JOURNAL OF PLASMA PHYSICS

VOLUME 75 2009

PROFESSOR PADMA KANT SHUKLA, Institut für Theoretische Physik IV, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany, ps@tp4.rub.de

ASSOCIATE EDITORS

PROFESSOR ROBERT BINGHAM, Space Science & Technology Department, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX, United Kingdom, r.bingham@rl.ac.uk

PROFESSOR GERT BRODIN, Department of Physics, Umeå University, S-90187 Umeå, Sweden, Gert.Brodin@physics.umu.se

PROFESSOR NATHANIEL J FISCH, Department of Astrophysical Sciences, Princeton Plasma Physics Laboratory, James Forrestal Campus, Princeton University, Princeton, NJ 08543, USA, fisch@princeton.edu

PROFESSOR OSAMU ISHIHARA, Faculty of Engineering, Yokohama National University, 79-5 Tokiwada, Yokohama 240-8501, Japan, oishihara@ynu.ac.jp

PROFESSOR JOSE TITO MENDONÇA, GoLP/Instituto Superior Tecnico, Department of Physics, University of Lisbon, 1049-001 Lisboa, Portugal, titomend@ist.utl.pt

PROFESSOR RAM PAL SHARMA, Centre of Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India, rpsharma@ces.iitd.ernet.in

Dr John P Dougherty, Founding Editor, 1967–1994

Journal of Plasma Physics (ISSN 0022-3778) is published six times a year in February, April, June, August, October and December, by Cambridge University Press, The Edinburgh Building, Shaftesbury Road, Cambridge CB2 8RU, UK and Cambridge University Press, 32 Avenue of the Americas, New York, N.Y. 10013-2473, USA.

Six parts form a volume. The subscription price (excluding VAT, but including postage) of Volume 75 (2009) is \pounds 935.00 (US \$1850.00 in the USA, Canada and Mexico) for institutions print and electronic, institutions electronic only \pounds 880.00/\$1580.00; \pounds 281.00 (US \$516.00) print only for individuals. All orders must be accompanied by payment.

EU subscribers (outside the UK) who are not registered for VAT should add VAT at their country's rate. VAT registered subscribers should provide their VAT registration number.

Japanese prices for institutions are available from Kinokuniya Company Ltd, P.O. Box 55, Chitose, Tokyo 156, Japan. Prices include delivery by air.

Copies of the journal for subscribers in the USA, Canada and Mexico are sent by air to New York to arrive with minimum delay. Periodicals postage paid at New York, NY, and at additional mailing offices. *POSTMASTER*: send address changes in USA, Canada and Mexico to *Journal of Plasma Physics*, Cambridge University Press, 100 Brook Drive, West Nyack, New York 10994–2133.

Internet access This journal is included in the Cambridge Journals Online service, which can be found at journals.cambridge.org For further information on other Press titles, access http://www.cambridge.org

© Cambridge University Press 2009

CONTENTS TO VOLUME 75

Part 1 February 2009

Photon equivalent charge in a two-electron temperature Fermi plasma 3 L. A. RIOS, P. K. SHUKLA and A. SERBETO 3 On the parametric decay of waves in magnetized plasmas 9 Excitation of ion wakefields by electromagnetic pulses in dense plasmas 9 Excitation of ion wakefields by electromagnetic pulses in dense plasmas 15 A comparative study of the filamentation and Weibel instabilities and their cumulative effect. I. Non-relativistic theory 15 M. LAZAR, A. SMOLYAKOV, R. SCHLICKEISER and P. K. SHUKLA 19 The dependence of open cylindrical magnetoactive p-Ge and p-Si plasma waveguide mode cutoff frequencies on hole concentrations 35 Numerical prediction of the saturation limit of atmospheric pressure AC dielectric barrier discharges 35 Numerical prediction of the saturation limit of atmospheric pressure AC dielectric barrier discharges 53 Dynamic behaviour of an oxygen de discharge 71 Generalization of the two-dimensional Child–Langmuir law for non-zero injection velocities in a planar diode 74 YA-MIN QUAN and YAO-GEN DING 85 A mechanism for self-generated magnetic fields in the interaction of ultra-intense laser pulses with thin plasma targets 3 A. ABUDUREXITI, T. OKADA and S. ISHIKAWA 91 Adiabatic effects of electrons and ions on electro-acoustic solitary waves in a	Erratum	1
On the parametric decay of waves in magnetized plasmas 9 G. BRODIN and L. STENFLO 9 Excitation of ion wakefields by electromagnetic pulses in dense plasmas 15 A comparative study of the filamentation and Weibel instabilities and their cumulative effect. I. Non-relativistic theory 15 A comparative study of the filamentation and Weibel instabilities and their cumulative effect. I. Non-relativistic theory 19 The dependence of open cylindrical magnetoactive p-Ge and p-Si plasma waveguide mode cutoff frequencies on hole concentrations 35 Numerical prediction of the saturation limit of atmospheric pressure AC dielectric barrier discharges 35 KHALIL ARSHAK, IVOR GUINEY and EDWARD FORDE 53 Dynamic behaviour of an oxygen dc discharge 71 Generalization of the two-dimensional Child–Langmuir law for non-zero injection velocities in a planar diode 71 Generalization of the two-dimensional Child–Langmuir law for non-zero injection velocities in a planar diode 74 YA-MIN QUAN and YAO-GEN DING 85 A mechanism for self-generated magnetic fields in the interaction of ultra-intense laser pulses with thin plasma targets 84 A. ABUDUREXITI, T. OKADA and S. ISHIKAWA 91 Adiabatic effects of electrons and ions on electro-acoustic solitary waves in an adiabatic dusty plasma 97 Reflection	Photon equivalent charge in a two-electron temperature Fermi plasma L. A. RIOS, P. K. SHUKLA and A. SERBETO	3
Excitation of ion wakefields by electromagnetic pulses in dense plasmas 15 A comparative study of the filamentation and Weibel instabilities and their cumulative effect. I. Non-relativistic theory 15 M. LAZAR, A. SMOLYAKOV, R. SCHLICKEISER and P. K. SHUKLA 19 The dependence of open cylindrical magnetoactive p-Ge and p-Si plasma waveguide mode cutoff frequencies on hole concentrations 35 Numerical prediction of the saturation limit of atmospheric pressure AC dielectric barrier discharges 35 Numerical prediction of the saturation limit of atmospheric pressure AC dielectric barrier discharges 53 Nynamic behaviour of an oxygen de discharge 53 A. RICHTER, H. TESTRICH, HE. WAGNER, D. LOFFHAGEN and C. WILKE 71 Generalization of the two-dimensional Child–Langmuir law for non-zero injection velocities in a planar diode 85 A mechanism for self-generated magnetic fields in the interaction of ultra-intense laser pulses with thin plasma targets 91 Adiabatic effects of electrons and ions on electro-acoustic solitary waves in an adiabatic dusty plasma 91 PATEMA TANJIA and A. A. MAMUN 99 Reflection of an electromagnetic pulse from a relativistically moving plasma 111 Theory and simulations of whistler wave propagation DASTGEER SHAIKH 117	On the parametric decay of waves in magnetized plasmas G. BRODIN and L. STENFLO	9
A comparative study of the filamentation and Weibel instabilities and their cumulative effect. I. Non-relativistic theory M. LAZAR, A. SMOLYAKOV, R. SCHLICKEISER and P. K. SHUKLA 19 The dependence of open cylindrical magnetoactive p-Ge and p-Si plasma waveguide mode cutoff frequencies on hole concentrations 18 L. NICKELSON, S. ASMONTAS, V. MALISAUSKAS and 85 Numerical prediction of the saturation limit of atmospheric pressure AC dielectric barrier discharges 35 Numerical prediction of the saturation limit of atmospheric pressure AC dielectric barrier discharges 71 Generalization of the two-dimensional Child-Langmuir law for non-zero injection velocities in a planar diode 71 Generalization of the two-dimensional Child-Langmuir law for non-zero injection velocities in a planar diode 85 A mechanism for self-generated magnetic fields in the interaction of ultra-intense laser pulses with thin plasma targets 81 A. ABUDUREXITI, T. OKADA and S. ISHIKAWA 91 Adiabatic effects of electrons and ions on electro-acoustic solitary waves in an adiabatic dusty plasma FATEMA TANJIA and A. A. MAMUN 99 Reflection of an electromagnetic pulse from a relativistically moving plasma MILOŠ M. ŠKORIĆ, BOŽIDAR B. STANIĆ, LJUPČO HADŽIEVSKI and LJUBOMIR NIKOLIĆ 111 Theory and simulations of whistler wave propagation DASTGEER SHAIKH 117	Excitation of ion wakefields by electromagnetic pulses in dense plasmas P. K. SHUKLA	15
The dependence of open cylindrical magnetoactive p-Ge and p-Si plasma waveguide mode cutoff frequencies on hole concentrations L. NICKELSON, S. ASMONTAS, V. MALISAUSKAS and R. MARTAVICIUS 35 Numerical prediction of the saturation limit of atmospheric pressure AC dielectric barrier discharges KHALIL ARSHAK, IVOR GUINEY and EDWARD FORDE 53 Dynamic behaviour of an oxygen dc discharge A. RICHTER, H. TESTRICH, HE. WAGNER, D. LOFFHAGEN and 	A comparative study of the filamentation and Weibel instabilities and their cumulative effect. I. Non-relativistic theory M. LAZAR, A. SMOLYAKOV, R. SCHLICKEISER and P. K. SHUKLA	19
Numerical prediction of the saturation limit of atmospheric pressure AC dielectric barrier discharges KHALIL ARSHAK, IVOR GUINEY and EDWARD FORDE53Dynamic behaviour of an oxygen dc discharge A. RICHTER, H. TESTRICH, HE. WAGNER, D. LOFFHAGEN and 	The dependence of open cylindrical magnetoactive <i>p</i> -Ge and <i>p</i> -Si plasma waveguide mode cutoff frequencies on hole concentrations L. NICKELSON, S. ASMONTAS, V. MALISAUSKAS and R. MARTAVICIUS	35
Dynamic behaviour of an oxygen de discharge A. RICHTER, H. TESTRICH, HE. WAGNER, D. LOFFHAGEN and C. WILKE71Generalization of the two-dimensional Child–Langmuir law for non-zero injection velocities in a planar diode YA-MIN QUAN and YAO-GEN DING85A mechanism for self-generated magnetic fields in the interaction of ultra-intense laser pulses with thin plasma targets A. ABUDUREXITI, T. OKADA and S. ISHIKAWA91Adiabatic effects of electrons and ions on electro-acoustic solitary waves in an adiabatic dusty plasma FATEMA TANJIA and A. A. MAMUN99Reflection of an electromagnetic pulse from a relativistically moving plasma MILOŠ M. ŠKORIĆ, BOŽIDAR B. STANIĆ, LJUPČO HADŽIEVSKI 	Numerical prediction of the saturation limit of atmospheric pressure AC dielectric barrier discharges KHALIL ARSHAK, IVOR GUINEY and EDWARD FORDE	53
Generalization of the two-dimensional Child–Langmuir law for non-zero injection velocities in a planar diode YA-MIN QUAN and YAO-GEN DING85A mechanism for self-generated magnetic fields in the interaction of ultra-intense laser pulses with thin plasma targets A. ABUDUREXITI, T. OKADA and S. ISHIKAWA91Adiabatic effects of electrons and ions on electro-acoustic solitary waves in an adiabatic dusty plasma FATEMA TANJIA and A. A. MAMUN99Reflection of an electromagnetic pulse from a relativistically moving plasma MILOŠ M. ŠKORIĆ, BOŽIDAR B. STANIĆ, LJUPČO HADŽIEVSKI and LJUBOMIR NIKOLIĆ111Theory and simulations of whistler wave propagation DASTGEER SHAIKH117Simulations of two-dimensional magnetic electron drift vortex mode turbu-117	Dynamic behaviour of an oxygen dc discharge A. RICHTER, H. TESTRICH, HE. WAGNER, D. LOFFHAGEN and C. WILKE	71
A mechanism for self-generated magnetic fields in the interaction of ultra-intense laser pulses with thin plasma targets 91 A. ABUDUREXITI, T. OKADA and S. ISHIKAWA 91 Adiabatic effects of electrons and ions on electro-acoustic solitary waves in an adiabatic dusty plasma 91 FATEMA TANJIA and A. A. MAMUN 99 Reflection of an electromagnetic pulse from a relativistically moving plasma 91 MILOŠ M. ŠKORIĆ, BOŽIDAR B. STANIĆ, LJUPČO HADŽIEVSKI and LJUBOMIR NIKOLIĆ 111 Theory and simulations of whistler wave propagation DASTGEER SHAIKH 117 Simulations of two-dimensional magnetic electron drift vortex mode turbu- 117	Generalization of the two-dimensional Child–Langmuir law for non-zero injection velocities in a planar diode YA-MIN QUAN and YAO-GEN DING	85
Adiabatic effects of electrons and ions on electro-acoustic solitary waves in an adiabatic dusty plasma FATEMA TANJIA and A. A. MAMUN 99 Reflection of an electromagnetic pulse from a relativistically moving plasma MILOŠ M. ŠKORIĆ, BOŽIDAR B. STANIĆ, LJUPČO HADŽIEVSKI and LJUBOMIR NIKOLIĆ 111 Theory and simulations of whistler wave propagation 117 Simulations of two-dimensional magnetic electron drift vortex mode turbu- 117	A mechanism for self-generated magnetic fields in the interaction of ultra-intense laser pulses with thin plasma targets A. ABUDUREXITI, T. OKADA and S. ISHIKAWA	91
Reflection of an electromagnetic pulse from a relativistically moving plasma MILOŠ M. ŠKORIĆ, BOŽIDAR B. STANIĆ, LJUPČO HADŽIEVSKI and LJUBOMIR NIKOLIĆ 111 Theory and simulations of whistler wave propagation DASTGEER SHAIKH Simulations of two-dimensional magnetic electron drift vortex mode turbu-	Adiabatic effects of electrons and ions on electro-acoustic solitary waves in an adiabatic dusty plasma FATEMA TANJIA and A. A. MAMUN	99
Theory and simulations of whistler wave propagation DASTGEER SHAIKH 117 Simulations of two-dimensional magnetic electron drift vortex mode turbu-	Reflection of an electromagnetic pulse from a relativistically moving plasma MILOŠ M. ŠKORIĆ, BOŽIDAR B. STANIĆ, LJUPČO HADŽIEVSKI and LJUBOMIR NIKOLIĆ	111
Simulations of two-dimensional magnetic electron drift vortex mode turbu-	Theory and simulations of whistler wave propagation DASTGEER SHAIKH	117
lence in plasmas DASTGEER SHAIKH and P.K. SHUKLA 133	Simulations of two-dimensional magnetic electron drift vortex mode turbu- lence in plasmas DASTGEER SHAIKH and P. K. SHUKLA	133

Contents

Part 2 April 2009

Linear superposition of nonlinear waves SWADESH MAHAJAN and HIDEAKI MIURA	145
Drift wave excitation in a collisional dusty magnetoplasma with multi-ion species P. K. SHUKLA and M. ROSENBERG	153
The effect of magnetic topology on particle acceleration in a three-dimensional reconnecting current sheet: a test-particle approach V. V. ZHARKOVA and O. V. AGAPITOV	159
Detailed analytical investigation of magnetic field line random walk in turbulent plasmas: II. Isotropic turbulence I. KOURAKIS, R. C. TAUTZ and A. SHALCHI	183
Coupled Langmuir and nonlinear ion acoustic waves in the presence of non-thermal electronsH. ALINEJAD, P. A. ROBINSON, O. SKJAERAASEN andI. H. CAIRNS	193
Alfvén eigenmodes in magnetic X-point configurations with strong longit- udinal fields N. BEN AYED, K. G. MCCLEMENTS and A. THYAGARAJA	203
Linear and nonlinear properties of an obliquely propagating dust magneto- sonic wave W. MASOOD, H. A. SHAH, A. MUSHTAQ and M. SALIMULLAH	217
Laser-to-proton energy transfer efficiency in laser–plasma interactions E. FOURKAL, I. VELTCHEV and CM. MA	235
Nonlinear saturation of the Weibel instability in a dense Fermi plasma F. HAAS, P. K. SHUKLA and B. ELIASSON	251
Large-amplitude electrostatic solitary structures in dusty plasmas with vortex-like variable charge dust distribution and non-isothermal trapped electrons MOULOUD TRIBECHE	259
Minimum dissipative relaxed states applied to laboratory and space plasmas B. DASGUPTA, DASTGEER SHAIKH, Q. HU and G. P. ZANK	203 273

Part 3 June 2009

Inverse bremsstrahlung cross section estimated within evolving plasmas using effective ion potentials	
F. WANG, E. WECKERT and B. ZIAJA	289
Stochastic layer scaling in the two-wire model for divertor tokamaks HALIMA ALI, ALKESH PUNJABI and ALLEN BOOZER	303
Nonlinear interaction between a resonance-mode (k_{\parallel}=0) wave and energetic plasma particles	
DAVID R. SHKLYAR	319

Contents

Equilibrium properties on the EAST superconducting tokamak J. P. QIAN, B. N. WAN, L. L. LAO, B. SHEN, S. A. SABBAGH, J. MENARD, Y. W. SUN, Y. M. DUAN, J. H. LI, B. J. XIAO, X. Z. GONG and EAST RESEARCH TEAM	337
Influence of non-monochromaticity on zonal-flow generation by magnetized Rossby waves in the ionospheric E-layer T. D. KALADZE, H. A. SHAH, G. MURTAZA, L. V. TSAMALASHVILI, M. SHAD and G. V. JANDIERI	345
Magnetic detachment and plume control in escaping magnetized plasma P. F. SCHMIT and N. J. FISCH	359
Self-similar solutions for imploding z-pinch shells in magnetized plasmas Y. M. SHTEMLER and M. MOND	373
A new electrostatic mode in a dusty plasma due to dust charge fluctuation A. A. MAMUN	389
Collisional instability in a rare magnetized plasma: an experimental model for magnetospheric and space plasma study CONSTANTINE L. XAPLANTERIS	395
Generation of magnetic macrostructures by electromagnetic drift turbulence V. D. SHAPIRO	407
DIA and DA solitary waves in adiabatic dusty plasmas A. A. MAMUN, N. JAHAN and P. K. SHUKLA	413

Part 4 August 2009

Excitation of electrostatic ion-cyclotron-like modes by the electron density ripple in dusty magnetoplasmas P. K. SHUKLA	433
A length-scale formula for confined quasi-two-dimensional plasmas TIMOTHY D. ANDERSEN and CHJAN C. LIM	437
Dust acoustic solitary waves in non-thermal plasmas consisting of negatively charged dust grains and isothermal electrons ANIMESH DAS and ANUP BANDYOPADHYAY	455
Multi-dimensional instability of dust-ion-acoustic solitary waves in a multi- ion dusty plasma M. G. M. ANOWAR and A. A. MAMUN	475
Instability of higher harmonic electrostatic ion cyclotron waves in a negative ion plasma M. ROSENBERG and R. L. MERLINO	495
Study of plasma parameters in a staged pinch device using current-stepping technique FARAH DEEBA, KAMALUDDIN AHMED, MAHNAZ QADAR HASEEB and ARSHAD M. MIRZA	509
Effect of steady flow and Newton's cooling on the propagation and damping of small-amplitude prominence plasma oscillations K. A. P. SINGH and B. N. DWIVEDI	517

\cap	1	1	
- 02	OH	ue:	nus

A comparative study of the filamentation and Weibel instabilities and their cumulative effect. II. Weakly relativistic beamsA. STOCKEM, M. LAZAR, P. K. SHUKLA and A. SMOLYAKOV	529
Focusing of a ring ripple on a Gaussian electromagnetic beam in a magneto- plasma	
SHIKHA MISRA and S. K. MISHRA	545
Filamentation instability in a collisional magnetoplasma with thermal conduction MAHENDRA SINCH SODHA and MOHAMMAD FAISAL	563
	505
Part 5 October 2009	
Dark and grey electromagnetic electron-cyclotron envelope solitons in an electron-positron magnetoplasma P. K. SHUKLA, R. BINGHAM, A. D. R. PHELPS and L. STENFLO	575
Low-frequency electrostatic wave in a metallic electron-hole-ion plasma with nanoparticles P.K. SHUKLA and G. E. MORFILL	581
A note on the trapped electron dust grain current ABDERREZAK BERBRI and MOULOUD TRIBECHE	587
Stability of ion–acoustic solitary waves in a multi-species magnetized plasma consisting of non-thermal and isothermal electrons SK. ANARUL ISLAM, A. BANDYOPADHYAY and K. P. DAS	593
Experimental and computational characterization of hydrodynamic expan- sion of a preformed plasma from thin-foil target for laser-driven proton acceleration AKITO SAGISAKA, HIDEO NAGATOMO, HIROYUKI DAIDO, ALEXANDER S. PIROZHKOV, KOICHI OGURA, SATOSHI ORIMO, MICHIAKI MORI, MAMIKO NISHIUCHI, AKIFUMI YOGO and MASATAKA KADO	609
Particle acceleration in a reconnecting current sheet: PIC simulation TARAS V. SIVERSKY and VALENTINA V. ZHARKOVA	619
Magnetohydrodynamic stability of plasmas with ideal and relaxed regions R. L. MILLS, M. J. HOLE and R. L. DEWAR	637
 Characteristics of the runaway electron beam instability in the HT-7 tokamak Z. Y. CHEN, J. X. ZHU, H. J. JU, Q. DU, Y. J. SHI, H. F. LIANG, M. LI, W. D. CAI and HT-7 TEAM 	661
Resonant interaction of runaway electrons with magnetic field ripple in tokamak plasmasZ. Y. CHEN, B. N. WAN, Y. J. SHI, H. J. JU, J. X. ZHU andH. F. LIANG	669
Guiding-center recursive Vlasov and Lie-transform methods in plasma physics A. J. BRIZARD and A. MISHCHENKO	675

Contents

Contentis	
Dust–acoustic nonlinear periodic waves in a dusty plasma with charge fluctuation	
L. L. YADAV, S. V. SINGH and R. BHARUTHRAM	697
BOOK REVIEW	709
Part 6 December 2009	
Waves in Rydberg plasmas J. T. MENDONÇA, J. LOUREIRO and H. TERÇAS	713
Poloidal eigenmode of the geodesic acoustic mode in the limit of high safety factor	701
Focusing of a dark hollow Gaussian electromagnetic beam in a magneto- plasma	721
MAHENDRA SINGH SODHA, S. K. MISHRA and SHIKHA MISRA High yield fusion in a staged Z-pinch H. U. RAHMAN, F. J. WESSEL, N. ROSTOKER and P. H. NEY	$\frac{731}{749}$
Ring formation in electromagnetic beams propagating in a magnetoplasma SHIKHA MISRA and S. K. MISHRA	769
Effects of diode current on high power microwave generation in a vircator GUOZHI LIU, WENHUA HUANG, HAO SHAO, SHI QIU, HONGJUN WANG, JINGYUE LIU, FENG WANG, ZHANFENG YANG and YONGZHI QIAO	787
Ultra-cold plasmas: a paradigm for strongly coupled and classical electron fluids CLAUDE DEUTSCH, GUENTER ZWICKNAGEL and ANTOINE BRET	799
Nonlinear waves in twirling plasmas A. R. KARIMOV	817
Analytical method for determining at equilibrium the envelope and emittance of initially mismatched beams R. P. NUNES and F. B. RIZZATO	829
Nonlinear acoustic–gravity waves L. STENFLO and P. K. SHUKLA	841

CAMBRIDGE

Fantastic New Titles in Plasma Physics From Cambridge!

Now in Paperback!

The New Physics For the Twenty-First Century

Gordon Fraser

"... accessible to a general readership ... presents topics that can be usefully pondered by those with little background in physics ... written at a level that can be digested by eager undergraduates but will also be instructive to experienced physicists ... several physicist colleagues have passed on unsolicited praise of the level of presentation."

-Physics World

\$34.99: Pb: 978-0-521-14002-7: 556 pp.

The Plasma Universe

Curt Suplee

"The Plasma Universe is a lively, compact, beautifully illustrated and eminently readable exposition of the amazing scope of modern plasma physics. The common phenomena underlying plasma TV's sunspots and the violent death of stars are lucidly explained at level suitable for a broad audience. I particularly liked the one-page profiles of the scientists who shaped the subject, starting with Irving Langmuir, that are sprinkled throughout the text: they provide welcome historical context and human interest."

-Curtis Callen, Professor of Physics, Princeton University, and President-Elect, American Physical Society

\$20.99: Pb: 978-0-521-51927-4: 88 pp.

Power Exhaust in Fusion Plasmas Wojciech Fundamenski \$125.00: Hb: 978-0-521-85171-8: 500 pp. The Solar Corona 2nd Leon Golub and Jay M. Pasachoff Edition \$80.00: Hb: 978-0-521-88201-9: 408 pp. Ionospheres Physics, Plasma Physics, and Chemistry 2nd Robert Schunk and Andrew Nagy Edition Cambridge Atmospheric and Space Science Series onospheres \$150.00: Hb: 978-0-521-87706-0: 608 pp. Prices subject to change. 1584 . 2009 CAMBRIDGE www.cambridge.org/us/physics **UNIVERSITY PRESS** 425 YEARS OF CAMBRIDGE PRINTING AND PUBLISHING

Instructions for Authors

Editorial policy The journal welcomes submissions in any of the areas of plasma physics. Its scope includes experimental and theoretical work on basic plasma physics, the plasma physics of magnetic and inertial fusion, laser–plasma interactions, industrial plasmas, plasma devices and plasmas in space and astrophysics. This list is, of course, merely illustrative of the wide range of topics on which papers are invited, and is not intended to exclude any aspect of plasma physics that is not explicitly mentioned.

Authors are urged to ensure that their papers are written clearly and attractively, in order that their work will be readily accessible to readers. Manuscripts must be written in English. *Journal of Plasma Physics* employs a rigorous peer-review process whereby all submitted manuscripts are sent to recognized experts in their subjects for evaluation. The Editors' decision on the suitability of a manuscript for publication is final.

Submission of manuscripts Papers may be submitted to the Editor or any of the Associate Editors, preferably by email in pdf format. When a paper is accepted, the authors will be asked to supply source files in LaTeX or Word. Instructions for the preparation of these files and LaTeX style files are given in the Instructions for Contributors link at journals.cambridge.org/pla.

Incremental publishing and DOIs In order to make articles which have been accepted for publication in *Journal of Plasma Physics* available as quickly as possible, they are now published incrementally online (at Cambridge Journals Online; journals.cambridge.org) The online version is available as soon as author corrections have been completed and before the article appears in a printed issue. A reference is added to the first page of the article in the journal catchline. This is the DOI – Digital Object Identifier. This is a global publishers' standard. A unique DOI number is created for each published item. It can be used for citation purposes instead of volume, issue and page numbers. It therefore suits the early citation of articles which are published on the web before they have appeared in a printed issue. See journals.cambridge.org/pla.

Proof reading Only typographical or factual errors may be changed at proof stage. The publisher reserves the right to charge authors for correction of non-typographical errors.

Offprints 50 offprints of each article will be supplied free to each first-named author. Extra offprints may be purchased from the publisher if ordered at proof stage. No page charge is made.

Copying This journal is registered with the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. Organizations in the USA who are also registered with C.C.C. may therefore copy material (beyond the limits permitted by sections 107 and 108 of US copyright law) subject to payment to C.C.C. of the per copy fee of \$16.00. This consent does not extend to multiple copying for promotional or commercial purposes. Code 0022–3778/2009 \$16.00.

ISI Tear Sheet Service, 3501 Market Street, Philadelphia, Pennsylvania 19104, USA, is authorized to supply single copies of separate articles for private use only.

Organizations authorized by the Copyright Licensing Agency may also copy material subject to the usual conditions.

For all other use, permission should be sought from Cambridge or the American Branch of Cambridge University Press.

JOURNAL OF PLASMA PHYSICS

Volume 75 Part 6 December 2009

CONTENTS

Waves in Rydberg plasmas J. T. MENDONÇA, J. LOUREIRO and H. TERÇAS	713
Research Articles Poloidal eigenmode of the geodesic acoustic mode in the limit of high safety factor M. SASAKI, K. ITOH, A. EJIRI and Y. TAKASE	721
Focusing of a dark hollow Gaussian electromagnetic beam in a magnetoplasma MAHENDRA SINGH SODHA, S. K. MISHRA and SHIKHA MISRA	731
High yield fusion in a staged Z-pinch H. U. RAHMAN, F. J. WESSEL, N. ROSTOKER and P. H. NEY	749
Ring formation in electromagnetic beams propagating in a magnetoplasma SHIKHA MISRA and S. K. MISHRA	769
Effects of diode current on high power microwave generation in a vircator GUOZHI LIU, WENHUA HUANG, HAO SHAO, SHI QIU, HONGJUN WANG, JINGYUE LIU, FENG WANG, ZHANFENG YANG and YONGZHI QIAO	787
Ultra-cold plasmas: a paradigm for strongly coupled and classical electron fluids CLAUDE DEUTSCH, GUENTER ZWICKNAGEL and ANTOINE BRET	799
Nonlinear waves in twirling plasmas A. R. KARIMOV	817
Analytical method for determining at equilibrium the envelope and emittance of initially mismatched beams R. P. NUNES and F. B. RIZZATO	829
Review Article	
Nonlinear acoustic–gravity waves L. STENFLO and P. K. SHUKLA	841

Cambridge Journals Online For further information about this journal please go to the journal website at: journals.cambridge.org/pla

Letter to the Editor

Mixed Sources Product group from well-managed forests and other controlled sources www.fsc.org Cert no. SA-COC-1527 © 1996 Forest Stewardship Council

