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Effects of horizontal magnetic fields on turbulent
Rayleigh–Bénard convection in a cuboid vessel
with aspect ratio Γ = 5
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Direct numerical simulations have been conducted to investigate turbulent Rayleigh–
Bénard convection (RBC) of liquid metal in a cuboid vessel with aspect ratio Γ = 5 under
an imposed horizontal magnetic field. Flows with Prandtl number Pr = 0.033, Rayleigh
numbers ranging up to Ra ≤ 107, and Chandrasekhar numbers up to Q ≤ 9 × 106 are
considered. For weak magnetic fields, our findings reveal that a previously undiscovered
decreasing region precedes the enhancement of heat transfer and kinetic energy. For
moderate magnetic fields, we have reproduced the reversals of the large-scale flow, which
are considered a reorganization process of the roll-like structures that were reported
experimentally by Yanagisawa et al. (Phys. Rev. E, vol. 83, 2011, 036307). Nevertheless,
the proposed approach of skewed-varicose instability has been substantiated as insufficient
to elucidate fundamentally the phenomenon of flow reversal, an occurrence bearing a
striking resemblance to the large-scale intermittency observed in magnetic channel flows.
As we increase the magnetic field strength further, we observe that the energy dissipation
of the system comes primarily from the viscous dissipation within the boundary layer.
Consequently, the dependence of Reynolds number Re on Q approaches a scaling as
Re Pr/Ra2/3 ∼ Q−1/3. At the same time, we find the law for the cutoff frequency that
separates large quasi-two-dimensional scales from small three-dimensional ones in RBC
flow, which scales with the interaction parameter as ∼N1/3.

Key words: Bénard convection, MHD turbulence

1. Introduction

The investigation into the nature of thermal convection under the influence of
magnetic fields has been invoked frequently to explore the fundamental principles of
magnetoconvection, owing to its broad range of applications, including stable crystal
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growth and the optimization of heat exchanger performance (Busse & Clever 1983;
Cioni, Chaumat & Sommeria 2000; Tasaka et al. 2016; Liu, Krasnov & Schumacher
2018; Akhmedagaev et al. 2020a; Vogt et al. 2021). Unlike regular fluids, flowing liquid
metal under the influence of a magnetic field generates induced currents and interacts
with the magnetic field to produce Lorentz force, thereby altering its original motion
characteristics. Normally, due to the low viscosity of liquid metals, they tend to develop
into turbulence quite easily. When a magnetic field is applied, the flow becomes anisotropic
and even two-dimensional (2-D) as it stretches along the direction of the field. However,
the influence of the magnetic field can manifest itself in different ways (Eckert et al. 2001;
Pothérat & Klein 2017).

One classical model for studying the impact of magnetic fields on thermal convection
systems driven by temperature differences is Rayleigh–Bénard convection (RBC). This
system is deceptively simple. Electrically conducting fluid confined in a cuboid vessel is
exposed to a horizontal magnetic field, and a destabilizing vertical temperature gradient is
heated from the bottom and cooled from the top. There are three important dimensionless
control parameters in such a system: the Rayleigh number, Chandrasekhar number and
Prandtl number, which are given by

Ra = gα �T H3

νκ
, Q = B2

0L2 σ

ρν
and Pr = ν

κ
, (1.1a–c)

with the gravity acceleration g, the thermal expansion coefficient α, the temperature
difference between the horizontal boundaries of the fluid layer �T , the height of the layer
H, the kinematic viscosity ν, the temperature diffusivity κ , the electrical conductivity σ ,
the mass density ρ, and the imposed magnetic field strength B0. The cuboid vessel has a
square cross-section with horizontal side lengths L and aspect ratio Γ = L/H.

For a much smaller Prandtl number flow, the transition from steady convection to
turbulence occurs more drastically with increasing Ra (Krishnamurti & Howard 1981)
and gives rise to much smaller stable regions of 2-D convection rolls in RBC. Through
a stability analysis, Busse (1978) showed that the stable convection rolls region, also
called the ‘Busse balloon’, shrinks with decreasing Pr, which makes it difficult to be
realized in experiments at low Pr conditions. Nonetheless, invariably the implementation
of a horizontal magnetic field is employed to surmount the aforesaid predicament. For
instance, the weakly nonlinear theory postulates that magnetic fields having a diminutive
Q expand the Busse balloon region, as proposed by Busse & Clever (1983) regarding
stability concerns. In other words, when Ra is sufficiently high, convection rolls will
become unstable, undergo transition, and exhibit a plethora of intriguing flow phenomena
such as turbulence as the magnetic field decreases gradually. The research conducted by
Houchens, Witkowski & Walker (2002) indicates that for RBC, increasing the vertical
magnetic field strength leads to an increase in the critical Ra at which instability occurs.

Regarding the impact of horizontal magnetic fields on thermal convection, the essential
aspect lies in the constraint imposed by the wall, such as Hartmann braking. Burr
& Müller (2002) characterized this effect as the increasing of the onset convection
threshold, and predicted an increase in the wavenumber of 2-D rolls with the rise of Q.
Additionally, they demonstrated further the occurrence of turbulent thermal convection
induced by oscillatory convection through the adjustment (Ra, Q). The evidence of
turbulent thermal convection being suppressed by an increase in Q for a fixed Ra is
substantiated by variations in the power spectrum of temperature fluctuations within the
fluid layer. Nevertheless, these variations do not depict a straightforward progression
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towards turbulent thermal convection, leaving some intricate flow structures unexplained
due to the limited information on the flow field.

Recently, with the development of ultrasonic velocity measurement, statistical
spatio-temporal convection patterns in a liquid metal have been studied experimentally,
and various flow regimes and transitions between them have been uncovered (Yanagisawa
et al. 2011, 2013; Yanagisawa, Hamano & Sakuraba 2015; Tasaka et al. 2016; Vogt et al.
2018, 2021). Yanagisawa et al. (2011) conducted numerous experiments on heat transfer
in the presence of a horizontal magnetic field, and summarized multiple complex flow
mechanisms. For instance, in a flat container with aspect ratio 5, they observed stable
four-roll and four-roll reversal phenomena as the horizontal magnetic field increased,
and they measured the frequency of the reversal. Subsequently, Yanagisawa et al. (2013)
increased the values of Ra and Q, and summarized various flow mechanisms within the
given parameter space, including no-roll, the transition from four-roll to three-roll, four-roll
oscillation, the transition from five-roll to four-roll, stable five-roll, stable four-roll, and no
convection. To gain deeper insight into the mechanism of flow reversal, Yanagisawa et al.
(2015) provided a detailed description of the reversal process and attempted to explain it in
terms of skewed-varicose instability. Vogt et al. (2018) also believed that this flow reversal
might be caused by oscillation instability and skewed-varicose instability, but there is still
no definitive mechanism to explain this conversion process. At the same time, Vogt et al.
(2018) cleverly designed a set of experiments that depicted the evolution of flow from
stable to unstable, from two to three dimensions, by fixing Ra and gradually reducing
Q. Consequently, they obtained typical flow mechanisms similar to those discovered by
Yanagisawa et al. (2013), and also focused on secondary flow in the Hartmann layer
in parallel and perpendicular magnetic field directions. Subsequently, Vogt et al. (2021)
and Yang, Vogt & Eckert (2021) conducted similar experiments and discovered that the
magnetic field resulted in a significant enhancement of heat and momentum transport.
However, there is a lack of mechanistic explanation for the scales relevant to the convective
flow and heat transfer.

The focus of our investigation here is on the RBC with a horizontal magnetic field
and sidewalls. High-resolution direct numerical simulations (DNS) of flows in a cuboid
vessel with Γ = 5, Pr = 0.033, 105 ≤ Ra ≤ 107 and Q ≤ 9 × 106 are performed. The
work follows the experiments by Yang et al. (2021) carried out at the same Γ and Pr,
and at Ra ≤ 2.6 × 105 and Q ≤ 6.1009 × 106 (the highest Ra and Q achieved so far). The
work aims to answer the following general questions.

(i) How do the flow structures in the convection cavity change under the influence of
a horizontal magnetic field? Additionally, what is the impact of these structures on
turbulent heat and momentum transport?

(ii) Under the influence of a magnetic field, is the skewed-varicose instability the
intrinsic mechanism driving the phenomenon of reversed flow in a multiple roll
system of Yang et al. (2021) and Vogt et al. (2021)?

(iii) According to the findings of Vogt et al. (2018), it is evident that with the
enhancement of the magnetic field, the flow in the RBC thermal convection problem
undergoes a transition from three dimensions to two as well. Therefore, is there also
a cutoff frequency or length scale between quasi-2-D and three-dimensional (3-D)
flow structures in magnetohydrodynamics (MHD) RBC turbulence, as predicted by
Sommeria & Moreau (1982) and found by Baker et al. (2018) and Chen et al. (2021)
in MHD channel flows? And what kind of relationship exists between the cutoff
frequency and the interaction parameter?
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To the best of our knowledge, this study is the first to analyse turbulent RBC at high Q,
realistically low Pr, and a large aspect ratio Γ = 5 in the framework of high-resolution
DNS. The only related simulations have been performed by Lim et al. (2019) in a cubic
convection cell at unrealistic Pr = 8, with Ra up to 1010, and Q up to 6.4 × 105, and by
Akhmedagaev et al. (2020b) in a cylindrical cavity with Γ = 1 at Pr = 0.025, with Ra up
to 109, and Q up to 1.96 × 106, where axial magnetic fields are imposed.

2. Problem statement and formulation

We consider the flow of an incompressible, viscous, electrically conducting fluid (a liquid
metal) with constant physical properties contained in a square vessel under a uniform
horizontal magnetic field. The governing equations are made dimensionless by using
the vessel’s height H, the free-fall velocity U = √

gα �T H, the external magnetic field
strength B0, and the imposed temperature difference �T = Tbottom − Ttop as the scales
of length, velocity, magnetic field and temperature, respectively. The Boussinesq and
quasi-static approximations are used. The equations are

∇ · u = 0, (2.1)

∂u
∂t

+ (u · ∇)u = −∇p +
√

Pr
Ra

(
∇2u + Q

Γ 2 ( j × eb)

)
+ Tez, (2.2)

∂T
∂t

+ u · ∇T = 1√
Ra Pr

∇2T, (2.3)

j = −∇φ + (u × eb), (2.4)

∇2φ = ∇ · (u × eb), (2.5)

where p, u, φ and T are the fields of pressure, velocity, electric potential and deviation of
temperature from a reference value, and eb is the unit vector in the direction of the imposed
magnetic field B0. In the present study, the magnetic fields are paralleled with y-axial
direction. The top and bottom walls are maintained at constant temperatures T = −0.5
and T = 0.5, respectively. The lateral walls are thermally insulated, so having ∂T/∂n = 0.
No-slip boundary conditions for velocity are applied at the walls. All walls are perfectly
electrically insulated, which implies ∂φ/∂n = 0.

The governing equations (2.1)–(2.5) are solved numerically using a second-order
finite volume method on a non-uniform Cartesian mesh, discussed in detail in Chen
et al. (2021). Table 1 summarizes the most important parameters of our DNS runs,
and reports the (turbulent) momentum transfer quantified by the Reynolds number
Re = urms

√
Ra/Pr with root mean square velocity urms =

√
〈u2

x + u2
y + u2

z 〉V,t and

(turbulent) heat transfer measured by the Nusselt number Nu = 1 + √
Ra Pr 〈uzT〉V,t,

where 〈·〉V,t stands for volume and time averaging, respectively. The time averaging is
performed over 40 convective time units. The values of Re and Nu of run 1 are comparable
to those from Liu et al. (2018) for RBC in mercury at Pr = 0.025 in a closed square cell
at Γ = 4, where Nu = 9.75 ± 0.05 and Re = 7946 ± 19 are reported. We find that grids
with Nx × Ny × Nz = 1536 × 1536 × 384, and the points inside the boundary layers, are
sufficient for non-magnetic/magnetic flows. Further refinement of the grid does not lead
to significant changes. In addition, suppression of velocity gradients by the magnetic field
allows us to alleviate the resolution requirements for the x, z directions.
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Run Ra Q Nx × Ny × Nz Nu Re NBL Runtime

1 107 0 1280 × 1280 × 256 9.26 ± 0.05 7755 ± 21 14 40
2 107 0 1536 × 1536 × 384 9.30 ± 0.03 7764 ± 17 16 40
3 107 0 1920 × 1920 × 384 9.31 ± 0.03 7765 ± 17 20 40
4 107 2.25 × 106 1280 × 1280 × 256 11.61 ± 0.05 10 435 ± 14 10 40
5 107 2.25 × 106 1536 × 1536 × 384 11.75 ± 0.02 10 447 ± 8 12 40
6 107 2.25 × 106 1920 × 1920 × 384 11.76 ± 0.02 10 447 ± 8 14 40

Table 1. The grid sensitivity study for cases with Pr = 0.033, Ra = 107 and Γ = 5. The grid number inside
the Hartmann layer with thickness δHa is listed. For the case Q = 0, the viscous boundary layer thickness δv is
adopted instead of the Hartmann layer thickness. We use NBL to denote the number of the grid points within
the boundary layer. The total runtime is scaled with the free-fall time, tf = H/Uf .

In addition to the internal structure of the flow, four boundary layers need to be resolved
accurately (Grossmann & Lohse 2001; Davidson 2002): the thermal boundary layer of
thickness δT ≈ 1/(2Nu), the viscous boundary layer with δv ≈ 1/(4

√
Re), the Shercliff

layer with δSh ≈ 1/ 4
√

Q at the lateral, top and bottom walls, and the Hartmann layer
with δHa = 1/

√
Q at the walls perpendicular to the magnetic field. Therefore, coordinate

transformation is applied for generation of a non-uniform grid (see Akhmedagaev et al.
2020a). In the present simulation, grids 512 × 512 × 128, 1024 × 1024 × 256, 1536 ×
1536 × 384, and the clustering parameter 2.0 (Akhmedagaev et al. 2020b) are applied for
flows with Q ≤ 9 × 104 at Ra = 105, 106 and 107, respectively. When the magnetic field
is relatively strong, Q > 9 × 104, taking into account the quasi-2-D character of the MHD
flow (i.e. weak axial gradients of velocity in the core), we appropriately reduce the grid
points in the direction of the magnetic field (but not less than 4/5 of the original number),
and the grid points in the Hartmann layer are no less than 10.

3. Results and discussion

3.1. Global heat and mass transfer
With the increasing of magnetic field imposed on RBC, the electromagnetic force gives
rise to a transition from a 3-D convective roll pattern (called cell structures by Vogt et al.
(2021); see figure 1a) to a quasi-2-D flow pattern (see figure 1d) in a way that convective
rolls become more and more aligned with the magnetic field (see figures 1b,c). Such an
evolution has been observed already in the previous investigations by Burr & Müller
(2002), Tasaka et al. (2016) and Vogt et al. (2021). Generally speaking, the quasi 2-D
roll-like structure ensures a direct heat transfer between the bottom and the top, and extends
the uniform bulk central region of the convection, thinning the thermal boundary layers
and causing an increase of heat transfer coefficient for moderate Q as shown in figure 2(a).

However, prior to the augmentation of heat transfer, it is noteworthy that Nu exhibits a
decline under relatively weak magnetic fields, particularly in cases of higher Ra, which
is consistent with the findings of the experiments conducted by Burr & Müller (2002)
and Vogt et al. (2021). The reduction can be attributed to the suppression of small-scale
convective vortices by the Lorentz force, which results in a decrease in the injection of
plumes, the primary agents of heat transfer. It is also important to mention that Re follows
a similar trend to the Nusselt number with the increase of Q, indicating that convective
heat conduction is always dominant within our parameter space. Moreover, this trend
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Figure 1. The isosurfaces of Ω = 0.5 are shown, coloured with vertical velocity uz for Ra = 1 × 106. The
identified method of the vortex structures (Ω) applied here is defined by Liu et al. (2016). Isosurfaces are for
(a) Q/Ra = 0, (b) Q/Ra = 0.16, (c) Q/Ra = 0.64, and (d) Q/Ra = 2.25.
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Figure 2. (a) Relative deviations of the heat transfer from the reference state of RBC (without magnetic field),
(Nu − Nu0)/Nu0, as a function of Q for three different Ra values. Data from Vogt et al. (2021) are used
for comparison. (b) The corresponding values of the compensated Re number, Re Pr/Ra2/3, plotted versus
Q, where Re from Yang et al. (2021) is based on max(ux). The Q values in the simulation are listed in
ascending order as follows: 2.5 × 103, 104, 2.25 × 104, 4 × 104, 9 × 104, 1.6 × 105, 2.5 × 105, 6.4 × 105, 106,
1.5625 × 106, 2.25 × 106, 3.0625 × 106, 4 × 106, 6.25 × 106 and 9 × 106.

exhibits the intricate way in which a magnetic field affects a turbulent flow. For small Q,
the velocity in the magnetic field is inhibited, and damping becomes the primary effect
on flow, resulting in a decrease in Re. However, for moderate Q, the enhancement of
flow perpendicular to the magnetic field dominates, leading to an increase in both Nu
and Re. This phenomenon has also been observed in duct flow (Sukoriansky, Zilberman
& Branover 1986; Zikanov et al. 2019), electromagnetically driven square cavity flow
(Pothérat & Klein 2017) and vertical convection flow in a square container under the
influence of magnetic fields (Chen, Liu & Ni 2018).
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Furthermore, we note that Re Pr/Ra2/3 scales well with Q−n (n = 0.35) for cases at
sufficiently large Q, where quasi-2-D roll structures have been well developed. Now
we incorporate Grossmann–Lohse (GL) theory (Grossmann & Lohse 2000) into the
MHD-RBC flow, and provide an explanation for this scaling relationship. Regarding a
regular flow, the GL theory takes into account the spatial- and time-averaged viscous and
thermal dissipation rates, εν and εκ , in convective heat transfer:

εν = ν

2
〈(∂iuj + ∂jui)

2〉, (3.1)

εκ = κ〈(∂iT)2〉. (3.2)

Here, the Einstein summation convention is used over the coordinates i, j = x, y, z, and
∂i = ∂/∂xi is a short notation for the spatial partial derivatives.

As suggested by Zürner (2020), under the influence of a magnetic field, the additional
Joule dissipation rate

εη = η

2
〈(∂ibj + ∂jbi)

2〉 (3.3)

has to be considered. Here, the secondary magnetic field b = biei is induced by the
interaction of u and the imposed magnetic field B0, and η is the the magnetic diffusivity.
When turbulence reaches a relatively steady state, the average dissipation rate satisfies
the following rigorous relations, which are derivable easily from (2.2), (2.3), the transport
equation for magnetic induction, and the definition of Nu (see Shraiman & Siggia 1990;
Chakraborty 2008; Zürner et al. 2016):

εν + εη

μρ0
= ν3

H4
(Nu − 1) Ra

Pr2 , (3.4)

εκ = κ
(�T)2

H2 Nu, (3.5)

where μ represents the the magnetic permeability. Based on the GL theory, the
contributions of the dissipation rate from the bulk region and the boundary layer are
separated:

εν = εν,Bulk + εν,BL, (3.6)

εη = εη,Bulk + εη,BL, (3.7)

εκ = κ
(�T)2

H2 + εκ,Bulk + εκ,BL. (3.8)

Zürner (2020) made estimates for the different terms in the above equations, based on the
following assumptions: (1) the Prandtl number of liquid metals is sufficiently low, Pr 	 1;
(2) Q1/2 is sufficiently large, and the viscous boundary layers on the walls perpendicular to
the magnetic fields are replaced by the Hartmann layer; (3) the magnetic Reynolds number
is low enough, Rm 	 1; and (4) additional regime transitions, e.g. transition concerning
the onset of convection under the effects of magnetic fields. He obtained the following
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N 75.60 174.69 253.46 530.34 1045.96
εν,Bulk 0.0101 0.0133 0.0149 0.0188 0.0161
εν,BL 0.0359 0.0587 0.0768 0.1620 0.1395
εη,Bulk 0.0333 0.0173 0.0137 0.0021 0.0012
εη,BL 0.0212 0.0177 0.0139 0.0092 0.0085
Nroll 3 4 4 5 5

Table 2. Comparison of the volume- and time-averaged viscous dissipation εν , the Joule dissipation rates εη,
and the averaged number of the roll structures at Ra = 1 × 106.

relationships:

εν,Bulk ∼ ν3

H4 Re3, (3.9)

εν,BL ∼ ν3

H4 Re2 Q1/2, (3.10)

εη,Bulk ∼ μρ0
ν3

H4 Re2 Q, (3.11)

εη,BL ∼ μρ0
ν3

H4 Re2 Q3/2, (3.12)

εκ,Bulk ∼ κ
(�T)2

H2 Re Pr, (3.13)

εκ,BL ∼ κ
(�T)2

H2

√
Re Pr. (3.14)

When N (= Q/Re) is large enough, the bulk flow region approaches a quasi-2-D
state, where the viscous dissipation should be dominated by εν,BL. To substantiate this
viewpoint more rigorously, we have tabulated the time-averaged values of viscous and
Joule dissipation in the bulk flow and boundary layer regions, respectively, when Ra =
1 × 106, as shown in table 2. It is worth noting that when considering dissipation,
especially in the bulk flow region, forces other than the Lorentz force, such as the inertial
force, must also be taken into account (Pothérat & Klein 2017). Therefore, N is used as
a control parameter here. The results demonstrate strongly that when N ≥ 253.46, the
viscous dissipation in the bulk flow region is much smaller than that in the boundary layer,
almost εν,Bulk ≈ 0.1εν,BL. Therefore, it can be concluded that the main contribution to
viscous dissipation comes from the boundary layer, i.e. εν ∼ εν,BL. This approximation is
evidently unsuitable for cases where N is relatively small. For instance, when N = 75.60,
the viscous dissipation in the bulk flow region is similar to that in the boundary layer.
Meanwhile, the thermal dissipation for convective liquid metals with Pr 	 1 satisfies
εκ ∼ εκ,BL.

For the Joule dissipation, when the magnetic field is strong enough, it can be inferred
from (3.11) and (3.12) that the contribution from the boundary layer should be greater
than that from the bulk region. This phenomenon can be explained easily from a physical
perspective. Under a strong magnetic field, the flow becomes more regular, and the
Joule dissipation in the bulk region is small. The electric current concentrates mainly
in the Hartmann layer, thus resulting in greater Joule dissipation in the boundary layer.
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MHD Rayleigh–Bénard convection

The computational results also confirm this viewpoint. When the magnetic field is weak,
such as N = 75.60, 174.69 and 253.46, the Joule dissipation in the bulk region is roughly
equivalent to that in the boundary layer. However, as the magnetic field continues to
increase and N reaches 530.34 and 1045.96, the Joule dissipation in the bulk region is
significantly lower than that in the boundary layer.

It is difficult to obtain the relative magnitudes of viscous dissipation and Joule
dissipation from the approximate equations (3.9)–(3.12) under a strong magnetic field.
Based on the calculation results, it can be observed that when the magnetic field is weak,
such as N < 253.46, the contributions of viscous dissipation and Joule dissipation are
relatively close. When N ≥ 253.46, viscous dissipation will be much greater than Joule
dissipation, and as the magnetic field continues to increase, the difference between the two
will become more significant. Therefore, under a strong magnetic field, we can conclude
that

εν + εη ∼ εν ∼ εν,BL. (3.15)

From this, it can be derived that the momentum dissipation (including both the viscous
dissipation and Joule dissipation) and thermal dissipation for Pr 	 1 (Grossmann &
Lohse 2000) satisfy approximately

(Nu − 1) Ra
Pr2 ∼ Re2 Q1/2, (3.16)

Nu − 1 ∼
√

Re Pr. (3.17)

Regarding the flow of liquid metal studied in this paper, with Pr being unchanged, it can
be obtained that

(
√

Re Pr)Ra ∼ Re2 Q1/2 → Re Pr/Ra2/3 ∼ Q−1/3. (3.18)

As shown in figure 2(b), the numerical results exhibit a scaling law of 0.35 for cases at
different Ra, which agrees well with the derived scaling law of 1/3.

3.2. Flow reversal and turbulence intermittency
The phenomenon of flow reversal, which was observed previously in experimental studies
at Ra ∼ 105 (Yanagisawa et al. 2011, 2013) and numerical studies at Ra ≤ 106 (Vogt et al.
2018; Liu 2019), has been rediscovered in the present work at Ra = 107 with a larger
aspect ratio Γ = 5. Our investigations have revealed that this reversal phenomenon is
an inherent characteristic of MHD-RBC flows, and is associated with specific parameter
combinations. Furthermore, we intend to provide a detailed depiction of the evolution
process of flow reversals based on the integrated kinetic energy equation

d
dt

∫
u2

2
dV = −

∫
εν dV −

∫
εη dV +

∫
uzT dV, (3.19)

where V represents the entire domain. Presented here are the developments in the flow field
resulting from a singular flow reversal procedure, as well as the subsequent evolutions of
the kinetic energy u2, with regard to u2

x , u2
y and u2

z , the rate of viscous dissipation εν , the
rate of Joule dissipation εη, and the thermal flux uzT .

The exemplification of temporal progression manifests in figures 3 and 4, where
turbulent bursts alternate with periods of quasi-2-D behaviour. As delineated in figure 4(a),
the nascent phase (t1) manifests as quasi-2-D, comprising four quasi-2-D rolls labelled as
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Figure 3. Results for Q = 2.25 × 106, Ra = 1 × 107. (a) Time-space maps of vertical velocity along line
(2.5, y, 0.75). (b) Time variations of energy u2

x , u2
y , u2

z . (c) Time variations of the volume-averaged heat
transport uzT , viscous dissipation rate εν , and Joule dissipation rate εη.
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Figure 4. Flow evolution during one reversal procedure with Q = 2.25 × 106, Ra = 1 × 107. Six snapshots
are shown, denoted by the six vertical dashed lines in figure 3. The streamlines of 3-D velocity field are coloured
with vertical velocity: red for upwards motion, and blue for downwards motion.

1, 2, 3 and 4, correspondingly. At this juncture, the vertical energy diminishes substantially
but does not reach null, while the energy within the plane perpendicular to the magnetic
field attains its zenith, illustrated in figure 3(c). Progressing from time t1 to t2, the rolls
undergo curvature where the latter halves of rolls 1 and 2 contract, whereas rolls 3 and
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4 expand, exhibiting an evolution contrary to that near the frontal wall. Throughout this
process, depicted in figure 3, both u2

y and the Joule dissipation εη escalate, reaching their
peak at t2, signifying that the restoration of 3-D turbulent flow occurs. Following this, from
t2 to t3, as the rolls persist in their curvature, rolls 5 and 6 materialize at the extremities
of the vessel, as portrayed in figure 4(c), while the roll-like configurations adjacent to
the remaining corners almost dissipate. Concurrently, rolls 2 and 3 undergo displacement
in the centre (refer to figure 4). During this phase, u2

y declines, and the predominant
contributions of kinetic energy, u2

x and u2
z , also dwindle further as εν + εη continues to

surpass uzT . When the intersection of εν + εη with uzT occurs at t3, u2
x and u2

z attain their
minimum values.

From the interval between t3 and t5, the fragmented convection rolls begin a process of
reintegration. Roll 5, newly formed, inclines towards the posterior section of roll 2, while
the leading half of roll 3 appears to merge with the recently generated roll 6. Within the
central zone, the trailing half of roll 3 endeavours to connect with the leading half of roll 1,
while the frontal section of roll 2 seeks to bond with the rear part of roll 4. Throughout this
phase, the magnitude of uzT surpasses that of εν + εη, consequently initiating an ascent
in both u2

x and u2
z . As alignment between the rolls and the magnetic field occurs at t4,

the values of u2
y and εν + εη descend to their minimal levels. By t6, εν + εη exceeds uzT ,

leading to a surge in u2
x and u2

z . A novel quasi-2-D structure emerges, comprising four rolls
rotating in the opposite direction to those observed at t1.

Let us now examine the possible physical mechanisms of flow reversal, i.e. the
skewed-varicose instability. As mentioned by Greenside, Cross & Coughran (1988) and
Busse, Kropp & Zaks (1992), the skewed-varicose instability is crucial for understanding
the transition of fluid from small to medium Pr (Pr ≤ 1) towards chaos. One of its key
elements is the mean flow, which refers to the flow with a larger length scale compared
to the wavelength of convective eddies. Yanagisawa et al. (2013, 2015) and Vogt et al.
(2018) explained the process of flow reversals in RBC as the creation of new rolls and
the following skewed-varicose instability (instability in both directions perpendicular
and parallel to the axis of roll). In this process, the horizontal circulation plays an
important role, which can be quantified by introducing the global angular momentum.
For our research, the global angular momentum along the z direction around the centre
point C(xc, yc, zc) of the container can well reflect the mean flow. This is defined as
L(z) = 〈(x − xc)uy − ( y − yc)ux〉V , where the brackets denote the spatial average.

Upon examining figure 5, it is apparent that under the condition Ra = 1 × 106, when
Q = 2.5 × 105, the flow pattern exhibits an irregular three-roll structure, accompanied
by a flow reversal. When Q = 6.4 × 105, the flow displays a relatively regular four-roll
structure, with a flow reversal occurring periodically. Conversely, when Q = 2.25 × 106,
the flow maintains a stable five-roll structure, without any instances of reversal, as shown in
figure 1(d). Figure 6 illustrates the global angular momentum L(z) corresponding to these
three conditions. When Q = 2.5 × 105, the global angular momentum L(z) reaches its
peaks at t = 176 and t = 221, respectively, and these peaks are greater than those observed
under Q = 6.4 × 105. However, as shown in figure 5, the flow does not undergo a rapid
reversal after these two peaks, but rather gradually reverses at t = 230. In contrast, for
Q = 6.4 × 105, the flow experiences rapid reversals after the global angular momentum
L(z) reaches its peaks at t = 46, 102, 160 and 220. It is worth noting that a change in the
direction of flow does not necessarily imply a change in the sign of the global angular
momentum. The two are not directly related, as both positive and negative global angular
momentum can lead to the same result in terms of flow reversal. When Q = 2.25 × 106,
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Figure 5. Time–space maps of vertical velocity along line (2.5, y, 0.75) for the case with Ra = 1 × 106 and
(a) Q = 2.5 × 105, (b) Q = 6.4 × 105.
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Figure 6. Global angular momentum L(z) along the z direction at the central point of the vessel for three
typical flow regimes with Ra = 1 × 106 and Q = 2.5 × 105, 6.4 × 105, 2.25 × 106.

the flow does not undergo any reversal, resulting in the global angular momentum L(z)
almost entirely equalling 0. Therefore, the global angular momentum L(z), which reflects
the mean horizontal circulation, can explain to some extent the occurrence of a flow
reversal. Additionally, when the magnetic field is weak, the many small-scale, 3-D vortices
attached to the primary convective roll contribute to an increase in the global mean
horizontal circulation. As a result, L(z) becomes less useful in explaining a flow reversal
under these conditions.

In fact, it is not difficult to observe that this periodic reversal bears resemblance to the
large-scale temporal intermittency observed in channel flow with a spanwise magnetic
field (Boeck et al. 2008), forced turbulence in a periodic box (Zikanov & Thess 1998),
and inviscid flow in a triaxial ellipsoid (Thess & Zikanov 2007). In these cases, the flows
experience prolonged periods of nearly steady laminar states, punctuated by brief turbulent
bursts. And the typical duration of the large-scale intermittent cycle is linked intricately to
both driving strength and magnetic field intensity. The evolution of all the phenomena also
appears to be analogous. When Q is moderate, the magnetic field is not potent enough to
suppress 3-D secondary instabilities, but is strong enough to impede their transition to fully
developed turbulence. After a brief outburst, the flow reverts to a nearly laminar base state,
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where the Joule dissipation is low, and instabilities can subsist. However, with increasing
Q, the strength of the turbulent burst diminishes, and the duration of the instability growth
phase extends, resulting in a longer reversal period.

3.3. Three-dimensionality
As described above, a horizontal magnetic field of sufficient strength can convert
convective motion into quasi-2-D rolls that align parallel to the magnetic field.
Additionally, the derivation of the scaling relationship for the cutoff frequency fc (or
cutoff length scale) that distinguishes high-frequency fluctuations in three dimensions
from low-frequency fluctuations in two dimensions relies solely on the true interaction
parameter Sommeria & Moreau (1982). Hence we expect the scaling law between the
interaction parameter and cutoff frequency to apply in the case of turbulent thermal
convection influenced by a horizontal magnetic field, as observed in turbulence with a
strong background flow (Klein & Pothérat 2010; Pothérat & Klein 2014; Baker et al. 2018)
and shear turbulence (Chen et al. 2021).

Figures 7(c– f ) display pairs of spectra obtained by applying different filter frequencies
to the frontal velocity signal. It is noteworthy that, according to the discussion of Kumar
& Verma (2018), the Taylor assumption is applicable to turbulent convection. The original
signals were collected at positions on the Hartmann walls that aligned precisely with
the magnetic field lines (i.e. at y = 0 and y = Γ ) but at the same coordinates (x, z),
and the probes were located in the central square region to minimize the influence of
the sidewalls. Moreover, it should be noted that only the velocity signals recorded by
probes positioned in the middle region of adjacent convection rolls are utilized. In the
case where Ra = 106 and Q = 2 × 105, the frontal and back spectra are partially identical
in figure 7(c), which is expected since the flow tends to exhibit quasi-2-D behaviour at
most scales. However, the spectra differ significantly at higher frequencies, indicating that
small-scale structures are more sensitive to three-dimensionality. As Q decreases (with Ra
fixed), the frequency range affected by three-dimensionality extends to lower frequencies,
eventually contaminating the entire spectrum at the lowest Q values (e.g. Q = 0). By
comparing pairs of spectra, the theory of Sommeria & Moreau (1982) and experiments
conducted by Baker et al. (2018) have identified a cutoff length scale kc (corresponding to
fc) that separates quasi-2-D structures from 3-D structures.

Here, we applied a partial correlation function between signals on the front and back
Hartmann walls (see Pothérat & Klein 2014) to quantify the variation of fc with N (=
Q/Re):

c( f ) =
∑Ti

t=0 Bf ufront(t) uback(t)√∑Ti
t=0 Bf u2

front(t) u2
back(t)

. (3.20)

Here, Ti is the duration of the recorded signals. The signal obtained from the frontal
wall is replaced with a filtered counterpart, processed through an eighth-order low-pass
filter of cutoff frequency denoted as Bf ufront, as shown in figure 7(a). Generally, the large
frequency displayed in the spectrum corresponds to a small flow structure in physical
space. As the filter frequency f is increased from 0, more and more fluctuation scales are
added to the filtered frontal signal, resulting in better correlation with the back signal in
the quasi-2-D flow field. However, when f is increased beyond a critical value fc (refer to
figure 7 f ), the small scales, where three-dimensionality is still present, will disrupt the
correlation between the two signals, leading to a decrease in c( f ). Hence the position of
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Figure 7. (a) Variations of partial correlation c( f ) with the cutoff frequency of filter Bf applied to the velocity
signal measured at the frontal wall. Curves are obtained for Ra = 106 and Q = 2 × 105 for a pair of probes
within the centre square. Curves obtained for different parameters exhibit the same features. (b) The cutoff
frequency fc, separating quasi-2-D large structures from the small 3-D ones with the interaction parameter N.
(c– f ) Power spectral density (PSD) of the filtered frontal and back signals plotted in terms of the frequency.
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the maximum fc provides an excellent measure of the separation between large-scale 2-D
structure and small-scale 3-D structure.

Figure 7(b) depicts the variations of the spatially averaged cutoff frequency fc with N,
indicating that the changes in fc for all the analysed cases converge onto a single curve.
This result implies that fc follows a scaling law that is determined by N:

fc ∼ N0.36. (3.21)

This general scaling law provides a precise estimate for the minimum frequency of vortices
that are influenced by 3-D inertial effects. Thus, similar to shear turbulence or turbulence
with a strong background flow, the MHD-RBC turbulence also exhibits the same scaling
law for the cutoff frequency fc (Klein & Pothérat 2010; Pothérat & Klein 2014; Baker et al.
2018).

4. Concluding remarks

The present study reports 3-D DNS of magnetoconvection in a cuboid vessel under the
influence of an external horizontal magnetic field. The range of high Ra and Q never
previously explored in numerical simulations is considered.

The results of our DNS are consistent with available experimental and numerical data.
In particular, we find a new regime where Nu and Re reduce with Q in flows with
weak magnetic fields before the heat transfer enhancement region, demonstrating that this
interesting phenomenon is not caused by experimental errors (observed in Burr & Müller
2002; Vogt et al. 2021). The similar variation trend in Nu and Re indicates the strong
correlation between heat transfer and momentum transfer. In other words, under a weak
magnetic field, the small-scale 3-D vortex structures are inhibited by the Lorentz force,
resulting in a decrease in the injection of plumes. These plumes are the main carriers of
heat, thus as Re decreases, Nu decreases accordingly.

As the magnetic field strength increases, the flow gradually reaches a quasi-two-
dimensional (quasi-2-D) state. At this point, numerical results show that there is a −1/3
scaling relationship between Re and Q. To better explain this scaling rate, we introduce
GL theory into the MHD thermal convection, and use numerical results combined with
physical analysis to compare the orders of magnitude of viscous dissipation in the bulk
flow region, viscous dissipation within the boundary layer, Joule dissipation in the bulk
flow region, and Joule dissipation within the boundary layer, respectively. It is found that
under strong magnetic effects, viscous dissipation plays an overwhelmingly dominant role
compared to Joule dissipation, and the viscous dissipation within the boundary layer is
also much greater than that in the bulk flow region. Therefore, the energy dissipation
of the system comes mainly from the viscous dissipation within the boundary layer,
i.e. εν + εη ∼ εν ∼ εν,BL. Combining the heat transfer characteristics under a low Pr,
we obtain the relationship between heat transfer efficiency and Re, and thus derive the
Re ∼ Q−1/3 relationship of the system under strong magnetic fields, which well validates
the numerical results.

As for the flow reversal phenomenon observed frequently in liquid metal experiments,
we have conducted mechanistic analysis from the method of skewed-varicose instability.
For the skewed-varicose instability, the mean horizontal circulation is the most critical
influencing factor, which can be measured by the vertical global angular momentum.
Our results indicate that the global angular momentum is more suitable for explaining
the regular flow reversal phenomenon. For more chaotic flow reversal phenomena, the
global angular momentum cannot reflect the evolution process of flow reversal very well.
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Indeed, the global angular momentum is greatly influenced by the walls of the container,
such as the axial secondary flow caused by the Ekman effect. Therefore, setting the
remaining walls, except for the top and bottom plates, as periodic boundaries to observe if
the flow reversal phenomenon persists might offer a clearer explanation.

In the meantime, the three-dimensionality is characterized locally by analysing the
frequency spectra of the velocity signals near the two Hartmann walls. As predicted
by Sommeria & Moreau (1982), the cutoff frequency fc is in accordance with ∼N0.36,
indicating the existence of a cutoff frequency that separates 3-D and quasi-2-D turbulent
structures in MHD-RBC turbulence, besides the turbulence with a strong background flow
(see Baker et al. 2018) and shear turbulence (see Chen et al. 2021), which corresponds to
the cutoff wavelength scaling predicted by Sommeria & Moreau (1982).
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