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STRONG CONVERGENCE OF SELECTIONS IMPLIED BY WEAK

TADEUSZ RZEZUCHOWSKI

In some situations weak convergence in £1 , implies strong convergence. Let P, L : T —»
CoyR*) be measurable multifunctions (CoVR^j being the set of closed, convex subsets
of Rd), the values L(t) afflne sets and W{i) = P(t) n L(t) extremal faces of P(t). Let pk

be integrable selections of P, fk(t) the projection of pit(<) on L(t) and Pfc(t) on W(<).
We prove that if pn — pi, converges weakly to zero then py — Pk converges to zero in
measure. We give also some extensions of this theorem. As applications to differential
inclusions we investigate convergence of derivatives of convergent sequences of solutions
and we describe solutions which are in some sense isolated. Finally we discuss what can
be said about control functions u when the corresponding trajectories of i = f(t, x, u)
are convergent to some trajectory.

l . PRELIMINARY REMARKS ON MEASURABLE MULTIFUNCTIONS

Multifunctions are maps whose values are sets. There exist exhaustive references
to the fundamental properties of multifunctions - see [1, 3]. We shall discuss here, as
briefly as possible, those that are essential to the results given in the sequel.

Throughout the paper, T will be a space endowed with a cr-field C and a cr-finite,
complete measure m.

For a metric space Y by Cl(Y) we mean the collection of its closed subsets;
Co(Rd) is the subfamily of Cl(Rd) composed of convex sets.

For A, B C Y we put:

e(A, B) = sup{dist(a, B) a £ A}

H(A, B) = m*x{e(A, B), e(B, A)}.

H is called Hausdorff metric when applied to A, B closed.
A multifunction P: T —» Cl{Y) is said to be measurable if for every open U C Y

the set {t G T; P(t) PI U ^ 0} is measurable. A fundamental property of measurable
multifunctions, for Y separable and complete, is the existence of a measurable selection,
that means a measurable function f(t) £ P(t) - known as the Theorem of Kuratowski
and Ryll-Nardzewski - and its stronger version, due to Castaing, stating that there is
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202 T. Rzezuchowski [2]

a sequence of measurable selections / „ such that the sets {fn{i)\n G N} are dense in
P(t) a.e. in T. All this can be found in [3].

If Y is separable and complete then there is a very useful characterisation of mea-
surability of a multifunction through the measurability of its graph G(P) = {(t, y)\y G
P(t)} in the product cr-field Cx B, where B is the Borel cr-field in Y. Applying it one
can prove easily many useful properties, for example the measurability of denumerable
intersections of measurable multifunctions. Moreover, if G(P) is measurable and if the
values P(t) are non-empty then P has a measurable selection even if the P(t) are not
closed. All this is given in detail in [3, chapter 3.4].

If the domain X of a multifunction P: X —* Cl(Y) is a metric space then
we can speak about other kinds of regularity of P . It is upper temicontinuous

(use) if the set {a; G X;P(x) fl C ^ 0} is closed for every closed c C. Y. For
compact-valued multifunctions upper semicontinuity is equivalent to the implication
xn —* x —+ e(P(xn),P(x)) —» 0, for every x . Continuity is understood with respect to
the Hausdorff metric in the range.

Especially important are convex-valued multifunctions. Before discussing their
properties we recall some facts about convex sets - a reference for these is [8]. The
scalar product of x,y G Rd will be denoted by {x,y). If C G Co(Ud) , y,z G Rd then

supp(C,y) =sup{(x,y); x € C},

S(C,y) = {x£ Rd\ (x,y) = supp(C,j/)},

N{C, z) = {u£Rd;\/xe C{x - z,u) ^ 0}.

N(C, z) is the normal cone to C at the point z. It is closed convex and for
z G C ,y G N{C,z) we have z G CnS(C,y).

'A face of C G Co(Rd) is any subset D such that if a,b G C, a ^ 6 and Xa +

(1 — X)b G D for some A G (0,1) then a, b G D. Faces are closed and convex. If D is

a fc-dimensional affine set L in Rd for which DC n L.

The notion of lexicographical order in Rd is strictly connected with the above.

Recall that the lexicographical order induced by the set of linearly independent vectors

{ d , . . . ,ejt} = E is defined by: x ^E V if and ony if the first nonzero product (ej,y — x)

is positive. This relation is transitive and for every x,y G Rd either x ^g y or y ^E X •

But x ^E V and y ^E X imply x = y only if k = d.

A point x G C C Rd is said to be maximal in C if y ^E X for all j / G C1. If

C G Co(Rd) then the set of all maximal points in C is a face of dimension less than

or equal to d— k .

Conversely, if D is a (d — fc)-dimensional face of a convex, closed set C then there
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[3] Convergence of selections 203

exists a set {e\, . . . , ejfe} = E of orthonormal vectors such that D is the set of maximal

points in C with respect to the order < B •

We shall often put a dot in the place of a variable for example / ( t , •) is the function

g(x) = f(t, x), where t is fixed.

LEMMA 1.1. IfP: T -+ Co(Rd) a n d p : T -> Rd are measurable then N(P(-), p(-))

is a measuraWe multifunction.

PROOF: Let qn be measurable selections of P with {qn{t) n € N} dense in P(t)

a.e. in T. We put

Mn(t) = {ye Rd, {y, qn(t) - P(t)) ^ o}.

The niultifunctions Mn are measurable and N(P(t), p(t)) = n{Mn(<) n £ N} which
proves the assertion. |

Now let a measurable multifunction P: T —> Co(JR
d) be fixed. We shall discuss

some properties of niultifunctions whose values are faces of P(t).
Let ej, . . . , e,j_fc: T —+ Rd, where 0 ^ k < d, be measurable functions with the

values {ei(t), . . . , ej_fc(<)} = E(t) linearly independent a.e. in T. We denote by W(t)
the set of all maximal points in P(t) with respect to the order

LEMMA 1.2. The W(t) are faces of P(t) of dimension less then or equal to k and
the multifunction W is measurable.

PROOF: We put W0{i) - P(t) and define by recurrence

Wj(t) = w,-_i(<) n

Then W(t) = Wd_k(t) and thus VT is measurable. |

Conversely, the following lemma holds.

LEMMA 1.3. If W:T -> Co(Rd) is measurable and its values are faces of
P{i) of dimension k, where 0 < k < d, then there exist measurable functions
ei, . . . , ea-k- T —* Rd with values {ei(t), . . . , ed-k{t)} = E(t) orthonormal a.e. in
T and such that W(t) are the sets of maximal points in P(t) with respect to

PROOF: In the case k = d we have E(t) = 0 and the theorem is trivial. W(t) =
P(t) and all points in P(t) are maximal.

We fix k < d. Let q be some measurable selection of W. We put W0(t) = P(t)
and Lo(t) = Rd. We show now how to find Wj , Lj and ej if Wj_i, Lj^i are known
- the Wj will be faces of P(t) lying in affine sets Lj(t), and the ej(i) will be vectors
normal to Wj-i(t) at q(t). As long as j < d — fcg(t) belongs to the boundary of
Wj_i(t) with respect to the euclidean topology in L_;_1(t), so the intersections

i(t)>«(')) n 5,,. , n (Lj.^t) - q(t))
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204 T. Raezuchowski [4]

are non-empty and define a measurable, closed-value multifunction ( Sd-i is the unit
sphere in Rd). We can pick up its measurable selection ej and put Lj(t) = Lj_-i(t) n
S(Wj_i(t), ej(t)). The functions ci , . . . , ed-k satisfy the desired properties. |

Let us remark that the multifunction L(i) — Ld-k{i) from the above proof is

measurable, its values are fc-dimensional affine subsets of Rd and W(t) = P(t) D L(t).

Our assumption on the dimension of W(t) implies that L is the unique multifunction

having these properties.

Lemma 1.3 can be slightly modified to yield:

LEMMA 1.4. If L: T —> Co(R' ) is a measurabie muitifunction whose values are
affine sets of dimension k and W(t) = P(t)C\L(t) are extremai faces of P(t) then there
exist measurable functions e\, . . . , ed-k'- T —> Rd with values {ei(t), . . . , ed-k(t)} =
E(t) orthonormal, orthogonal to the linear subspace parallel to L{t) and such that
W(t) are the sets of maximal points in P{i) with respect to

(Note that the dimension of W{t) may be for some t less than k).

Now let p be a measurable selection of a measurable multifunction P: T —»

Co(Rd) . We shall discuss the properties of the multifunction W^i) whose values are

faces of P(t) containing p(t) and of minimal dimension. The following property is

useful.

LEMMA 1.5. Let Q,L: —> Co(Rd} be measurable multifunctions, the values L(t)
affine sets and Q(t) C L(t) a.e. in T. Then the multifunction dL(t)Q{t) is measurable.
(Its values are the boundaries of Q(i) with respect to the euclidean topology in L(i) .)

PROOF: Let qn be measurable selections of L such that the sets {qn{t) n € N}
are dense in L(t). The functions vn(t) — dist(gn(<)), Q(t) are measurable. Putting
Bn{i) = B(qn(t), *>„(<)) if vn(t) > 0 and Bn(t) — 0 otherwise, we can express the
boundary in the following way

dL{t)Q(t)= U (Bn(t)nQ(t))

and this implies the required measurability. R

On the basis of the above property and using finite induction the following lemma
can be proved.

LEMMA 1.6. Let P:T^t Co(Rd) be measurabie, p its measurable selection and
W(t) the face of P(t) containing p(t) of minimal dimension. Then W is measurable
and the Uk = {t G T; dim(W(t)) = k} are measurabie for k = 0, 1, . . . , d.
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[5] Convergence of selections 205

2. T H E MAIN RESULT

We shall prove now the basic result of the paper and give some of its direct conse-

quences.

Throughout this section P,L:T-+ Co(Rd) will be measurable multifunctions; the

measure on T is, as before, cr-finite and complete. We assume that the L(t) are affine

sets, and that the W(t) = P(t) f~l L{t) are extremal faces of P(t).

For any function p: T —> Hd , by p(t) we shall mean the projection of p(t) on L(t)

and by p(t) the projection on W(t) . If p is measurable then both p and p are also

measurable.

Speaking of weak convergence, compactness, etcetera we shall always mean the

weak topology in £j (T, Rd) .

We shall consider a sequence pn of integrable selections of P. The following

theorem will be the basis for all other results in this paper.

THEOREM 2.1. Assume that W has an integrable selection and that the sequence
of selections pn of P is weakly precompact. Then the weak convergence to zero of
Pn — Pn implies convergence in measure to zero of pn — pn .

PROOF: The proof can be reduced to the case when dim(L(t)) does not depend on
t, since T can be divided into measurable sets {t G T; dim(L(t)) = j}, j = 0, 1, . . . , d.
So, let us suppose that dim (£(<)) is constant and equal to k.

Let the functions ei, . . . , ed-k '• T —» Rd be as in Lemma 1.4.

We can write pn—pn = {pn — Pn)+(Pn — Pn) • We shall prove first that pn—pn —> 0
in measure and then the same for pn — pn.

We put /„,,-(<) = (ej(t), Pn{t) - pn(t)). Then

d-k

Pn{t) - Pn(t) = £ /»j(t)ej(t).

We shall prove first by induction on j that the sequences / n j tend to zero in

measure, as n - t o o .

The functions fn>1 are non-positive so for every K C T of finite measure the weak

convergence to zero of their restrictions to K implies convergence in measure to zero

on K. In view of Lemma 2.3, cited at the end of this section, for any fixed a, e > 0

there exists a set K C T of finite measure such that

JT\K

for all n G N , so m({t €T\K; \fn,i(t)\ > a}) < e/2. From this and the convergence

in measure on K we get m({t G T | /n,i(<)| > a}) < e for n sufficiently great.
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206 T. Rzezuchowski [6]

Now, let us suppose that the sequences fn,i, •••> fn,j-i converge in measure to
zero as n - t o o , where 1 ^ j < d — k . We prove first that fn,j —* 0 in measure for any
fixed K C T of finite measure

Let us fix a, e > 0. In view of the boundedness of pn in the norm of £ j , there is
a closed ball B in Rd, centred at 0, such that putting Bn = {t 6 K\ pn{t) £ B} we
have m(K \ Bn) < e/3 for all n.

We define an auxiliary function

w(t, 6) = max j (e,(i), y - piojw(t)y); y € P(t) n B,

(ei(t), y - pioiw{t)y) ^ -6, for i = 1, . . . , j - 1 j ,

where t £ if, 6 > 0. For every fixed 5 the function u>(-, S) is measurable and for
every fixed t £ K, lim w(<, 6) = 0. Using Egorov's Theorem we can fix 50 > 0 and

S—f0+

a measurable set Z C K such that m(A" \ Z) < E/3 and w(i, 6) < a for < 6 Z and
0 < 5 < #o •

Now let

The induction hypothesis implies that m(K \ Dn) < e/3 for n greater than some no.
Let us put En = BnnZnDn. For n^ n0 we have m(K \Bn) < e and, if t£En,

then the inequality fn,j(t) ^ <* holds. Thus the positive parts of fnj converge on K

in measure to zero and this implies, together with the weak convergence of fn>j, that

the fnj converge to zero in measure.

To prove the convergence in measure on all T we proceed exactly as in the case of

/n,i • We find, for fixed a, e > 0, a set K C T of finite measure such that

T\K L

for all n and then use the convergence in measure on K.
The proof of the convergence pn — pn —> 0 in measure is almost exactly the same

as the second induction step above - instead of to one has to use the auxiliary function

w(t, 6) = max llproj^tjy - proj^t)!/! \ y & B n P(t),

V- projL(t)y| ^

where £ is a suitable ball. (That is the only part of the proof where the existence of
an integrable selection of W is needed.) I
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[7] Convergence of selections 207

Theorem 2.1 could be formulated without using L and the projection p. The

assumption would be then the weak convergence of pn — pn to zero. To prove it in

this case one can divide T onto disjoint, measurable subsets on which the dimension of

W(t) is constant. On each one there exists a measurable, affine valued multifunction

L with dim (£(<)) = diin(W(i)) , W(t) = P{t)nL(t) and Theorem 2.1 can be applied.

The assumption in Theorem 2.1 that pn are selections of P can be weakened to

some kind of convergence of pn to P.

DEFINITION: A sequence of measurable functions pn: K —> Rd, where K C T,
converges on K in measure to a measurable multifunction P: K —+ Cl(Rd) if for every
a > 0

lim m({t G K dist(pn(t), P{t)) > a}) = 0.
n—>oo

We can give now the following extension of Theorem 2.1.

COROLLARY 2.2. Let all the assumptions of Theorem 2.1 be satisfied except the

condition that the pn are selections of P. We suppose instead the convergence of pn

to P in measure on every set K C_T of Unite measure. Then the assertion of Theorem

2.1 holds.

PROOF: Let gn(t) be the projection of pn(t) on P(t). The existence of integrable
selection of P and the weak precompactness of {pn; n £ N} imply that the qn are
integrable and the set {qn; n £ N} is weakly precompact. From the equality qn —

4n = (qn - Pn) + (pn - pn) + {pn - 9n) we get, using the assumption of convergence
of pn to P, the weak convergence of qn — qn to zero. Theorem 2.1 and the equality
Pn~Pn = {pn - 9n) + («n ~ 9«) + (?n - Pn) imply that pn - pn -+ 0 in measure. |

We cite now a lemma on weak compactness in £] that was used in this section.

LEMMA 2.3. (Theorem 8.9 in [4]) A set ( /) of integrable functions is weakly

precompact in C\ if and only if the following conditions are satisfied:

(a) it is norm-bounded on C\ ;

(b) it is uniformly integrable;

(c) for every e > 0 there is a set K C T of finite measure such that

/ | / | dm
T\K

for all f in this set.

In the assertions of Theorem 2.1 and Corollary 2.2 we need the convergence in
measure. However, weak compactness in C\ and convergence in measure of a sequence
imply its strong convergence in C1.
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Remarks . Theorem 1 in [11] corresponds to the special case of our Theorem 2.1 when
the affine sets L(t) are 0-dimensional, that means L(t) = W(t) = {po{t)} and Po(')
are extremal points of P(t). The theorem says then that the weak convergence of p*
to po implies their strong convergence. The proof differs from the one given above
and is based, roughly speaking, on the fact that if c is an extremal point of a closed,
convex set C then for any r > 0 it can be strongly separated from the convex hull of
C\B(c,r).

In [2] Balder considered the case of functions with values in reflexive and separable

Banach spaces. He proves a theorem analogous to that above of Visintin - the conver-

gence of pk that he gets is weaker than strong but stronger than weak. The proof is

based on the use of Young measures.

In [6, 7] Olech gave results which are close to those discussed above. He proved

that if c is an extremal point of the closure of / = J.Q j , P(t)dt (the integral in the

sense of Aumann, P: [0,1] —» Cl(Rd) measurable), p, q are integrable selections of

P and c - / j 0 jj p(t)dt , c - Jj0 ^ q(t)dt are small then Jj01, \p(t) - q(t)\ dt is small.

This implies that if pk, Po are integrable selections of P, J,Q j , pk{i)dt —* J.Q 1,p0(<)d<

and c — J,Q j , po(t)dt then pk —• po strongly in £ i . We note that instead of weak

convergence it suffices to assume here this convergence of the integrals over all the

space. The cost of this is the assumption of extremality of c in J. Thus c is maximal

in / with respect to some total lexicographical order and po(t) must be maximal in

P(t) with respect to the same, constant order. In our case the order may change with

t. Olech gave two proofs of his theorem. One is based on the use of lexicographical

order [6] and the other [7] on the property of extremal points which we mentioned in

relation with the proof of Visintin.

3. APPLICATIONS TO DIFFERENTIAL INCLUSION

We shall give two applications. Firstly we shall treat convergent sequences of
solutions of a differential inclusion and see what can be said about the convergence of
their derivatives. Then we shall discuss some special kinds of solutions which are, in a
sense, isolated.

We shall consider a multifunction F: I x Rd -> Co(Rd) , where / = [0,1], and
solutions of the differential inclusion

(3.1) i 6 F(t, x)

in the sense of Carateodory (absolutely continuous functions x: I —> Rd satisfying
x(t) 6 F{t, x{t)) a.e. in I).

Also, F will satisfy the following conditions:

(al) for every e > 0, there is a closed subset Ic C / such that m(I \IC) < e
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[9] Convergence of selections 209

and the restriction of F to Ie x Rd is upper semicontinuous;
(bl) there exist integrable functions glt g2 : I —> R+ such that for every t G / ,

x G Rd , y G F{t, x) the inequality \y\ < g^t) \x\ + g2{t) holds.

Condition (al) is, in some sense, minimal for differential inclusions with convex-

valued right-hand side. This is explained in [5, 9].

Assumption (bl) implies that if {x7; 7 G F } , where F is some set, is a family of

solutions of (3.1) and the set of initial conditions {x7(0)} is bounded then there exists

an integrable function g: I —> R+ such that for every 7 G F |x7(<)| ^ g(t) a.e. in / .

Now let XQ, xn, for n G N , be solutions of (3.1) and e j , . . . , ed-k : / —> Rd mea-

surable functions with values {ei(t), . . . , ej_/t(<)} = E(t) orthononnal a.e. in / . By

(al) the multifunction P(t) = F(t, xo(t)) is measurable.

Let K C I be measurable.

THEOREM 3.1. If the solutions xn converge pointwise to the solution XQ and
the derivatives io(tf) f°T t E K are maxima] in F(t, Xo(t)) with respect to the lex-
icographical order induced by E(t) then for every j = 1, . . . , d — k the sequence
(ej(-), in{~) — *(>(•)) converges in measure to zero on K.

PROOF: For every r E I we have xn(t) —* xo(t) as n —> 00, so e(F(t, xn(t)), P(t))
—* 0. This implies that the sequence xn converges in measure to the multifunction P.
The assumption (bl) and the convergence of xn to x0 imply the weak convergence of
xn — xo to zero. To end the proof it suffices to apply Corollary 2.2. |

An important special case of Theorem 3.1 is when k = 0 - this means that io(t)
are extremal points of F(t, xoW) &-e. in / .

COROLLARY 3.2. If the solutions xn converge to the solution x0 and xo(t) G
Ext (F(t, xo(t))) a.e. in I then xn —* XQ in measure. (Ext denotes all extremal points
of a set.)

Now we hall discuss a situation that may occur when the sets F(t, xo(t)), along a
solution Xo , are much bigger than the sets F(t, x) for x near to Xo(t).

So, let xo be a solution of (3.1) and consider the following condition:
(cl) almost everywhere in / there exist r(t) > 0 such that

io(<) i conv \J{F(t, x); 0 < |x - xo(t)\ < r(<)}.

(conv stands for closed, convex hull.)

THEOREM 3.3. Let the conditions (al), (bl), (cl) hold. If xn is a sequence of
solutions of (3.1) convergent pointwise to the solution xo then

lim m{{t G / ; xn{t) 56 xo(t)}) = 0.
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To prove this theorem we shall need a lemma in which we give to the condition
(a3) a form suitable for applying Theorem 3.1.

LEMMA 3.4. Under assumptions (al), (bl), (cl) there exist measurable functions
q: I -* R+ , u: I -> Rd such that \u(t)\ = 1 and

h(t) = (xo{t), u{t))

- supp(conv \J{F(t, x);0< \x - xo(t)\ ^ q{t)}, u(*)) > 0

a.e. in I.

PROOF: Let q* : I —* R+ be the measurable function which is greater than or equal
to r and less than or equal to any other measurable function which is greater than r.

We put q(t) = q*(t)/2. The set C = {t G / ; r(t) > q(t)} has the outer Lebesgue
measure m*(C) equal to 1. Moreover, as m*({t £ I; q(t) > 0}) = 1, so q(t) > 0 a.e.
in / .

Let us prove that the multifunction

Z{t) = conv \J{F{t, x); 0 < \x - xo(t)\ < q{t)}

is measurable. First we show that for a fixed (3 > 0 the multifunction

has C x B measurable graph. To do this let us fix for a moment n £ N and let Jn C I

be a closed set such that m(I \ Jn) < 1/n, the restriction of q to Jn is continuous and
of F to Jn x Rd upper semicontinuous with respect to (t, x). The set

A n = {(t, x)eJnx R d ; 0^\x- x o ( t ) \ ^ q(t)}

is compact so the graph G(F \An) is also compact in / x Rd x Rd. Let 9: Ix Rd x Rd —•

I x Rd be the projection denned by *(<, x, y) = {t, y). G{Zp \Jn) = *(G(F \An))

so G{Zp \jn) is compact. This implies that the graph of the restriction of 7.$ to

\J{Jn n £ N} is C x B measurable in / x Rd.

Now consider the multifunction

Applying the abvove we deduce that there is a measurable set J C / such that

m(I\J) = 0 and the graph GlZ \J) is £ x B measurable. This implies finally

that the multifunction Z(t) = conv Z(t) is measurable.
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[11] Convergence of selections 211

Now let z(t) = xo(t) — proJ£(t)£<)(<)• For t £ C we have z(t) ^ 0. As z is
measurable and m*{C) — 1 so z(t) ^ 0 a.e. in / . We can thus put u(t) = z(t)/ \z(t)\.
The functions q and u have the required properties. |

PROOF OF THEOREM 3.3: We modify first the multifunction F along the solution

zo • For x = xo{t) we put

' F(i, x) = F(t, x) n {y e Rd; {y, «(*)) < (*„(*), «(*))}

and ify, x) = F(t, x) if a; ^ £o(')- .F has exactly the same properties as F, x €
JF((, K) has the same solutions as (3.1) and xo(t) lies on the support hyperplane to
F(t, xo(t)) orthogonal to u(t). This allows us to apply Theorem 3.1 for k = d — 1,
that means for one function e\ — u, and get the convergence of («(•), xn(-) — £<)(•)) ln

measure to zero.

Now let us fix e > 0. The function h is measurable and positive valued so there
exists 6 > 0 such that the measure of the set £>« — {<€ / ; h(t) ^ 8} is less than e /3 .
Let

Un = {te I; |< u{t), xn(t) - ±0(t)| ^ 6},

Vn = {t G / ; |asn(<) - ajo(*)| > «(<)}•

We can choose such k that m(Un) ^ e/3 and m(Vn) ^ e/3 for n ^ fc.

Let n ^ A;. Then m(DsUUnUVn) < e and we shall see that for t G
I\(Ds U f/n U V"n) the equality xn(t) = Xo(O holds. Let us suppose the contrary, that is
xn(t) ^ xo{t). As t $ Vn so \xn(t) - xo(t)\ < q(t). Thus (u(t), io(t) - *„(<)) ^ fc(<).
t £ D implies h(t) > 6, hence {u(t), xo(t) -xn(t)} > 6. On the other hand t £ Un, so
|(tt(<), io(t) — in(<)) | < 5. This contradiction proves that the inequality xn{t) ^ Xo(<)
is not possible and ends the proof. |

Here is the most simple example of the situation described in Theorem 3.3.

Example 3.5. We define F : J x R - t Co(R) as follows: F{t, x) = {1} if x £ 0 and
[0, 1] if x = 0. In fact F does not depend on t. The special solution is Xo(t) = 0.

4. A N APPLICATION TO CONTROL SYSTEMS

In this section we shall apply Corollary 3.2 to control systems of the form

(4.1) x = f(t,x,u)

where / : / x Rd x Rw -> Rd, / = [a, b]. We assume that / satisfies the following
conditions:

(a2) / ( • , x, u, ) measurable for all x, u;
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(b2) f(i, •, u) Lipschitzian for all t, u with a Lipschitz constant M(t) such

that the function M(-) is integrable;

(c2) f(t, x-) continuous for all t, x;

(tl2) \f(t, x, u)\ ^ gi(t) \x\ + g2(t) , where gi, g2 integrable.

For each (t, x) the control parameter u, which may appear in f(t, x, u), must

belong to a set U(t, x); the multifunction U: I x Rd -* Comp(Ru>) will satisfy the

conditions:

(e2) for every e > 0 there is a closed set Ic C I for which m(I \ Ie) < e and
the restriction of U to Ie x Rrf is upper semicontinuous with respect to

(f2) |u| < g3(t) for u 6 U(t, x), where g3 is integrable.

For a fixed measurable function u: I —* Rw the differential equation

(4.2) i=f(t,x,u(t))

has, for any initial condition x(a), a unique solution x: I —* Rd. If a.e. in / the
condition u(t) G U(t, x(t)) holds then we say that the pair (a;(-), tt(-)) is admissible.

We put

F(t,x) = {f(t,x,u)ueU{t,x)}.

F is a multifunction defined on / x Rd and with values in Comp(Rd) . Its properties

will be given in Lemma 4.2.

For t G / , x eRd, v eRw we shall denote by $(<, x, v) the set of all u € U(t, x)

such that f(t, x, u) = v, that means

Thus we have defined a multifunction *: / x Rd x Rd -> Comp(Ru;) .

Now we fix an admissible pair (XQ, « O ) .

THEOREM 4 .1 . Let us suppose that a.e. in /

(4.3) £„(<) G Ext(conv(F(t, xo(t))))

and let (xn, un) be a sequence of admissible pairs such that the solutions xn are

pointwise convergent to x0 • Then the sequence of functions

hn(t) = dist(un(t), *(t, xo(t), io(t)))

is convergent in measure to zero.

Before proving this theorem we shall give three necessary lemmas. Let us remark
that in view of (d2) all the values of the functions xn, Xo are contained in some closed
ball B C Rd.
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LEMMA 4.2. The restriction F: I x B -* Comp(Rd) is integrably bounded and
satisfies the condition (al).

PROOF: The integral boundedness is implied by (d2) and the boundedness of B.

To prove (al) let us fix an e > 0 and let I€ be such a closed subset of I that the

following conditions are true:

(a3) m(I\Ie)<£;

(b3) / I / .XBXR" is continuous with respect to (i, x, u) (this can be achieved

due to (a2)-(d2) and the Theorem of Scorza-Dragoni [10]);
(c3) the set f{Ie x B x Rw) is precompact in Rd;

(d3) the restriction of U to Ie x Rd is upper semicontinuous with respect to

( * , * ) •

The last condition implies that the union of U(t, x), for (t, x) G I€ x B, is compact.

By (c3) the graph G(F | / t X s ) is bounded in / x B x Rd. We shall show that it is
closed, thus compact. The compactness of the graph implies the upper semicontinuity
of a multifunction and this will complete our proof.

So let (<„, xn, vn) ->• (t0, x0, v0), where tn G I,, zn G B, vn G F(tn, xn). There
exist un G U(tn, xn) such that vn = f(tn, xn, un). The sequence un has a convergent
subsequence u'n -* u0 G U(t0, x0)- From (b3) we have /(<o, »o, «o) = v0 and thus
v0 G F(t0, so)- So the graph G(F | J , X B ) is actually closed. |

In the following lemmas X, Y, Z will denote metric spaces.

LEMMA 4.3. Let ij>: X xY —* Z be a continuous function. Then the multifunction

V-.XxZ^ Cl{Y) defined by * (x , z) = (if>(x, •))~1(«) has closed graph.

Its proof is immediate as is the proof of the next lemma.

LEMMA 4.4. Let ^ : X —• Comp(Y) be upper semicontinuous, and let the se-
quence of measurable functions wn: / —+ X converge in measure to a measurable func-
tion wo . Then the sequence of functions "Hn(t) = e(\P(ton(t)), $(uio(t))) converges in
measure to zero.

PROOF OF THEOREM 4.1: From Lemma 4.2 we deduce that the multifunction
conv(F(t, x)) satisfies on II x B the conditions (al) , (bl) . By (4.3) Corollary 3.2
implies that the sequence i n is convergent to io in measure.

We fix e > 0 and let Ic be a closed subset of / for which conditions (a3)-(d3)
are satisfied. From Lemma 4.2 we get the upper semicontinuity of $ \T xBxR<i with
respect to (t, x, v).

The sequence of functions zn{t) — (t, xn(t), xn(t)) converges in measure to
the function zo(t) — (t, xQ(t), xo( t)) . Lemma 4.4 implies then that the <f>n(t) -
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i, xn(t), in(t)), $(<, xo(t), io(<))) converge in measure to zero. We have un(t) €
t, xn(t), xn(t)) thus hn converge on Ie to zero in measure. As e was arbitrary, we

get the convergence of hn —* 0 in measure on all / . |
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