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Abstract

A matrix A over a field F is said to be an AJT matrix if there exists a vector x over F such that both x
and Ax have no zero component. The Alon—Jaeger—Tarsi (AJT) conjecture states that if F is a finite field,
with |F| > 4, and A is an element of GL,,(F), then A is an AJT matrix. In this paper we prove that every
nonzero matrix over a field F, with |F| > 3, is similar to an AJT matrix. Let AJT,(g) denote the set of
n x n, invertible, AJT matrices over a field with ¢ elements. It is shown that the following are equivalent
for g > 3: () AJT,(q) = GL,(q); (ii) every 2n x n matrix of the form (A|B)’ has a nowhere-zero vector
in its image, where A, B are n x n, invertible, upper and lower triangular matrices, respectively; and (iii)
AJT,(q) forms a semigroup.
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1. Introduction

A matrix A over a field F is said to be an AJT matrix if there exists a vector x over
F such that both x and Ax are nowhere-zero vectors (that is, each component of them
is nonzero). The Alon—Jaeger—Tarsi conjecture (AJT conjecture) states that if F is a
finite field, with |F| >4, and A is an element of GL,,(F), then A is an AJT matrix.
In [2] the conjecture was proved for |F| = pX, where p is a prime number and k > 2
is an integer. In [5] it was shown that the conjecture is true for |F| > n > 4.

Our main result is that every nonzero matrix over a field F, with |F| >3, is
similar to an AJT matrix. We also provide necessary and sufficient conditions for
a matrix to be an AJT matrix. Throughout this paper, M, ,(F) denotes the set of
all m x n matrices over the field F, and F" indicates M, 1(F). Also, ker(A) and
im(A) denote the kernel and the image of the linear transformation corresponding
to the matrix A, respectively. A matrix A = (a;;) is an upper Hessenberg matrix if
ajj =0fori > j+ 1. In that case, A is called a lower Hessenberg matrix. Ann x n
matrix C = (¢;;) is a circulant matrix if ¢;j = c¢; 41, j+1, where the subscripts are taken
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modulo n. Let AJT,(q) denote the set of n x n, invertible, AJT matrices over a field
with g elements. A natural question arises here: which classic subgroups of GL, (g)
are subsets of AJT,,(q)? It is easily seen that the set of invertible circulant matrices is
a subset of AJT,(q).

The permanent of an n x n matrix A = (g;;) is defined as

n
Per(A)= Y []aisn-

€S, i=1

The sum here extends over all elements o of the symmetric group Sj,.

2. Every nonzero square matrix is similar to an AJT matrix

In this section we prove that under similarity the AJT conjecture is true.

THEOREM 1. Every nonzero matrix A € M, (F), with |F| > 3, is similar to an AJT
matrix.

PROOF. Suppose that A is in its rational canonical form, and without loss of generality
assume that its m x m zero block, if it exists, is located in its upper left corner. Any
nonzero block of A has the form

00 --- 0 b
1 0 -+ 0 b
B=|0 1 : :
: 0 by
00 --- 1 b

We consider the following cases.

(1) The last column of B contains a nonzero element, say b;. Since B is similar to
its transpose B’ [4, Section 3.2.3], we can assign a proper coefficient to the jth
row of B and add it to the rest of the rows to obtain a nowhere-zero vector.

(2) The last column of B is zero. Then B is similar to

1 -1 00
1 -1 00
c=|0 1
: 00
0 0 10

That is, C = PBP~!, where P is the matrix that when applied to B from the left
replaces the first row of B with the sum of its first and second rows, and leaves
the other rows unaltered. It is easily seen that C is an AJT matrix.

Now, since A is assumed to be block diagonal, we can replace all nonzero blocks on the
diagonal of A with their similar AJT versions given in (1) and (2) above, and call the
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matrix thus obtained A. Consider a nonzero row of A, say the ith row. Let A j denote
the jth row of A. Assume that Q is the invertible matrix such that (QA) ji= A + A,,
for every j, 1 < j <m, and (QA) = Ag, for any k, m + 1 <k <n. Itis not hard to
see that QA QA Q_1 Now, since every nonzero block of A is an AJT matrix we
conclude that QA 0~ !is an AJT matrix. O

REMARK 2. A similar proof shows that every nonzero matrix A € M,,(F), with
|F| > 5, is similar to a matrix B with the property that for any u, v € F", there exists
x € F" such that x — u and Bx — v are nowhere-zero vectors.

3. A generalization of AJT matrices

The following theorem was proved in [5]. The proof is rather long. Theorem 3
generalizes this result and provides a short and simple proof for it.

THEOREM. Suppose that A € My, ,(F), with |F|=gq, and q >m + 1. There is a
vector x € F" such that neither x nor Ax has any zero entries if and only if no row
of A is zero.

THEOREM 3. Let A € My, o (F), with |F| > m + 1. Then for any u € F" andv € F™
there exists x € F" such that x — u and Ax — v are nowhere-zero vectors if and only
if A has no zero row.

PROOF. One direction is clear. For the other direction, let S be a finite subset of F
with at least m 4 2 elements, containing all entries of u. Hence, there are (|S| — 1)"
vectors x in S” such that x — u is a nowhere-zero vector, and since A has no zero
row, the product of at most (|S| — 1)1 of these vectors and the ith row of A is equal
to the ith entry of v, 1 <i <m. Obviously, (|S| — 1)" > m(|S| — -t implies the
existence of x € F" such that x — u and Ax — v are nowhere-zero vectors. d

REMARK 4. The previous theorem does not hold for |F|=m + 1. For example,
consider the m x 2 matrix

fi 1
B=|: |
fm 1
where F ={0, f1, ..., fi} and u, v are zero vectors. Then for any nowhere-zero

vector x = (x1, x2)", Bx has a zero component, since the equation x;z + x, =0 in z,
takes a nonzero solution in F. For | F| = m + 1, the mean of the number of zero entries
of Ax, say M, is less than or equal to (mm”~')/m" = 1, where the mean is taken over
all nowhere-zero vectors x. If the number of nonzero entries in at least one row of A is
not equal to 2, then M < 1 and A is an AJT matrix. If M =1 and A has at least three
nonzero columns, then there exists a nowhere-zero vector x such that Ax has more
than one zero. Hence, there exists a nowhere-zero vector y such that Ay has less than
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one zero, thatis, A is an AJT matrix. Hence, if the number of nonzero entries in at least
one row of A is not equal to two, or if A has at least three nonzero columns, then A is
an AJT matrix over a field F of size m + 1. Thus, all m x n matrices with no zero row
which are not AJT matrices over a field F of size m + 1 are obtained from B by adding
zero columns to it, permuting, or multiplying its rows by nonzero scalars from F.
This too follows from the probabilistic method used in [3, Proof of Theorem 1].

COROLLARY 5. Let F be an infinite field and A € My, ,,(F). Then for any u € F",
ker(A) contains a vector x such that x — u is a nowhere-zero vector if and only if
the row space of A contains no vector e; =(0,0,...,1,0,...,0), where the ith
component is 1.

PROOF. One direction is obvious. For the other direction, note that the row space
of A has no ¢; if and only if the reduced row echelon matrix of A, say R, has
no vector e; as one of its rows. Let Ry be the submatrix of R obtained from the
columns corresponding to the free variables of Rx =0 with the possible zero rows
removed. Now, according to Theorem 3, there exist xy and ys such that x; —uy
and yy — (—up) are nowhere-zero vectors and R fXf=yf, where ug, u, is the
partitioning of u# into components corresponding to the free and pivot variables of
Rx =0, respectively. It suffices to take —y for the pivot variables of Rx =0, and
this determines a vector x in the null space of R with the desired property. O

REMARK 6. The proof of Corollary 5 gives a necessary and sufficient condition for
the kernel of a matrix to contain a nowhere-zero vector over an arbitrary field: ker(A)
contains a nowhere-zero vector if and only if R is an AJT matrix.

Now, we state the following trivial but useful lemma.

LEMMA 7. Givenu, v € F" and a triangular matrix A € GL,,(F), with |F| > 3, there
exists x € F" such that x — u and Ax — v are nowhere-zero vectors.

PROOF. Since Per(A) = det(A) # 0, we can apply [2, Proposition 2]. O

REMARK 8. Clearly, for every permutation matrix P and Q, A is an AJT matrix if and
only if PAQ is an AJT matrix. More generally, for any u, v € F", there exists x € F"
such that x — u and Ax — v are nowhere-zero vectors if and only if, for any u, v € F",
there exists y € F” such that y — u and PAQy — v are nowhere-zero vectors. So, using
Lemma 7, we can find other families of invertible AJT matrices by permuting rows and
columns.

Let us generalize Lemma 7 in the following theorem which immediately implies
that every upper or lower Hessenberg matrix H € GL, (F), with |F| >4, is an AJT
matrix.

THEOREM 9. Let A = (a;j) be a matrix in GL,, (F), with |F| > 4, such that a;j =0
fori > j+ 2 (orsimilarly a;; =0 for j > i +2). Then, given u, v € F", there exists
x € F" such that x — u and Ax — v are nowhere-zero vectors.
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PROOF. The two cases |F|=4 and n <4 follow from [2, Proposition 1] and
Theorem 3, respectively. So, we may suppose that |[F| > 5 and n > 4. According
to Remark 8, we may rearrange the rows of A to obtain a matrix R such that for
each k, 1 <k <n — 1, the nonzero leading entry of the (k + 1)th row of R is in the
same column as the nonzero leading entry of its kth row or in a column to the right
of it and prove the theorem for R. Note that r; ;_» =r; ;1 = 0 implies that r;; # 0.
Otherwise,

B C
det(R):det(O D):O,

where Bisan (i — 1) x (i — 1) matrix, and Disan (n —i + 1) x (n — i + 1) matrix
whose first column is zero, contradicting our hypothesis that A is invertible. Thus, each
column of R contains at most three nonzero leading entries. This fact, together with

|F| > 5, enables us to make a vector x = (x1, ..., x,)" such that x — u and Rx — v
are nowhere-zero vectors by assigning a proper value to x; and finding proper values
for x;_; and x;,_o, where k=n,n—1, ..., 3. d

Our next two theorems show how the problem of the existence of a nowhere-zero
vector in the image of a mapping is related to the problem of determining whether a
given matrix is an AJT matrix.

THEOREM 10. Suppose that A € M, ,(F) has no zero row and rank(A) =r < m.
Without loss of generality, assume that the first r rows of A are linearly independent,
and Aj =bi_,1A1+---+bi—r A, i=r+1,...,m, where Ay denotes the kth
row of A. Then im(A) contains a nowhere-zero vector if and only if B =
(bij)r+1<i<m,1<j<r is an AJT matrix.

PROOF. Clearly, B has no zero row. Assume that im(A) contains a nowhere-zero
vector, that is, there exists x € F" such that Ax is a nowhere-zero vector. Let
z=(A1x,..., A,x)". Then Bz is a nowhere-zero vector, and therefore B is an
AJT matrix. Now, suppose that B is an AJT matrix, that is, there exists y € F"
such that y and By are nowhere-zero vectors. Let A = (C|D)" be a partitioning
of Ainto C € M, ,(F) and D € My, ,(F). Then 7¢c : F" — F", the linear operator
corresponding to C, is surjective. Therefore, there exists x € F" such that t¢c(x) = y.
Clearly, Dx and therefore Ax are nowhere-zero vectors too. O

COROLLARY 11. Suppose that A € M, ,(F) has no zero row and that rank(A) =r.
If |F| >m —r + 1, then im(A) contains a nowhere-zero vector.

PROOF. Apply Theorem 3 to the matrix B in the above theorem. a
REMARK 12. Suppose that A € M,, ,(F) and rank(A) = m. Clearly, im(A) contains
a nowhere-zero vector. Moreover, if F' = GF(p®), a > 1, then according to [2] A is

an AJT matrix, since it can be extended to an invertible matrix by adding n — m rows
to it.
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It is well known that any matrix A has a PLU decomposition [4], that is, there exist
a lower triangular matrix L, an upper triangular matrix U, one of which is invertible,
and a permutation matrix P, such that A = PLU. Hence, according to Remark 8, we
may restrict our attention to LU decomposable matrices only.

THEOREM 13. The following are equivalent for g > 3.

(1) AJT,(q) = GLa(q).

(2) Every 2n x n matrix of the form (A|B)' has a nowhere-zero vector in its
image, where A, B are n X n, invertible, upper and lower triangular matrices,
respectively.

(3) AJT,(q) is closed under multiplication of matrices, that is, it forms a semigroup.

PROOF. (1) = (2). Let M = BA™\. By assumption, there are nowhere-zero vectors
x, y such that Mx = y. Now, if z = A~ !x, then (A|B)'z = (x|y)".

(2) = (1). Let M € GL,(q). There exists a permutation matrix P such that
PM = LU, where L and U are lower and upper triangular matrices, respectively. By
considering the matrix (U ~'|L)" and using the assumption, we are done.

On the other hand, (1) < (3), because of Lemma 7 and the PLU factorization of
matrices. O

COROLLARY 14. Let A= LU be an LU decomposition for A € GL,(F), with
|F| > 4, such that the last column of U~" and the first column of L are nowhere-zero
vectors. Then A is an AJT matrix.

PROOF. Setz=(1,0,...,0,¢) in the proof of Theorem 13 for a properc € F. O

4. Nowhere-zero vectors in the kernel or the image of linear transformations

In this section we provide some criteria for the existence of nowhere-zero vectors
in the null space and the image of a linear transformation.

THEOREM 15. Let A € My, ,(F) be a matrix with no zero row and with at most k
nonzero entries in each column. If |F|>k+ 1, then A is an AJT matrix, and if
|F| =k + 1, then im(A) contains a nowhere-zero vector.

PROOF. Without loss of generality, assume that A has no zero columns. The proof
is by induction on n. For n =1 the assertion is obvious. Suppose that the statement
holds for all such A with less than n columns, n > 1. Let A be the matrix obtained by
omitting the last column of A with its possible zero rows removed. By the induction
hypothesis, there exists an x € F"~! such that Ax has the desired property. It is not
hard to choose a € F such that Ay has the same property as A, where y = (x|a)’. O

REMARK 16. In [1]itis shown that every (0, 1) matrix with at most two ones in each
of its columns and no zero row is an AJT matrix over F, for |F| > 3.

THEOREM 17. Let A € M, ,(F) be a (0, 1) matrix with at most three ones in each

of its columns and no zero row. Then im(A) contains a nowhere-zero vector over F,
|F|>3.
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PROOF. We apply induction on n. For n =1 the assertion is obvious. Let n > 1 and
let A be the matrix obtained from omitting a column of A. Now, we consider the
following two cases.

(1) A has no zero row. Then, by the induction hypothesis, Ax is a nowhere-zero
vector for some x € F"~!. Hence, if we assume without loss of generality that
the last column of A is removed, then A (x|0)’ will be a nowhere-zero vector.

2) A has at least one zero row, for every choice of the columns of A. Then, by a
permutation of the rows, A will be in the form (/,,| B)!, where B is a matrix with
at most two ones in each of its columns, and hence by Remark 16 an AJT matrix.
Clearly, A is also an AJT matrix. O

REMARK 18. Let F be a finite field of characteristic 2. Then there exists a (0, 1)
matrix with no zero row and |F| — 1 ones in each of its columns which is not an AJT
matrix over F. Hence, we cannot generalize Remark 16 in this sense. Here, we give
an example of such a matrix for F = GF(4):

S OO = ==
S == OO -
—_0 = O = O
—_——_ 0 = OO

Clearly, the condition that the nowhere-zero vector x has distinct elements is necessary
for Ax to be a nowhere-zero vector. Hence, A is not an AJT matrix over GF(4), since
this field has only three nonzero members. Generally, assuming that F is a finite field
with char(F) = 2, the same method may be used to construct a matrix with (“; ‘) rows

and | F'| columns that is not an AJT matrix over F.

THEOREM 19.

(1)  Suppose that any matrix with at most k nonzero entries in each of its columns
and no zero row is an AJT matrix over a field of size k + 1. Let A be a matrix
with at most k + 1 nonzero entries in each of its columns and no zero row. Then
im(A) contains a nowhere-zero vector over a field of size k + 1.

(2) Suppose that for any matrix A with at most | nonzero entries in each of its
columns and no zero row over a field of size I, im(A) contains a nowhere-zero
vector. Then any matrix B with at most | — 1 nonzero entries in each of its
columns and no zero row is an AJT matrix over a field of size l.

PROOF. (1) The proof is similar to that of Theorem 17 and hence omitted.

(2) Suppose that B is an m x n matrix and define A = (I,,| B). Then im(A) contains
a nowhere-zero vector by hypothesis, and hence B is an AJT matrix. O
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