order p (images of the xi), and s elements of order q (images of
the yj).

Theorem 3.1. Let � be a Fuchsian group with signature ðh; p½t�; q½s�Þ. There exists
a surface-kernel epimorphism from � to Dpq if and only if the following conditions are
satisfied.

1. If � is a surface group (i.e., t þ s ¼ 0), then h � 2.
2. If � is not a surface group and t ¼ 0, then h � 1.
3. If t 6¼ 0, t � 2.
4. If p ¼ 2, t is even.

Proof. We shall prove that the conditions are necessary; sufficiency is proved by
explicit construction of surface-kernel epimorphisms, for which the reader is referred
to [4].

The first condition is necessary simply because a surface group of genus 1 is not
Fuchsian (�ðK1Þ ¼ 0Þ. For the necessity of the second condition, suppose if possible
that h ¼ 0, t ¼ 0, and s � 1. The images of the s elements yj lie in the commutator
subgroup ðDpqÞ

0

¼ hai, and hence cannot generate the group. Thus the covering is
not an epimorphism, contrary to assumption. For the necessity of the third condi-
tion suppose, if possible, that t ¼ 1. The image in Dpq of the long relation in (2)
requires that the image of y1 has order p, a contradiction. For the fourth condition,
if p ¼ 2 and t is odd, �ð�Þ is not an integer. &
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4. The case in which p is odd. Throughout this section, p and q denote fixed odd
primes, p j ðq 	 1Þ;

M ¼
q 	 p

2
; P ¼

p 	 1

2
:

Let n � 2 be in the genus spectrum of Dpq. Then there exists a Fuchsian group �
with signature ðx; p½t�; q½s�Þ (subject to the restrictions in Theorem 3.1) that contains
the surface group Kn as a normal subgroup of index pq. By the Riemann-Hurwitz
relation (1)

2n 	 2 ¼ pq
h
2x 	 2þ t

�
1	

1

p

�
þ s

�
1	

1

q

�i
: ð3Þ

For ðx; yÞ 2 Z� Z let

sigðx; yÞ ¼ fðx; p½y	i�; q½i�Þ j i ¼ 0; . . . ; yg

be the set of signatures having genus x and a total of y periods p, q. We shall call a
pair ðx; yÞ Fuchsian if sigðx; yÞ contains at least one Fuchsian signature. For p,q odd,
the set of Fuchsian pairs is the set

fðx; yÞ 2 Z� Z j x; y � 0 and ðx; yÞ 6¼ ð0; 0Þ; ð0; 1Þ; ð0; 2Þ; ð1; 0Þg:

Putting t ¼ y 	 i, s ¼ i in equation (3) and solving for n, one obtains

n ¼ gðx; yÞ þ iM; ð4Þ

where

gðx; yÞ ¼ 1þ pqðx 	 1Þ þ yqP: ð5Þ

In (4) we keep only those values of i in the range 0; 1; . . . ; y that produce a Fuchsian
signature which covers a Dpq action. Thus by Theorem 3.1, i 6¼ y 	 1, and i ¼ y only
if x 6¼ 0. The portion of the Dpq spectrum so obtained is denoted by specðx; yÞ. Pre-
cisely, if ðx; yÞ is not Fuchsian, specðx; yÞ ¼ ;; otherwise

specðx; yÞ ¼
n
gðx; yÞ þ iM

��� ð6Þ

i ¼ 0 if y ¼ 0;

i ¼ 1 if y ¼ 1;

i ¼ 0; 1; . . . ; y 	 2 if y � 2 and x ¼ 0;

i ¼ 0; 1; . . . ; y 	 2; dy 	 1y 	 1; y if y � 2 and x > 0
o
:

(The b indicates omission of the symbol beneath.) There is one exceptional case:
specð0; 3Þ when p ¼ 3. In this instance, we must exclude i ¼ 0, since the signature
ð0; 3; 3; 3Þ is not Fuchsian.

Lemma 4.1. If ðx; yÞ is a Fuchsian pair, then gðx; yÞ � gð0; 3Þ, where g is the
function defined in (5).
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Proof. The statement is easily verified in the following three situations, which
cover all Fuchsian pairs: (i) x � 2, y � 0; (ii) x ¼ 1, y � 1; (iii) x ¼ 0, y � 3. &

It follows that the minimum genus for Dpq is the first element in specð0; 3Þ.
Taking into account the special definition of specð0; 3Þ when p ¼ 3, we obtain the
following result.

Corollary 4.2. The minimum genus of a Dpq action (p, q odd) is

� ¼

1þ
q 	 3

2
if p ¼ 3;

1þ q
�p 	 3

2

�
if p > 3.

8><
>: ð7Þ

(In [4] the minimum genus was stated incorrectly, except in the case p ¼ 3.)
The function g : Z� Z ! Z defined by (5) induces an equivalence relation (�)

on Z� Z, defined by

ðx; yÞ � ðx0; y0Þ () gðx; yÞ ¼ gðx0; y0Þ:

Lemma 4.3. Let ðx; yÞ denote the class of ðx; yÞ in Z� Z= �.
1. ðx; yÞ ¼ fðx 	 jP; y þ jpÞ j j 2 Zg:
2. There is a unique representative ðx; yÞ of the class ðx; yÞ with the property that

0 � x � P 	 1.
3. If ðx; yÞ is a Fuchsian pair, then so is ðx; yÞ.

Proof. Suppose that ðx þ a; y þ bÞ is a representative of ðx; yÞ, where a; b 2 Z.
Then 0 ¼ gðx þ a; y þ bÞ 	 gðx; yÞ ¼ pqa þ bqP and so a

b ¼ 	 P
p. Clearly ða; bÞ is a

solution if and only if a ¼ 	jP, b ¼ jp, for some j 2 Z. In particular if j0 is the largest
integer not exceeding x=P, then

ðx; yÞ ¼ ðx 	 j0P; y þ j0pÞ ð8Þ

is the unique equivalent pair with 0 � x � P 	 1. Finally, if ðx; yÞ is Fuchsian, y � 0
and j0 � 0. We assume that j0 � 1; otherwise there is nothing to prove. Then
y ¼ y þ j0p � j0p � p � 3. Thus x; y � 0, and ðx; yÞ 6¼ ð0; 0Þ; ð0; 1Þ; ð0; 2Þ; ð1; 0Þ; i.e.,
ðx; yÞ is Fuchsian. &

g induces a total order on Z� Z defined by

ðx; yÞ � ðx1; y1Þ () gðx; yÞ � gðx1; y1Þ:

Lemma 4.4. In the total order induced by g, ðx þ 1; y 	 2Þ is an immediate suc-
cessor of ðx; yÞ. Moreover, gðx þ 1; y 	 2Þ 	 gðx; yÞ ¼ q.

Proof. Suppose that ðx þ a; y þ bÞ is an immediate successor of ðx; yÞ in the
ordering induced by g. Then the difference gðx þ a; y þ bÞ 	 gðx; yÞ ¼ pqa þ bqP is
equal to a minimal positive integer m. Since pqa þ bqP is divisible by q, so is m. Let
m be as small as possible; i.e., m ¼ q. Then pa þ bP ¼ 1; which has a ¼ 1; b ¼ 	2 as
a solution. &
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Consider the sequence of pairs�
i; 3	 2i

�
ði ¼ 0; 1; 2; . . .Þ;

which starts at ð0; 3Þ and whose jth term is an immediate successor of the ð j 	 1Þth
term (Lemma 4.4). Using (8) we obtain the (termwise equivalent) sequence

ðai; biÞ ¼ ði; 3	 2iÞ; ði ¼ 0; 1; 2; . . .Þ;

in which every pair equivalent to a Fuchsian pair is actually Fuchsian. To obtain a
formula that is easier to work with, let ti and si be the quotient and remainder,
respectively, upon division of i by P. Then

ðai; biÞ ¼ ðsi; 3þ ti 	 2siÞ; i ¼ 0; 1; 2; . . . ; ð9Þ

i ¼ tiP þ si; 0 � si � P 	 1:

The significance of this sequence is described in the next result.

Lemma 4.5. n 2 Dpq spectrum () n 2 specðai; biÞ, for some i � 0.

Proof. Only the forward implication needs proof. Suppose that n 2 Dpq spec-
trum. Then n 2 specðx; yÞ for some Fuchsian pair ðx; yÞ, and so n ¼ gðx; yÞ þ iM for
some i � y. We first show that n 2 specðx; yÞ as well. Since i < y, by (8), this will
follow as long as i 6¼ y 	 1. If i ¼ y 	 1, then y 	 y ¼ i þ 1	 y � 1, which is only
possible if y ¼ y. But then i ¼ y 	 1 implies that n 62 specðx; yÞ, a contradiction. It
remains to show that ðx; yÞ ¼ ðai; biÞ for some i � 0. Define si ¼ x and
ti ¼ 	3þ y þ 2x. Note that ti � 0, since ðx; yÞ is Fuchsian. Then ðx; yÞ ¼ ðai; biÞ,
where i ¼ tiP þ si � 0. &

The elements of specðai; biÞ all belong to the residue class of gðai; biÞ modM.
Consider the sequence fgðiÞg1i¼0, where gðiÞ ¼ gðai; biÞ. From (9),

gðiÞ ¼ 1þ qðP 	 1þ iÞ:

Because the sequence increases by increments of q, the first M elements determine a
complete set of residues modM, and, for each 0 � k � M 	 1, fgðk þ jMÞg1j¼0 is the
subsequence in the residue class of gðkÞ. Thus the portion of the genus spectrum in
the class of gðkÞ is [1

j¼0specðakþjM; bkþjMÞ, and the complete spectrum is the union of
these sets for k ¼ 0; 1;M 	 1.

Let gapðiÞ be the complement of specðai; biÞ in fgðiÞ þ jM j j ¼ 0; 1; . . . ; q 	 1g.
gapðiÞ is the set of integers in the residue class of gðiÞ lying between the last element
of specðai; biÞ and the first element of specðaiþM; biþMÞ, when the latter two sets are
non-empty. (A more explicit definition of gapðiÞ is given at (12).) Since

gði þ MÞ 	 gðiÞ ¼ qM;

(6) implies that gapðiÞ is non-empty whenever bi � q.

Lemma 4.6 The portion of the Dpq gap sequence in the residue class of gðkÞ,
0 � k � M 	 1, is
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Xk [

�[D
j¼0

gapðk þ jMÞ

�
; ð10Þ

where D is a finite integer less than C ¼ Pðq þ p 	 5Þ 	 1, and Xk is the set
fx 2 Z j � < x < gðkÞ; x � gðkÞmod Mg. (� is the minimum genus (7).)

Proof. It is clear from the definition that the elements of gapðk þ jMÞ, j � 0,
belong to the gap sequence and to the residue class of gðkÞmod M. To prove that Xk

is a subset of the gap sequence, suppose to the contrary that n 2 Dpq spectrum and
also n 2 Xk for some 0 � k � P 	 1. Then n 2 specðx; yÞ for a pair ðx; yÞ equivalent
to ðak	jM; bk	jMÞ, where j > 0. But gðx; yÞ ¼ gðak	jM; bk	jMÞ < gð0; 3Þ and so, by
Lemma 4.1, ðx; yÞ is not Fuchsian and specðx; yÞ ¼ ;, a contradiction.

Conversely, if n belongs to the gap sequence, and n � gðkÞmod M for some
0 � k � M 	 1, then either

1. n � gðkÞ and n 2 fgðk þ lMÞ þ jM j j ¼ 0; 1; . . . ; q 	 1g for some l � 0, which
implies that n 2 gapðk þ lMÞ; or

2. � < n < gðkÞ, which implies that n 2 Xk.
We now show that gapðiÞ is empty for all sufficiently large i. By (6), gapðiÞ is

empty if bi > q. Let i be a positive integer such that biþ1; biþ2; biþ3 . . . > q: Then,
from (9), 3þ tiþ1 	 2siþ1 � 3þ tiþ1 	 2ðP 	 1Þ > q and

tiþ1 > q þ p 	 6

i > Pðq þ p 	 5Þ 	 1:

Thus C ¼ Pðq þ p 	 5Þ 	 1 is the smallest positive integer such that, for all
i > C, gapðiÞ is empty. &

It follows that the complete gap sequence is the union of the sets (10) for
k ¼ 0; 1; . . . ;M 	 1. To state this result, we use more explicit definitions of gapðiÞ
and Xi.

Let Ni be the greatest integer not exceeding ðgðiÞ 	 �Þ=M.

Xi ¼ ; if i > M 	 1 or Ni � 0; otherwise ð11Þ

Xi ¼ fgðiÞ 	 ðNi 	 jÞM j j ¼ 0; 1; . . . ;Ni 	 1g:

As before, ti and si are the quotient and remainder, respectively, of i upon divi-
sion by P,

i ¼ tiP þ si; 0 � si � P 	 1;

gðiÞ ¼ 1þ qðP 	 1þ iÞ;

bi ¼ 3þ ti 	 2si:

gapðiÞ ¼ ; if bi > q;

otherwise

gapðiÞ ¼ fgðiÞ þ jM j j 2 Jg; ð12Þ

where
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J ¼

f0; . . . ; q 	 1g if bi < 0;
f1; . . . ; q 	 1g if bi ¼ 0;
fbi 	 1; bi; bi þ 1; . . . ; q 	 1g if 0 < bi � q and si ¼ 0;

fbi 	 1;bbbi; bi þ 1; . . . ; q 	 1g if 0 < bi � q and si > 0:

8>><
>>:

(The b indicates omission of the symbol beneath.)

Theorem 4.7. The Dpq gap sequence (p, q odd) is

[C
i¼0

fXi [ gapðiÞg;

where C ¼ Pðq þ p 	 5Þ 	 1; Xi and gapðiÞ are defined at (11) and (12), respectively.

Corollary 4.8. The minimum stable genus of a Dpq action (p, q odd) is

� ¼ 2þ pqðP 	 2Þ þ q2P þ ðq 	 1ÞM: ð13Þ

Proof. From Lemma 4.6, gapðCÞ is the last non-empty set in the sequence
fgapðiÞg. Since C ¼ Pðq þ p 	 6Þ þ P 	 1, by (9), bC ¼ q and gapðCÞ is the singleton
fgðCÞ þ ðq 	 1ÞMg containing the largest integer in the gap sequence; the minimum
stable genus is one more than this integer. Hence (13) is established. &

5. The case p ¼ 2. We state the results for D2q and only sketch the proof. The
method is analogous to the case in which p is odd.

For i ¼ 0; 1; 2; . . . ; let ti and si be the quotient and remainder, respectively,
upon division of i by 2. Let hðiÞ ¼ 1þ tiq þ siðq 	 1Þ, and Ni the greatest integer not
exceeding ðhðiÞ 	 ðq 	 1ÞÞ=ðq 	 2Þ. Define

Xi ¼ ; if Ni � 0; ð14Þ

otherwise

Xi ¼ fhðiÞ 	 ðNi 	 jÞðq 	 2Þ j j ¼ 0; 1; . . . ;Ni 	 1g;

gapðiÞ ¼ ; if i > q 	 5; ð15Þ

otherwise

gapðiÞ ¼ fhðiÞ þ jðq 	 2Þ j j ¼ ti þ 2; ti þ 3; . . . ; q	1
2 	 sig:

Theorem 5.1. For D2q, where q is an odd prime, we have
1. the minimum genus is � ¼ q 	 1;
2. the minimum stable genus is

� ¼
2 if q ¼ 3;
ðq 	 1Þðq 	 3Þ otherwise;

�
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3. the gap sequence is

[q	3
i¼0

fXi [ gapðiÞg;

where Xi and gapðiÞ are defined at (14) and (15), respectively.

Proof. (Sketch) When p ¼ 2 the function (5) can take half-integral values, but
still induces an equivalence relation on pairs. It is easy to show that every pair ðx; yÞ
is equivalent to a pair in which x ¼ 0, and so we need only consider the sets
specð0; yÞ, y � 3. Theorem 3.1 implies that ð0; 2½y	l�; qlÞ is a signature covering a D2q

action only if l � y ðmod 2Þ. This condition guarantees the elements of specð0; yÞ are
integers. Denoting y by y ¼ 4þ i, i ¼ 0; 1; . . . ; and letting ti, si be the quotient and
remainder, respectively, of i upon division by 2, we obtain the more convenient

specðiÞ ¼ fhðiÞ þ jðq 	 2Þ j j ¼ 0; 1; . . . ; ti þ 1g;

where hðiÞ ¼ 1þ qti þ siðq 	 1Þ: We do not allow y ¼ 3 since ð0; 2; 2; qÞ is not a
Fuchsian signature. Similarly ð0; 2; 2; 2; 2Þ is not Fuchsian, so that in specð0Þ, i 6¼ 0.
It follows that the minimum genus of D2q is the first (and only) admissible element in
specð0Þ, which is q 	 1.

Evidently the elements of specðiÞ all belong to the residue class of
hðiÞmod ðq 	 2Þ. It is not hard to see that for k ¼ 0; 1; . . . ; q 	 3, fhðkÞ þ jðq 	 2Þg1j¼0
is the subsequence of fhðiÞg in the residue class modðq 	 2Þ of hðkÞ. Since
hði þ q 	 2Þ 	 hðiÞ ¼ ð

qþ1
2 	 siÞðq 	 2Þ, we define gapðiÞ to be the complement of

specðiÞ in the set fhðiÞ þ jðq 	 2Þ j j ¼ 0; 1; . . . ; qþ1
2 	 si 	 1g, which is (15).

The last nonempty sets in the sequence fgapðiÞg occur when ti þ 2 ¼
q	1
2 	 si,

which is the case when i ¼ q 	 5	 si; i.e., when i ¼ q 	 6; q 	 5. Thus the last ele-
ment in the gap sequence is the single integer in gapðq 	 5Þ; one more than this
integer is the minimum stable genus ðq 	 1Þðq 	 3Þ. If q ¼ 3, the gap sequence is
empty and � ¼ � ¼ 2.

The sets Xk, k ¼ 0; 1; . . . ; q 	 3, complete the gap sequence with integers
� < n < hðkÞ in the residue class of hðkÞmod ðq 	 2Þ. &

In a future paper, the techniques used here will be adapted to cyclic groups of
order pq.
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