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Structure of mushy layers grown from perfectly
and imperfectly conducting boundaries.
Part 2. Onset of convection
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We study linear convective instability in a mushy layer formed by solidification of a binary
alloy, cooled by either an isothermal perfectly conducting boundary or an imperfectly
conducting boundary where the surface temperature depends linearly on the surface heat
flux. A companion paper (Hitchen & Wells, J. Fluid Mech., 2025, in press) showed how
thermal and salinity conditions impact mush structure. We here quantify the impact on
convective instability, described by a Rayleigh number characterising the ratio of buoyancy
to dissipative mechanisms. Two limits emerge for a perfectly conducting boundary. When
the salinity-dependent freezing-point depression is large versus the temperature difference
across the mush, convection penetrates throughout the depth of a high-porosity mush. The
other limit, which we will call the Stefan limit, has small freezing-point depression and
inhibits convection, which localises at onset to a high-porosity boundary layer near the
mush–liquid interface. Scaling arguments characterise variation of the critical Rayleigh
number and wavenumber based on the potential energy contained in order-one aspect
ratio convective cells over the high-porosity regions. The Stefan number characterises the
ratio of latent and sensible heats, and has moderate impact on stability via modification
of the background temperature and porosity. For imperfectly conducting boundaries,
the changing surface temperature causes stability to decrease over time in the limit of
large freezing-point depression, but in the Stefan limit combines with the decreasing
porosity to yield non-monotonic variation of the critical Rayleigh number. We discuss
the implications for convection in growing sea ice.
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1. Introduction

Mushy layers are reactive porous materials formed due to morphological instability during
solidification of multicomponent alloys (e.g. see reviews in Worster 2000; Anderson
& Guba 2020; Hitchen & Wells 2025). In many settings, solidification modifies the
buoyancy of the melt in the liquid pore space, which can then convect. Convection drives
chemical transport through the porous layer, which can modify the material properties
because the mushy layer is reactive (Worster 1997; Anderson & Guba 2020). A striking
example is the formation of solid-free channels, or chimneys. Convective flow generates
a tendency for local disequilibrium and either dissolution or crystallisation of the solid
matrix in different regions. This can drive a flow-focussing feedback where flow and solute
transport preferentially focus in regions of high porosity and permeability, driving further
dissolution (cf. Worster 1997). In the natural environment, such convection drives chemical
exchange between the porous interior of sea ice and the ocean, with implications for brine
fluxes and ocean buoyancy forcing (Wettlaufer, Worster & Huppert 1997; Hunke et al.
2011; Worster & Rees Jones 2015; Wells, Hitchen & Parkinson 2019). Such convection may
also be important for solute rejection during solidification of planetary inner cores (e.g.
Bergman & Fearn 1994; Huguet et al. 2016). In industrial settings, the reactive flow
focussing results in compositional heterogeneity and freckle defects in metal castings
(Copley et al. 1970). In many such settings the solidification dynamics is inherently
transient with the mushy layer growing over time, and may feature a range of initial
alloy compositions. In Hitchen & Wells (2025), hereafter Part 1, we investigated how
the cooling conditions and composition impact mushy-layer structure during diffusively
controlled transient growth. The goal here is to understand the resulting impact on the
onset of convection, using linear stability analysis as a tool to reveal dynamical insight.

Convection during steady growth (such as directional solidification of an alloy pulled
between heat exchangers) has been widely studied using linear and weakly nonlinear
stability analyses, fully nonlinear simulations and analogue experiments (see reviews by
Worster 1997; Wells et al. 2019; Anderson & Guba 2020). Convection is observed when a
mushy-layer Rayleigh number Rm = g�ρΠ l/κμ exceeds a critical value Rc. This Rayleigh
number represents a ratio of buoyancy effects to dissipation, where g is the gravitational
acceleration,�ρ a characteristic density difference,Π a permeability scale, κ the thermal
diffusivity, μ the dynamic viscosity with kinematic viscosity ν and for steady growth
at rate V we identify l ∼ κ/V with the diffusive length scale. The critical value of Rm
depends on the material properties and can also be modified by external flow (Neufeld &
Wettlaufer 2008a,b), lateral confinement (Zhong et al. 2012) or other variation of growth
conditions (see review by Anderson & Guba 2020). Of particular relevance here is the
linear stability analysis of Worster (1992), which showed that decreasing the concentration
ratio C = (Ŝ∞ − Ŝs)/(Ŝc − Ŝ∞) increases the critical Rayleigh number and wavenumber,
where the initial fluid composition Ŝ∞, the composition of pure solid Ŝs and Ŝc is the
composition corresponding to the cooling boundary temperature (sometimes taken as
the eutectic composition). Worster (1992) linked this to changes to the porosity and
permeability of the layer causing flow confinement, showing that a compensated Rayleigh
number Rm with permeability Π evaluated at the mean depth-averaged porosity and
length scale l corresponding to the mush thickness results in Rm ∼ 5–10 for 0.1 ≤ C ≤ 10.
A similar magnitude was obtained with variation of the liquid superheat and Stefan
number, where the latter characterises the ratio of latent and specific heats. Chen, Lu &
Yang (1994) find that small values of C lead to stronger convection in the compositional
boundary layer in the liquid adjacent to the mush.
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Convective instability during diffusive mushy-layer growth

The concept of a critical Rayleigh number for convection broadly extends to transient
growth from cold isothermal boundaries with fixed chill. Experiments with a range of
compositions are consistent with the emergence of chimneys and mushy-layer convection
when the mush thickness ĥ exceeds a critical value ĥc (e.g. Bergman & Fearn 1994; Chen
et al. 1994; Chen 1995; Wettlaufer et al. 1997) Since the mush thickness ĥ(t̂) grows
over time t̂, this can also be interpreted as a critical time scale for convective onset,
when the Rayleigh number based on a length scale l = ĥ(t̂) exceeds a critical value. This
interpretation potentially obscures changes to the interior structure of the mushy layer.
Aussillous et al. (2006) and Notz & Worster (2009) measured porosity during growth
for certain concentration conditions, with results consistent with a spatial confinement of
the convective flow to a high permeability region near the mush–liquid interface. Using
scaling arguments they interpret this in terms of a local Rayleigh number Rm ≈ Rc based
on �ρ, Π and l evaluated over the vertical scale of the convecting cells. Variations
of these arguments underpin various parameterisations of the convective desalination
of sea ice (see review by Worster & Rees Jones 2015) which motivates understanding
their theoretical underpinnings and how they should extrapolate across a range of growth
conditions.

A number of previous linear stability analyses have considered development of
convection during transient growth, with composition in a near-eutectic limit (cf. Emms
& Fowler 1994) where the porosity remains of order one throughout the depth of the
mushy layer. Using a quasi-steady stability analysis, which considers growth or decay of
convective perturbations relative to the instantaneous background state at time t̂, Emms &
Fowler (1994) find convection above a critical Rayleigh number, where the length scale
l ∝

√
κ t̂ is interpreted in terms of the growing mush thickness. The critical Rayleigh

number increases between 9 and 25 as the superheat increases. Using a propagation
method, where perturbations are restricted to grow in the self-similar coordinates of the
background state Hwang & Choi (2000) considered a near-eutectic limit, neglecting the
feedback of porosity on permeability. The results approach those of Emms & Fowler
(1994) for large superheat, but result in greater stability (i.e. larger critical Rayleigh
number) than found by Emms & Fowler (1994). Because the propagation method restricts
the range of allowed perturbations, it has previously been found to overestimate stability
bounds for Rayleigh–Darcy convection in a uniform porous medium (see discussion in
Tilton, Daniel & Riaz 2013), which may explain this discrepancy. Subsequent studies
using the propagation method considered the boundary-layer mode of convection when
there is a diffusive boundary layer in the neighbouring liquid (Hwang & Choi 2004), while
Hwang & Choi (2008) characterised how the resulting time scale varies with superheat,
and Hwang & Choi (2009) show that the critical Rayleigh number is reduced by use of
the Beavers & Joseph (1967) boundary condition for flow at the boundary between liquid
and porous regions. Hwang (2013) included the feedback of porosity on permeability, and
used the propagation method to show that the critical Rayleigh number and wavenumber
both decrease as either C or the superheat increases. A link to convective confinement was
suggested, but not quantitatively explored.

The goal of this study is to systematically evaluate how the material structure of a
transiently growing mushy layer impacts the onset of convection, using linear stability
analysis to provide insight into the key mechanisms. We first consider the impact on
convective onset of material composition and thermal parameters for fixed-chill cooling
with an upper isothermal boundary. We then evaluate the effect of imperfect cooling with
a more general Robin boundary condition, where the surface heat flux is linearly related
to the surface temperature. The latter yields a more realistic linearised approximation to
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J.R. Hitchen and A.J. Wells

the surface energy balance during sea-ice growth (Hitchen & Wells 2016). The relative
efficiency of boundary cooling vs conduction through the mush is characterised by
a dimensionless Biot number, which increases over time proportional to the diffusion
length

√
κ t̂. Using a quasi-steady stability analysis we find that convection in fixed-chill

conditions is strongly stabilised for compositions in the so-called Stefan limit (cf. Part 1)
with C � 1, with the critical Rayleigh number and wavenumber increasing as the
concentration ratio C decreases. We demonstrate this change in stability is quantitatively
consistent with a local Rayleigh number across a region of convective confinement,
providing theoretical support for the scaling arguments of Aussillous et al. (2006) and
Notz & Worster (2009). Imperfect cooling can either inhibit or promote the onset of
convection, with the global critical Rayleigh number first decreasing then increasing as
the Biot number decreases. We interpret the results in terms of a tendency for full-depth
convective disturbances if buoyancy forcing is large enough to trigger convection at early
times when most of the mush has high porosity. At later times, any convection localises in
a higher porosity region at the base of the ice, approaching behaviour consistent with the
fixed-chill limit at large times.

The article is organised as follows. Section 2 describes the relevant model equations for
flow in a transiently growing mushy layer, and § 3 describes the linearisation and solution
method. Results with a fixed-chill boundary are described in § 4, whilst § 5 considers the
Robin condition with imperfect boundary cooling. Section 6 discusses implications for
sea-ice growth in the environment, and conclusions are summarised in § 7.

2. Model

Building on the model presented in Part 1, we study a binary alloy exposed at
dimensionless time t = 0 to a heat sink at dimensionless depth z = 0, with heat loss via a
linearised exchange defined below. We neglect salt diffusion and assume the mushy layer
is ideal with equal material properties in each phase. We further assume that the fluid is
initially of uniform temperature and salinity, and that the initial velocity is uniformly zero.
However, for this part, we will focus our attention on the growing mushy layer specifically
and relax the assumption that the fluid always stays at rest.

For brevity, we skip the dimensional form of the model described in Part 1 and
non-dimensionalise initially using a fixed, time-independent length scale, d̂, but convert to
a scale defined by the thermal diffusion length scale later in the analysis. The initial length
scale has associated time and velocity scales, d̂2/κ and κ/d̂, respectively. A diagram of
the non-dimensional system is shown in figure 1.

The non-dimensional temperature and salinity are defined as

θ = T − Tc

TL∞ − Tc
, S = Ŝ − Ŝs

Ŝ∞ − Ŝs
, (2.1a,b)

for dimensional temperature T and salinity Ŝ. The temperature scale used�T = TL∞ − Tc
is the temperature difference between the salinity-dependent freezing temperature of the
liquid TL∞ and the surface heat sink at Tc. The salinity scale used is the initial difference
between the liquid salinity Ŝ∞ and pure solid salinity Ŝs.

Under this non-dimensionalisation, conservation of energy and salt yields

∂θ

∂t
+ u · ∇θ + St

∂χ

∂t
= ∇2θ,

∂χS
∂t

= −u · ∇S, (2.2a,b)
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Convective instability during diffusive mushy-layer growth

Heat sink

Mushy layer

Fluid

z = 0

z = h(t)

z → ∞

z g

θL = 1

θ (z, t)

θ = θ∞

θ = 0

∂θ
∂z = Biθ

χ (z, t)

χ = 1 S = 1

�t

Figure 1. Non-dimensional model set-up (cf. dimensional form in figure 1 in Part 1). The temperature
profile θ runs between 0 at the surface heat sink and θ∞ at depth, while the liquid salinity S = 1 and its
liquidus temperature is θL = 1. The thermal diffusion length scale is proportional to

√
t and the constant of

proportionality for linearised heat transfer is Bi. A full description of the non-dimensional parameters used can
be found in the main text.

where we have added advective terms to the equations presented in Part 1 with Darcy
velocity u describing the volume flux of liquid per unit area. These equations introduce
the volumetric liquid fraction χ , and the Stefan number St = L/cp(TL∞ − Tc) which
represents the ratio of latent heat L to specific heat in the system (with specific heat
capacity cp). The temperature and salinity are constrained to each other via the liquidus
relationship

θ = 1 − C(S − 1), where C = Γ (Ŝ∞ − Ŝs)

TL∞ − Tc
≡ Ŝ∞ − Ŝs

Ŝc − Ŝ∞
, (2.3)

where Ŝc is the salinity of fluid with liquidus temperature Tc and Γ is the dimensional
liquidus slope. The dimensionless concentration ratio C measures the salinity effects
due to freezing-point depression, with a larger value indicating a larger impact on the
solidification dynamics.

To complete the set of dynamic equations, we use Darcy’s law to describe momentum
transfer within the porous mush, and note that the fluid is incompressible when solid and
liquid densities are assumed equal, yielding

u = −Rmχ
3[∇p + θez], ∇ · u = 0, Rm = g(α + β/Γ )�TΠ̂0d̂

κν
. (2.4a–c)

In the first of these equations, p is the dimensionless pressure, ez is a vertical unit vector
pointing downwards and we assume the permeability is Π̂0χ

3 for constant Π̂0, which
approximates a measured correlation of sea-ice permeability ∝χ3.1 (Freitag 1999; Notz &
Worster 2009). The density anomalies driving convection �ρ = ρ0[β(Ŝ − Ŝc)− α(T −
Tc)] are assumed to satisfy a linear equation of state with constant values of the thermal
expansion coefficient α, solutal contraction coefficient β and reference density ρ0. The
liquidus relationship has been used to express saline buoyancy contributions in terms of
the dimensionless temperature. The mushy Rayleigh number Rm describes the relative
strength of buoyancy forcing from both thermal and saline expansion/contraction vs the
rate of viscous and thermal dissipation.
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Following Emms & Fowler (1994) we treat the mush–liquid interface as an isothermal,
constant-pressure boundary at the freezing temperature which yields

θ = 1, ex · u = 0, when z = h, (2.5a,b)

where ex is a horizontal unit vector and we have used (2.4a) to link p and u. Here, the
isothermal condition arises from a marginal equilibrium condition, with the temperature
satisfying the liquidus constraint with an assumed uniform salinity in the liquid. Note that
the liquid fraction χ → 1 at the mush–liquid interface z → h in the background state.
Emms & Fowler (1994) justify use of a constant-pressure boundary condition when the
resistance to flow in the liquid region is much smaller than in the porous region, which
here occurs when the Darcy number Da = Π̂0/d̂2 is small.

Our treatment of the flow boundary conditions assumes a sharp transition between a
pure liquid in z > h and a porous medium in z < h. Le Bars & Worster (2006) analysed
the transition between purely liquid and porous regions using the Darcy–Brinkmann
equation. They found that a split-domain approach with Navier–Stokes and Darcy flow
in separate regions is an accurate approximation if the flow boundary conditions at a
mush–liquid interface are characterised by instead imposing continuity of pressure and

velocity at a displaced dimensional distance δ̂ =
√
Π̂/χ inside the porous media, where

Π̂ is the dimensional permeability. Applying the permeability used in (2.4a–c) and noting
χ ∼ 1 near the mush–liquid interface, this corresponds to a dimensionless distance of
δ = O(Da1/2) from the interface. This displacement from the mush–liquid interface can be
neglected whenever it is much smaller than the thickness of the convecting cells (requiring
Da1/2 � h for full-depth convection, or Da1/2 � hC if convection is confined to a fraction
of order C of the full depth.

At the cooling boundary, we apply a linear thermal exchange and an impermeable
condition

∂θ

∂z
= Biθ, ez · u = 0, when z = 0, (2.6a,b)

where the Biot number Bi = 𝔥d̂/k characterises the ratio of the effective thermal
conductivity 𝔥d̂ of the boundary vs the thermal conductivity k of the mushy layer. The limit
Bi → ∞ represents a perfectly conducting, isothermal, boundary (see Part 1 for further
discussion).

We will focus on the development of perturbations in the mushy layer 0 < z < h using
(2.1a,b)–(2.6a,b). However, the background state also depends on properties of the liquid
region which has no flow (u = 0), uniform salinity S = 1 and temperature evolving
according to (2.2a) with χ = 1 and θ → θ∞ as z → ∞. Here, the dimensionless far-field
temperature of the liquid θ∞ = (T∞ − Tc)/(TL∞ − Tc), with θ∞ = 1 indicating fluid is
at the liquidus temperature for salinity Ŝ∞, and θ∞ increases with the far-field liquid
temperature. This parameter and its effects on the dynamics are discussed further in Part 1.

3. Stability method

We use a frozen time stability method (also known as a quasi-static stability analysis) to
find the linear stability criteria of the mushy layer in various parameter configurations.
This neglects nonlinear products of the perturbations to the base state, and assumes that
the base state evolves at a much slower rate than the perturbation time scale, such that the
base state can be considered static, or ‘frozen’.
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Convective instability during diffusive mushy-layer growth

Assuming a two-dimensional convection pattern, incompressibility (2.4b) is satisfied by
writing u = ∇ × (ψey) using a streamfunction ψ and unit vector ey perpendicular to the
plane. This results in a system with three fields, which are expanded as base states and
perturbations

θ = θB(z, t)+ εθp(x, z, t), χ = χB(z, t)+ εχp(x, z, t), ψ = εψp(x, z, t), (3.1a–c)

where ε is the small perturbation amplitude and the base-state streamfunction is uniformly
zero. The base-state equations of O(1) yielded by this substitution are those solved in
Part 1 for diffusive growth, while the linear perturbation equations found by gathering
terms of O(ε) are

∂θp

∂t
+ ∂θB

∂z
∂ψp

∂x
+ St

∂χp

∂t
= ∇2θp, (3.2a)

−Rm
∂θp

∂x
= ∇ ·

[
1
χB3 ∇ψp

]
, (3.2b)

(C + 1 − θB)
∂χp

∂t
− θp

∂χB

∂t
− χp

∂θB

∂t
− χB

∂θp

∂t
= ∂θB

∂z
∂ψp

∂x
, (3.2c)

where (3.2b) arises from rearranging Darcy’s law (2.4a) and taking the curl. We
decompose into Fourier modes with wavenumber k and exponential growth rate σ⎡

⎣ θp(x, z, t)
ψp(x, z, t)
χp(x, z, t)

⎤
⎦ =

⎡
⎣ θf (k, z)

ikψf (k, z)
χf (k, z)

⎤
⎦ eikx eσ t, (3.3)

with (3.2) yielding a matrix eigenvalue problem for either σ or Rm

Ay − RmBy = σCy, (3.4a)

y =
⎡
⎣θf
ψf
χf

⎤
⎦ , A =

⎡
⎢⎢⎢⎢⎣

∂2/∂z2 − k2 k2∂θB/∂z 0

0
∂

∂z

(
1
χB3

∂

∂z

)
− k2

χB3 0

−∂χB/∂t k2∂θB/∂z −∂θB/∂t

⎤
⎥⎥⎥⎥⎦ , (3.4b,c)

B =
⎡
⎣ 0 0 0

−1 0 0
0 0 0

⎤
⎦ , C =

⎡
⎣ 1 0 St

0 0 0
χB 0 −(C + 1 − θB)

⎤
⎦ . (3.4d,e)

For computational efficiency, the results below solve the problem directly for the critical
Rayleigh number by assuming σ = 0 at the exchange of stability. Setting σ = 0 has the
effect of making the stability independent of perturbations to the liquid fraction, because
(3.4) decouples into a 2 × 2 matrix eigenvalue problem for θf and ψf with χf decoupled
and determined from θf and ψf . However, this also explicitly neglects oscillatory modes
from the calculation, with �{σ } /= 0. Oscillatory modes contained within the mushy region
have previously been found for models with asymptotically thin mushy layers in the
near-eutectic limit (see Anderson & Worster 1996; Anderson & Guba 2020), but usually
have a relatively minor impact on the critical Rayleigh number for instability. For example,

1002 A26-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

80
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.809


J.R. Hitchen and A.J. Wells

the results illustrated by Anderson & Worster (1996) show changes of �20 % to the critical
Rayleigh number for convective onset when oscillatory modes are the most unstable.

Applying the same decomposition to the boundary conditions leads to

∂θf

∂z
= Biθf , ψf = 0, at z = 0, (3.5a,b)

θf = 0,
∂ψf

∂z
= 0, at z = h, (3.5c,d)

where for simplicity we have neglected deformation of the mush–liquid interface and
assumed no perturbations to h. In an analysis of asymptotically thin mushy layers in the
near-eutectic limit, Roper, Davis & Voorhees (2008) showed this assumption does not
qualitatively impact the stability results, and only leads to a modest quantitative difference
in the critical Rm by �10 %.

Time now only appears in (3.4) and (3.5) through the base-state temperature and
liquid fraction, θB and χB, but we showed in Part 1 that these profiles can be calculated
in self-similar coordinates using the variables z̃ and B̃i. We therefore repeat the same
self-similarity transformation

z̃ = z√
t
, k̃ = k

√
t, λ = h√

t
, (3.6a–c)

R̃m = Rm
√

t, B̃i = Bi
√

t, θ̃ = θ, ψ̃f = ψf√
t
, (3.6d–g)

which we noted is equivalent to changing the length scale of the problem from the fixed
length d̂ to the time-evolving thermal diffusion length scale

√
κ t̂. This transformation

leaves the decoupled, 2 × 2 form of (3.4) and (3.5) unchanged.
Finally, we note that varying parameters such as the far-field liquid temperature and

Stefan number will change the depth of the mushy layer. This changing vertical extent
will have a well-understood impact on the convective instability, with the critical Rayleigh
number varying in inverse proportion to the layer depth. To allow us to see past this effect,
it is useful to define the scaled Rayleigh number and the corresponding wavenumber

R̃∗
m = λR̃m = g(α + β/Γ )�TΠ̂0ĥ(t̂)

κν
= ĥ(t̂)

d̂m
, k̃∗ = k̃λ = k̂ĥ(t̂), (3.7a,b)

where λ = h(t)/
√

t is the self-similar interface position and the convective length scale
d̂m = κν/[g(α + β/Γ )�TΠ̂0]. In an experiment or application, the scaled Rayleigh
number in (3.7a) will typically increase over time as the mushy layer grows and ĥ increases.
Our goal is to find the critical threshold value of R̃∗

m for the onset of instability as a
function of the growth conditions that control the structure of the mushy layer, and also as
a function of B̃i which increases with time when there is imperfect boundary cooling. One
can then infer a critical mush thickness or critical onset time for convection by inverting
(3.7a) for ĥ or t̂.

The resulting eigenvalue system is discretised on a Chebyshev grid (see Trefethen 2000)
using between 60 and 200 nodes until the results are well converged. Following the method
in Hitchen & Wells (2016) we rewrite the discretised boundary conditions as a constraint
on the internal points. The critical Rm is found at a range of wavenumbers using the
MATLAB ‘eig’ routine, and minimised to find the global stability point for that set of
parameters.
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Figure 2. (a) Scaled critical Rayleigh numbers R̃∗
m against concentration ratio C and Stefan number St,

calculated when θ∞ = 1.25. The black contours are spaced at intervals of 100.2 and the green contours are
at R̃∗

m = 36, 37, 38 and 39. The critical Rayleigh number increases sharply as the concentration ratio is
decreased, as discussed in the main text. (b) The corresponding critical wavenumbers k∗

c over the same range of
concentration ratio and Stefan number. The black contours are now at intervals of 100.1 and the green contours
are k∗

c = 2.4 and 2.45. The wavenumber also increases as the concentration ratio decreases. Note reversed
scales on logarithmically spaced colour bars.

4. Results for a perfectly conducting boundary

4.1. Impact of the concentration ratio on stability
The first part of our investigation focuses on the effect of the concentration ratio C on
the convective instability. After decoupling the third row of the matrix problem, the
concentration ratio C does not appear in either (3.4) or (3.5) explicitly, but does affect
the internal structure of the base state θB and χB. We aim to see how the changes to the
internal structure controlled by C impact the stability of the mushy layer. Varying C will
also affect the growth rate, but we will use the scaled Rayleigh number, R̃∗

m, which already
accounts for the impact of the growth rate. The mushy layer is highly porous throughout
for large values of C (see Part 1), with χ → 1 as C → ∞. In contrast, for small values of
C, we found that most of the mush has a very low liquid fraction with a small interfacial
boundary layer containing most of the porosity variation. The far-field temperature used
in this section will be θ∞ = 1.25 unless stated otherwise, which for applications to sea ice
corresponds roughly to Arctic ocean water with Ŝ∞ = 35 g kg−1 at 0 ◦C being cooled to
−10 ◦C. In this section we will assume perfect boundary conductivity, B̃i → ∞.

Figure 2 shows the variation of the critical scaled Rayleigh number and wavenumber
as the concentration ratio and Stefan number are varied. Detailed discussion of the
dependence on Stefan number will be deferred until § 4.2. As the concentration ratio is
decreased, there is a sharp increase in both the critical Rayleigh number R̃∗

m (by several
orders of magnitude) and wavenumber k∗

c (by one order of magnitude). The variation of
R̃∗

m and k∗
c with St is much weaker. These increases of R̃∗

m and k∗
c with decreasing C are
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Figure 3. (a) Critical Rayleigh numbers R̃∗
m and (b) critical wavenumbers against concentration ratio C, for

Stefan numbers in the range 0.0125 ≤ St ≤ 1250 and θ∞ = 1.25, calculated in coordinates scaled such that the
depth of the mushy layer is 1. The upper and lower bounds of the data for varying St are shown in orange and
green, respectively, while the dashed black curves are given by equation (4.1a,b) (where the numerical constants
have been determined to minimise the sum of relative errors over all data points, using MATLAB function
‘fminsearch’). (c) Shows corresponding variation of the critical Rayleigh number R̃∗

m vs C, and (d) wavenumber
vs C for varying θ∞ and St = 1.25, illustrating that (4.1a,b) captures the leading-order trend for a range of θ∞
and St.

well described by the trends

R̃∗
m ≈ 39 + 19

C2 , k∗
c ≈ 2.4 + 0.34

C , (4.1a,b)

which are illustrated in figure 3(a,b) for θ∞ = 1.25 with varying C and St, and in
figure 3(c,d) for St = 1 with varying C and θ∞. These trends are approximations which
are independent of Stefan number. However, they provide a good match to the data
across a range of St and C for θ∞ = 1.25, and the maximum error of the Rayleigh
number trend is 59.0 % with a root-mean-square error of 26.8 %, while the maximum
error of the wavenumber trend is 23.3 % with a root-mean-square error of 4.1 % for the
parameter values in figure 3(a,b). We later present explanations for these scalings and their
dependence on C and θ∞.

Our results echo those of Hwang (2013), which were obtained using the propagation
method that assumes self-similar perturbations. Hwang (2013) observed a large increase
in Rayleigh number and a moderate increase in wavenumber as the concentration ratio C
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Figure 4. (Left) Background liquid fraction and permeability profiles – blue and green curves, respectively –
for θ∞ = 1.25, St = 0 and (a) C = 3.8, (b) C = 0.38 and (c) C = 0.038. (Right) Marginally stable modes at
R̃∗

m for the three cases. The thermal perturbations θp are shown by the colour scale. Streamfunction contours
are shown at 0.02, 0.05, 0.1, 0.2 and 0.3, with black contours representing clockwise circulation and grey
contours representing anti-clockwise circulation.

decreases below 1, with both tending to a constant value for large values of C. Hwang
(2013) hypothesises that this behaviour is due to the presence of a low-porosity region for
small C which confines the convection, but does not investigate this further. To investigate
this phenomenon, figure 4 shows the convection, liquid fraction and permeability profiles
for three different values of the concentration ratio. In figure 4(a), C = 3.8 and θ∞ = 1.25,
corresponding to the high-liquid-fraction regime (C � 1) with χ > 0.79 throughout the
depth, and high permeability (Π ≡ χ3 > 0.49). In this regime, the convection penetrates
the full depth of the mushy layer and the cells are relatively wide with width of comparable
magnitude to the thickness of the layer. Figure 4(b) shows results for C = 0.38 in the
transitional regime with appreciable solid formation close to the upper boundary (χB(0) =
0.27). This is reflected in the convection pattern with the convection confined further
away from the upper boundary than in figure 4(a), and focussed more in the lower part
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Figure 5. Illustration of liquid-fraction perturbations and flow for the same marginally stable modes as shown
in figure 4. (Left) Background liquid fraction and permeability profiles, as in figure 4, for θ∞ = 1.25, St = 0
and (a) C = 3.8, (b) C = 0.38 and (c) C = 0.038. (Right) Marginally stable modes at R̃∗

m for the three cases,
with liquid-fraction perturbations χp shown by the colour scale, and the same streamfunction contours as in
figure 4 with black contours representing clockwise circulation and grey contours representing anti-clockwise
circulation. Note that the amplitude of the perturbations in any physical realisation will be subject to a linear
rescaling by the initial perturbation amplitude.

of the domain. The convective cells also narrow slightly relative to the layer thickness.
Finally, figure 4(c) shows results for C = 0.038 in the earlier-defined Stefan regime. Here,
the top of the mushy layer has a large solid fraction and a low permeability, while the
high-porosity mush is focused in a thin interfacial region. The convective cells are heavily
confined to this interfacial region, and there is very little fluid motion in the rest of the
domain, although thermal variations do spread slightly further than the velocity. Figure 5
shows the corresponding linear perturbations to the liquid fraction for the same parameter
values as figure 4. The liquid fraction increases in regions of downward flow (see blue
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Figure 6. The confinement depth cλ (blue), confinement liquid fraction cχ (green) and confinement
temperature cθ (red) are plotted against the concentration ratio C, for θ∞ = 1.25 and two values of the Stefan
number, St = 0 (solid) and St = 15.7 (dashed). Also shown in dotted grey line is the one-to-one trend line
consistent with a scaling proportional to C. The method of calculation for these properties is described in the
main text.

shaded regions in figure 5), consistent with downward advection of higher salinity pore
fluid causing local dissolution of the solid matrix. The opposite trend is observed in
regions of upward flow, with the comparatively fresh inflow causing local solidification
and a reduction in liquid fraction.

As a measure of this convective confinement, we calculate the z-value at which the
streamfunction drops below 10 % of its maximum value, and define the confinement depth
cλ as the resulting distance from the mush–liquid interface divided by the mush thickness.
We also calculate the liquid fraction at the confinement depth (confinement liquid fraction,
cχ ) and fraction of the temperature range which lies between the confinement depth
and the mush–liquid interface (confinement temperature, cθ = 1 − θ |cλ). These three
diagnostic properties are shown in figure 6 for a range of concentration ratios and two
Stefan numbers.

For large values of the concentration ratio, the confinement depth tends to a value close
to one, which represents convection through the full depth (by definition, cλ will not reach
one since ψ = 0 at the surface). For smaller values with C � 1 in the Stefan regime, the
confinement depth cλ varies approximately linearly with the concentration ratio, consistent
with convection being confined to the high-porosity interfacial region of the mushy layer
with a relative depth proportional to C as identified in Part 1. The confinement liquid
fraction cχ tends to a constant value as C decreases, with a limit of χ ≈ 0.2 for St = 0 and
χ ≈ 0.3 for St = 15.7. Fluid motion is therefore being capped at the same liquid fraction
for a large range of C and cannot substantially penetrate into the region of low liquid
fraction which exists above this contour.

The scalings (4.1a,b) for the critical Rayleigh number and wavenumber can be
understood as follows. The combination of a preference for convection cells to occur
with a roughly square aspect ratio and the convective confinement to a region with a
relative thickness l ∝ ĥC for C � 1 means that we expect a wavelength proportional to C
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when scaled relative to the mushy-layer thickness. Hence, the scaled critical wavenumber
k̃∗ = k̂ĥ ∝ ĥ/l ∝ 1/C for C � 1, as seen in (4.1b). However, for C � 1 there is negligible
convective confinement and convection cells of order-one aspect ratio penetrate the
full depth of the mushy layer, resulting in a wavelength comparable to ĥ and scaled
wavenumber k̃∗ = k̂ĥ ∼ constant. Equation (4.1b) recovers the scalings for each of these
asymptotic limits.

The corresponding limits of (4.1a) can be reconciled by hypothesising that a local
Rayleigh number evaluated over the depth of the convecting region Rl ≡ g�ρllΠ/κμ
is approximately constant, where �ρl is the density difference driving convection. For
C � 1 convection penetrates the full mush depth with l ∼ ĥ, whilst the density difference
�ρl ∼ ρ0(α + β/Γ )�T depends on the imposed temperature drop across the mushy layer.
Thus constant Rl implies that the scaled Rayleigh number R̃∗

m ∼ constant for C � 1,
consistent with the scaling of the corresponding limit of (4.1a). Meanwhile, for C � 1,
convective confinement restricts the active depth to l ∝ ĥC, where the porosity is of order
one and the permeability is of similar magnitude. To a first approximation, the temperature
varies linearly with depth and hence the density difference over the length scale l is a
fraction l/ĥ of the total across the mush, yielding �ρl ∼ ρ0(α + β/Γ )�TC. Combining
these scales with a constant Rl implies the scaled Rayleigh number R̃∗

m ∝ C−2 for C � 1,
which is also consistent with the corresponding limit of (4.1a). Overall, the system is
stabilised to convective disturbances with decreasing C because there is less potential
energy available across the narrower high-porosity and high permeability region where
convection can efficiently operate.

The results from this section can also be used to predict convective onset in terms of the
convective length scale d̂m of the mushy layer. Combining (3.7a,b) and (4.1a,b), we find
that convection with dimensional wavenumber k̂c starts when the mushy-layer thickness
reaches the critical value

ĥ ≈ d̂m

(
39 + 19

C2 ,

)
, k̂c ≈ 2.4 + 0.34/C

d̂m(39 + 19/C2)
. (4.2a,b)

4.2. Effect of the Stefan number
We now consider the effect of varying the Stefan number St on the stability of the mushy
layer. The Stefan number characterises the amount of latent heat in the system, relative
to the amount of specific heat. As with C, St does not explicitly appear in the reduced
eigenvalue problem (3.4) and (3.5) when solving for R̃∗

m with σ = 0, but will affect both
θB and χB.

In the high-liquid-fraction regime with C � 1 increasing the Stefan number results in a
small, but noticeable, increase in the scaled Rayleigh number. This is shown in figure 7(a)
for C = 125 where R̃∗

m increases by 2 % as St increases from approximately 0.01 to 100.
With such a large concentration ratio, the porosity is greater than 0.99 throughout the
depth of the mushy layer regardless of Stefan number, but there are some modest changes
to the base-state temperature profile for large Stefan numbers, as shown by the curvature
of temperature contours in figure 7(b). As the Stefan number increases, more latent heat
is released when solidification occurs and the effective heat capacity of the mushy layer
is increased (cf. the simplified model in Part 1 with dimensionless effective heat capacity
Ω = 1 + St/C). Fluid closer to the cooling boundary experiences a larger temperature
change, more solidification and a greater release of latent heat than fluid further from
the boundary. This results in slower thermal transport through the surface layer and
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Figure 7. (a) The scaled critical Rayleigh number against Stefan number for C = 125 and θ∞ = 1.25. Stefan
numbers greater than one cause a small increase in the value of R̃∗

m. (b) The corresponding base-state
temperature profiles against Stefan number. The depth axis has been scaled by the mushy-layer depth to
highlight changes in the vertical structure. For large Stefan numbers, the temperature contours curve slightly
upwards.

less cooling further from the boundary, because the thermal energy cannot be removed
as efficiently. The temperature profile therefore becomes less linear, with the gradient
sharpening closer to the upper surface and flattening closer to the mush–liquid interface,
as indicated by the upwards curve of temperature contours in figure 7(b) as they slightly
compress near the upper boundary. Thermal forcing is proportional to the temperature
gradient and hence is concentrated closer to the impermeable boundary at the upper
surface, which is more restrictive on convective perturbations than the constant-pressure
boundary at the interface (see discussion of boundary condition effects on convective
stability in Hitchen & Wells (2016) for non-reactive porous media). This increases the
boundary resistance experienced by the flow, and increases the scaled Rayleigh number.

By contrast, in the Stefan regime with C � 1 and low porosity over much of the depth,
there is a decrease in scaled Rayleigh number by approximately one third as St increases
from approximately 0.01 to 100, and the amount of latent heat in the system increases
(figure 8a). Similarly to the high-liquid-fraction regime, the largest temperature gradients
shift slightly upwards (not shown here), but this effect on the scaled Rayleigh number is
relatively small compared with the changes that arise from the base-state liquid-fraction
profile. Figure 8(b) shows a clear thickening of the high-porosity interfacial region as the
Stefan number increases, which results from the warming of the mushy layer at depth
following greater latent heat release. This decreases the scaled Rayleigh number because
there is less resistance to flow over a greater range of depths at the base of the mushy layer.

However, the increased Stefan number also results in more localisation of the flow to
within this enlarged high-porosity region. This can be seen in the streamfunction contours
shown in figure 8(b), which reveal an interesting balance. There is a tradeoff between any
increase in the vertical extent of a convection cell providing access to a larger temperature
difference and more potential energy, but also increasing the resistance to flow from the
lower porosity above. The trends of the streamfunction contours indicate this results in a
distortion of convection cells with increasing St. At low St the convection cell expands
comparatively deeply into the more resistive layer of lower porosity, in order to access
sufficient potential energy to sustain convection. With increasing St, the high-porosity
region expands, allowing efficient access to more potential energy and the most intense
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Figure 8. (a) The scaled critical Rayleigh number against Stefan number for C = 0.125 and θ∞ = 1.25.
Increasing the Stefan number causes an appreciable decrease in the value of R̃∗

m. (b) The corresponding
base-state liquid-fraction profiles against Stefan number, with black contours of constant χ spaced by 0.1
for 0.2 ≤ χ ≤ 0.9. Red curves represent (from the top down) 10 %, 50 % and 90 % of the maximum
streamfunction. Note that the 10 % contour is also used in the definition of the confinement depth, cλ. The
depth axis has been scaled by the mushy-layer depth to highlight changes in the internal structure. A larger
Stefan number results in a larger high-porosity region close to the interface, with the streamfunction localising
by increasing in the high-porosity region and decreasing for higher porosities.

convection penetrates further from the mush–liquid interface (cf. 90 % streamfunction
contour in figure 8b). However, the overall thickness of the convecting region reduces
slightly (cf. 10 % streamfunction contour) because the flow can access sufficient potential
energy to maintain the flow without needing to propagate as far into the more resistive
region of lower porosity. The increased localisation with increased Stefan number also
manifests itself in figure 6 as a higher confinement liquid fraction and a lower confinement
depth when the Stefan number is increased from 0 to 12.6.

5. Effect of imperfect boundary conduction

With an imperfectly conducting boundary, the solution depends on a rescaled Biot number
B̃i = Bi

√
t from (3.6) which also acts as a proxy for time. For deep porous layers of

uniform porosity that are transiently cooled by an imperfectly conducting boundary,
Hitchen & Wells (2016) found three ways that the Biot number could affect the convective
stability: by changing the temperature range in the fluid, by changing the structure of
the thermal forcing and by changing the boundary resistance applied to the thermal
perturbation. For a mushy layer, the evolving Biot number will also affect the porosity
of the mushy layer, with an initially high porosity throughout the mush depth, before
porosities reduce as the Biot number B̃i = Bi

√
t grows (see Part 1). In this section,

we investigate how these four effects impact the convective stability of a mushy layer,
focussing on examples in both of the high-liquid-fraction and Stefan regimes.

For the high-liquid-fraction regime, we consider a system with C = 12.5, θ∞ = 1.25
and St = 125. Such a system initially freezes with a Biot number of B̃i = 0.21 ≡ B̃f and
adjusts to reach a self-similar state for B̃i � 100 at late times (see figure 6 in Part 1).
There are significant changes to the growth rate, surface temperature and structure of the

1002 A26-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

80
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.809


Convective instability during diffusive mushy-layer growth

Biot number, B̃i

10−1 100 101 102 103 104

Biot number, B̃i

10−1 100 101 102 103 104

Biot number, B̃i

10−1 100 101 102 103 104

C
ri

ti
ca

l 
R

ay
le

ig
h
 n

u
m

b
er

101

102

103

R̃∗
m (global)

R̃∗
m,l (local)

S
ca

le
d
 w

av
en

u
m

b
er

, 
k̃

∗
1.8

2.0

2.2

2.4

2.6

1
 −

 θ
(z̃

 =
 0

, 
B̃ i)

0

0.2

0.4

0.6

0.8

1.0

(b)(a) (c)

Figure 9. (a) Critical Rayleigh numbers, (b) critical wavenumbers and (c) temperature difference 1 − θ(z̃ =
0, B̃i) across the mushy layer against Biot number for C = 12.5, θ∞ = 1.25 and St = 125. These conditions
place the system well into the high-liquid-fraction regime, with χ > 0.92 for all B̃i. Two different definitions
for the Rayleigh number are used. In blue is the ‘global’ Rayleigh number, R̃∗

m defined in (3.7a) in terms of the
temperature difference from the mush–liquid interface to the temperature of the cooling heat sink and using
the mushy-layer depth as the length scale. The ‘local’ Rayleigh number, R̃∗

m,l, in green is defined in (5.1) using

the temperature difference 1 − θ(z̃ = 0, B̃i) across the mushy layer only. Shown in dashed grey are the first
solidification at B̃i = 0.21 and the approximate transition from the adjustment period to the self-similar period
at B̃i ∼ 100 identified in Part 1.

mushy layer as the effects of the cooling propagate through the system. Figure 9 shows
that the scaled ‘global’ Rayleigh number R̃∗

m, which is defined using the temperature range
between the mush–liquid interface and the cooling heat sink and is given by (3.7a), initially
decreases sharply with increasing B̃i (e.g. increasing time), before reaching a plateau as the
mush reaches the self-similar state at large time. The critical wavenumber increases with
the Biot number (and with time). With imperfect thermal conduction from the boundary,
the surface temperature evolves over time and the temperature difference across the mushy
layer grows as B̃i increases (figure 9c). To see the effects of this changing temperature
difference, and to isolate it from structural and perturbation boundary condition changes,
figure 9(a) also shows the evolution of a ‘local’ Rayleigh number

R̃∗
m,l = g(α + β/Γ )[TL∞ − T(ẑ = 0, t̂)]Π̂0ĥ

κν
, (5.1)

defined using the temperature difference TL∞ − T(ẑ = 0, t̂) across the mushy layer only,
rather than the temperature difference�T = TL∞ − Tc between the mush–liquid interface
and cooling heat sink. Here, hatted variables are dimensional. In contrast to the global
Rayleigh number R̃∗

m (blue curve), the local Rayleigh number R̃∗
m,l (green curve) shows

a modest increase with B̃i and remains of similar order with 18.4 ≤ R̃∗
m,l ≤ 33.8 for

B̃f ≤ B̃i < ∞. This indicates that the changing thermal range is the most significant effect
of varying Biot number which increases over time. The global and local Rayleigh numbers
converge for large B̃i or late times, as the boundary approaches the temperature of the heat
sink.

It is interesting to consider how the other three factors affect the local Rayleigh number.
The liquid fraction is uniformly one at first freezing and then decreases over time as the
surface temperature adjusts and the surface solidifies (see figure 6 in Part 1). Decreased
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porosity at the surface decreases the permeability and increases the resistance to flow,
providing a tendency for the critical Rayleigh number to increase. But these effects remain
small in the high-liquid-fraction regime (here, the minimum liquid fraction χ = 0.92).
Similarly, Hitchen & Wells (2016) showed that increasing the Biot number applied to
a thermal perturbation leads to an increase in the critical Rayleigh number for thermal
convection in a porous medium. This is because a larger Biot number increases the
resistance from the boundary to changes in temperature, as seen by a number of previous
studies such as Kubitschek & Weidman (2003) and Barletta, Tyvand & Nygård (2015).
Finally, the thermal gradients are more uniform when the ice initially forms but at later
times the temperature profile becomes more nonlinear with a sharper gradient near the
surface and a shallower gradient at depth. Figure 7 demonstrates that a more nonlinear
temperature profile tends towards an increased Rayleigh number, so changes to the thermal
structure will also result in an increased Rayleigh number as the Biot number increases.
Thus changes to the liquid-fraction structure, perturbation boundary condition and thermal
structure all act to the increase the local Rayleigh number as the Biot number increases,
as indicated by the green curve in figure 9(a). However, these changes are not significant
enough to overcome the reduction in the global Rayleigh number caused by increased
thermal forcing, as shown by the blue curve in figure 9(a).

We next consider the Stefan regime, which has C � 1 and relatively low liquid fractions
throughout much of the mush. Figure 10 shows the effects of imperfect conduction on
convective stability in this regime. Initially the porosity is high throughout the layer
(figure 10c) but a large low-porosity region begins to form for B̃i � 2 and eventually
occupies roughly 90 % of the mushy layer (see figure 9 of Part 1 for the full time evolution).
In this instance, the porosity has a significant impact on stability due to convective
confinement. While in figure 9(a) the local Rayleigh number R̃∗

m,l roughly doubled
between first growth at small B̃i and the self-similar limit for large B̃i, in figure 10(a)
it increases over three orders of magnitude. To provide further insight we also calculate a
global critical Rayleigh number using the full temperature range but applying a uniform
porosity χ = 1 in the stability calculation, shown in orange in figure 10(a), which is
initially close to the scaled Rayleigh number R̃∗

m, but rapidly drops two and a half orders
of magnitude. The critical wavenumber increases by an order of magnitude in figure 10(b)
for calculations with variable porosity (blue curve), indicating a dramatic narrowing of the
convective cells relative to the mushy-layer depth, but hardly changes for calculations with
uniform porosity. By noting the preference for square aspect ratios in convective patterns,
this is further evidence of the convective confinement becoming more significant as the
Biot number increases.

The above calculations suggest that the critical Rayleigh number R̃∗
m (blue curve in

figure 10a) is being set by two competing effects. To illustrate this we highlight the
convective profiles for three different Biot numbers in figure 11, which show the patterns
before, during and after the minimum of the global Rayleigh number. As the Biot number
increases over time, the increasing temperature difference across the mushy layer increases
the thermal forcing and therefore increases the amount of potential energy available to
drive convection. This acts to decrease the global critical Rayleigh number for onset of
instability, and leads to the sharp initial decline seen for low values of B̃i in figure 10(a)
for the Stefan regime and also in figure 9(a) for the high-liquid-fraction regime. This
regime is illustrated in figure 11(a) for B̃i = 1.0 where there is very little energy available
as θ(0) > 0.99, but there is also little resistance to flow with a minimum permeability
of Π = 0.52 and the convective cells occupy the whole domain to maximise the use of
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Figure 10. (a) Critical Rayleigh numbers and (b) critical wavenumbers against Biot number for C = 0.017,
θ∞ = 1.7 and St = 500 in the Stefan regime, with a large region of low porosity forming at late times. Two
different definitions for the Rayleigh number are used. In blue is the ‘global’ Rayleigh number defined in (3.7a)
in terms of the temperature difference from the mush–liquid interface to the cooling heat sink while the ‘local’
Rayleigh number in green is defined in (5.1) in terms of the temperature difference across the mushy layer only.
The global critical Rayleigh number and wavenumber are also calculated with a uniform porosity, and shown in
orange for comparison. Shown in dashed grey are the first solidification at B̃i = 0.53 and approximate transition
from the adjustment period to the self-similar period at B̃i ∼ 1000. Due to low-level noise in the interface
position being amplified by the stability calculations, λwas smoothed with a running average in B̃i before being
used in the stability analysis. The red-dashed curve shows an empirical fit R̃∗

m = 4000 + 1800[ln(B̃i/2.9)]2

around the minimum global R̃∗
m, with numerical prefactors determined using a least-squares method. (c) The

depth variation of porosity χ evolves over time as B̃i changes, where depth z̃/λ has been scaled by the mush
thickness.

the little energy available. However, as the Biot number increases over time, the impact
of the increasing temperature difference is later overcome as increased solidification
reduces the permeability and increases the resistance to flow. Hence the growth of the
low-porosity region significantly affects the vertical extent of the convection. We see
this in figure 11(c) with B̃i = 10.0 where the surface temperature has now dropped to
θ(0) = 0.84, but roughly 70 % of the domain has a permeability Π < 0.1. The reduced
permeability prohibits utilisation of the potential energy in that region to drive convection,
and hence convection is localised into the high-porosity interface region. A balance forms
between these two effects which results in a minimum in the scaled Rayleigh number
R̃∗

m at B̃i ≈ 2.81, with corresponding surface values χ(0) = 0.42 and θ(0) = 0.97, with
the background structure and perturbations illustrated in figure 11(b). The temperature
difference across the mushy layer only represents 3 % of the potential total temperature
difference, TL∞ − Tc, at this point but the surface permeability has now dropped to
Π(0) = 0.07. This is starting to provide appreciable resistance to flow at the surface,
and comparing with (a) we can see that the convection has shifted slightly downwards.
However, the convection is still reaching the majority of the domain and so able to use
almost all of the potential energy available, thus creating the optimum conditions for
convection and resulting in the lowest critical Rayleigh number.

6. Application to sea-ice growth

We apply the results to a case study of sea-ice growth in Arctic conditions and consider
conditions relevant to the field experiment in Notz & Worster (2008), for initial ice growth
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Figure 11. Background profiles of liquid fraction, permeability and temperature (left column) and convective
perturbations (right column) illustrating three different regimes from figure 10 for (a) B̃i = 1.0 (descending
branch), before the minimum Rayleigh number, (b) B̃i = 2.9, approximately aligned with the minimum
Rayleigh number, (c) B̃i = 10.0 (ascending branch), after the minimum Rayleigh number but before the
long-time behaviour. The other parameter values C = 0.017, θ∞ = 1.7 and St = 500 are the same as figure 10.
In the right column, the colour scale shows the thermal perturbation θp and streamfunction contours are shown
at 0.02, 0.05, 0.1 and 0.2, with black contours representing clockwise circulation and grey contours representing
anti-clockwise circulation.

in a hole cut into land-fast sea ice in Svalbard. Sea water with salinity Ŝ∞ = 35 g kg−1 was
cooled from T∞ = −1 ◦C with atmospheric temperature Tc = −30 ◦C in the boundary
layer, which gives the dimensionless parameters C = 0.11, θ∞ = 1.1 and St = 6.2, using
L/cp = 168 ◦C appropriate to ice properties, Ŝs = 0 and Γ = 0.085 K (g kg−1)−1. We also
use a permeability reference Π̂0 = 2 × 10−8 m2 (Freitag 1999), g = 9.81 m s−2, α = 4 ×
10−5 K−1, β = 8 × 10−4 (g kg−1)−1, κ = 1.2 × 10−6 m2 s−1, ν = 1.8 × 10−6 m2 s−1

and k = 2.2 W m−1 K−1 (see chapter 1 of Hitchen (2017) for discussion of these
estimates).

Figure 12(a) plots the critical depth for onset of convection in this set-up against Biot
number, found by rearranging (3.7a) to give ĥc. While this set-up is in the transitional
regime rather than the pure Stefan regime, we still observe the non-monotonic behaviour
in the scaled Rayleigh number and critical depth. In this instance the minimum scaled
Rayleigh number is 550, corresponding to a critical depth of 2.4 cm. This occurs when
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Figure 12. Convective stability characteristics for mush growth in sea water of salinity 35 g kg−1 cooled from
−1 ◦C to −30 ◦C, with all other properties described in the text. (a) The critical depth ĥc (black curve) and
time-evolving ice depth ĥ (coloured curves) against self-similar Biot number B̃i = 𝔥

√
κ t̂/k for four different

surface wind speeds, using 𝔥 = ρacpaCsuw for cooling by parameterised turbulent atmospheric heat fluxes.
Shown on the alternate vertical scale are the scaled Rayleigh numbers corresponding to these ice depths from
(3.7a). The ice depth monotonically increases with Biot number, and hence time, but the critical depth exhibits
the non-monotonic variation first observed in figure 10 for the Stefan regime which arises from the formation
of a low-porosity region and subsequent convective confinement. (b) The onset time and (c) onset depth (blue)
and half-wavelength (red) against wind speed. Faster wind speeds result in convective onset occurring sooner,
at shorter wavelengths and with thinner ice for uw < 8.6 m s−1, but thereafter ice thickness increases slightly
with wind speed.

B̃i = 0.81 and just after half of the surface layer has solidified, χ(0, t) = 0.43, with a
dimensionless surface temperature of 0.86, which corresponds to −6.9 ◦C. The scaled
Rayleigh number then rises to a long-time limit of 1165, which is equivalent to a depth of
5.1 cm for onset of convection at large B̃i or long times.
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The time-evolving ice-thickness trajectories depend on B̃i and hence the efficiency
of cooling. We consider a case where the dominant heat losses are due to turbulent
sensible heat fluxes parameterised in terms of a 10-metre wind speed uw by k∂T/∂ ẑ =
ρacpaCsuw(T − Tc) at ẑ = 0, where the air density ρa = 1.3 kg m−3, air heat capacity
cpa = 103 J kg−1 K−1 and heat transfer coefficient Cs = 2.5 × 10−3. Increasing the wind
speed enhances the efficiency of heat transfer and increases B̃i. Figure 12(a) shows the
resulting time-evolving trajectories of ice depth for four different surface wind speeds of
similar magnitude to those observed by Notz & Worster (2008). For uw ≤ 8.6 m s−1,
increasing the wind speed decreases the depth at which the mushy layer becomes
convectively unstable. This can be seen by the critical depth and the physical growth
trajectories intercepting at a smaller thickness. A wind speed of 8.6 m s−1 represents the
‘optimal’ rate of cooling, where the mushy layer becomes linearly unstable with the least
possible ice growth. Increasing the wind speed further delays the convective onset until
the ice has reached a greater depth.

Calculating the Biot number at which ĥ intercepts the stability curve ĥc allows one to
infer the onset time, t̂i, and the wavelength of convection 2πĥc/k∗

c . These are shown in
figure 12(b,c) for a range of realistic wind speeds. Whilst an increase in the wind speed
increases the value of B̃i needed for convective onset, the actual onset time decreases as the
wind speed increases. This occurs because higher wind speeds allow faster heat transfer
from the surface, which enhances the cooling of the mushy layer. As a result, the mushy
layer grows faster and reaches the critical depth sooner. The critical depth is also lowered
by the increasing wind speed for uw < 8.6 m s−1. Increasing the wind speed also decreases
the wavelength of convective patterns which form, with similar order of magnitude to the
decreasing critical depth.

The observations of Notz & Worster (2008) show a noticeable decrease in the bulk
salinity at the first measurement point, indicating that convection has started sometime
during the first six hours of ice growth for an ice depth ĥ ≤ 4 cm. Using figure 12 and an
average observed wind speed of 2 m s−1 yields convective onset 170 min after the start of
the experiment with a 3.1 cm thick mush which lie within the observational bounds. The
corresponding linearly unstable wavelength is 9.5 cm.

Finally, we recall that in § 2 we assumed that the ratio Da1/2/h is small vs the minimum
of 1 or C, in order to approximately apply the flow boundary conditions at the mush–liquid
interface rather than displaced appreciably into the high-porosity mush near the interface.
Using Π̂0 = 2 × 10−8 m2 and the critical ice thickness for convection of 0.03 m in this
case study yields Da1/2/h ≈ 5 × 10−3 which is smaller than C ≈ 0.1 and justifies the
assumption made previously.

7. Summary and conclusions

This study has used a linear stability analysis to consider the impact of temperature
and liquid fraction profiles on the onset of convection in a transiently growing mushy
layer, from either a perfectly cooled isothermal boundary or an imperfectly cooled
boundary. We focussed on convective modes driven within the mushy layer, with the
neighbouring liquid treated as maintaining an isothermal, constant-pressure boundary
at the mush–liquid interface. We determined the scaled Rayleigh number R̃∗

m =
g(α + β/Γ )(TL∞ − Tc)Π̂0ĥ(t̂)/κν for linear instability, corresponding critical depth ĥc
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and scaled wavenumber k̃∗ = k̂ĥ(t̂), as a function of the salinity and cooling conditions
described by dimensionless parameters C, θ∞, St and B̃i.

In Part 1 we identified that the internal mush structure shows different limiting behaviour
depending on the concentration ratio C = (Ŝ∞ − Ŝs)/(Ŝc − Ŝ∞) = Γ (Ŝ∞ − Ŝs)/(TL∞ −
Tc), here determined by the freezing-point depression vs the maximal temperature
difference across the mush. We here find a corresponding impact on convective stability
for cooling by an isothermal perfectly conducting boundary. The scaled critical Rayleigh
number approximately satisfies R̃∗

m ≈ 39 + 24/C2 and the scaled critical wavenumber
k̃∗ ≈ 2.4 + 0.34/C, with comparatively weaker dependence on the Stefan number St
which measures the ratio of latent to specific heat. A qualitatively similar pattern of
increase had been observed previously by Hwang (2013), but the scaling had not been
characterised quantitatively. The behaviour can be reconciled with a constant local
Rayleigh number evaluated across the depth of the high-porosity region, and wavelength
proportional to this depth. When C � 1, the freezing-point depression is much larger than
the range of temperatures in the system. The liquid fraction is close to one throughout
and convection can penetrate the full depth of the mushy layer, with a local Rayleigh
number based on the temperature difference across the mush yielding R̃∗

m ≈ constant.
However, the system is comparatively fresh and a large low-porosity region forms for the
Stefan regime with C � 1, which severely increases the resistance to flow. Convection is
instead confined to the high-porosity interfacial region, which has a fractional thickness
proportional to C and where the temperature changes by a fraction C of the total
temperature difference between the boundary and mush–liquid interface. A constant local
Rayleigh number across this regions yields a scaling C2R̃∗

m ≈ constant for C � 1. This
confinement also explains the increase in wavenumber k̃∗ for small C, since convection has
a preference for square aspect ratios cells so that the wavelength 2π/k̃∗ ∝ λC for C � 1.
The vertical extent of the flow is being reduced, so the convective cells narrow.

The effect of the Stefan number on convective instability depends on the concentration
ratio. For C � 1 the mushy layer has a high liquid fraction throughout its depth and there is
a modest increase in the critical Rayleigh number as St increases. This is consistent with
an interaction of the convective perturbation with resistance to flow from its boundary
condition; increasing the Stefan number focusses the thermal forcing nearer to the
restrictive no-normal-flow surface condition and away from the liberal constant-pressure
interface condition. In contrast, there is a decrease in the critical Rayleigh number with
increasing St in the Stefan regime when C � 1. The largest effect comes from the impact
of St on the liquid-fraction profiles, because increasing the Stefan number increases
the size of the high-porosity region close to the interface. This promotes convection by
reducing the resistance to flow. This effect is much larger than that caused by the changing
temperature profiles.

For growth with an imperfectly conducting boundary, the dominant impact on the
convective instability is due to the impact of imperfect cooling on the temperature
difference across the mushy layer and the porosity structure. Changes to the internal
temperature structure or arising from the imperfectly conducting boundary modifying the
perturbation of surface temperature are both less significant. Increasing the temperature
difference across the mushy layer directly increases the amount of potential energy
available to drive convection and leads to a corresponding decrease in the critical
R̃∗

m. In the high-liquid-fraction regime, the change in liquid fraction as B̃i is varied
is comparatively small, and the temperature difference between the surface layer and
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the interface is the main driver of change to R̃∗
m. However, in the Stefan regime the

imperfectly conducting boundary leads to significant evolution of the liquid fraction. There
is initially high porosity throughout the mushy layer, but at later times low-porosity regions
develop which greatly increase the resistance to flow. This acts in competition with the
total amount of available potential energy increasing over time, due to both increasing
mushy-layer thickness and increasing temperature difference across the mushy layer as the
surface temperature adjusts. As a result of this competition, R̃∗

m shows non-monotonic
behaviour as B̃i increases with C � 1. Initially R̃∗

m decays, indicating reduced stability
as potential energy accumulates in the initial high-porosity layer. But eventually R̃∗

m
increases, with enhanced stability as a low-porosity zone develops and increases the
resistance to flow. This is in contrast to the monotonic variation of R̃∗

m with B̃i when C � 1
and internal solidification and the corresponding permeability changes are relatively weak.
The non-monotonic behaviour of R̃∗

m (and hence ĥc) combined with the steady growth of
the physical ice depth, ĥ(t̂) raises the possibility that certain conditions could exhibit a
convective shutdown and restart. This could occur if the critical depth increases faster
than the physical ice depth after an initial onset, but further investigation is needed to
determine if this is possible.

For sea-ice growth driven by cooling from parameterised turbulent atmospheric
heat transfer we find that the convective onset time, ice thickness and wavelength all
initially decrease as the wind speed and efficiency of turbulent cooling increases. The
ice thickness at the onset of convection then increases above a critical wind speed.
Onset times are several hours, with ice depths of 2–8 cm for winter sea-ice growth in
Arctic conditions with an atmospheric temperature of −30 ◦C. However, there will be
quantitative uncertainties propagating through these estimates because there are challenges
in accurately determining the sea-ice permeability for highly porous regions of ice (see
discussion in Wells et al. 2019). Such uncertainty in the permeability may also impact
whether there may be non-trivial coupling between flow in pure liquid and porous regions
in a transition zone near the mush–liquid interface (Le Bars & Worster 2006).

The impact of porosity localisation on convective onset may have implications in several
fields. Convection is a primary mechanism for the desalination of sea ice, controlling
salt fluxes to the ocean, the material properties of the evolving ice and nutrient transport
for biogeochemical processes (Notz & Worster 2008; Wells, Wettlaufer & Orszag 2011;
Vancoppenolle et al. 2013). Several parameterisations activate convection in regions where
a local depth-dependent Rayleigh number g�ρ(z)(ĥ − ẑ)Π̄(z)/κμ exceeds a critical value,
for an appropriately averaged permeability Π̄(z) (Worster & Rees Jones 2015). Our linear
stability bounds for C � 1 lend support to this approach, as they suggest convective
localisation and a stability bound based off the properties across high-porosity regions
where the permeability Π̄(z) is relatively large. Meanwhile in metallurgy, the onset of
convection can lead to the formation of freckle defects from the generation of chimney
features via the nonlinear development of convection and impact on porosity (Anderson &
Guba 2020). Our results suggest that material grown with C � 1 may restrict the onset
of convection to a comparatively narrow depth range near the mush–liquid interface,
although a fully nonlinear analysis is required to infer the quantitative consequences for
development of chimneys and freckles.

The present analysis neglected certain effects which will be important in some settings.
We focussed on mushy-layer-mode convection, neglecting flow generated by buoyancy
forcing in the liquid regions. We have thus neglected the short wavelength boundary-layer
mode of convection which can be significant in certain parameter regimes (Worster 1992).
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It would also be interesting to examine the interaction of shear-driven flows and turbulent
ocean mixing with the evolving convective confinement considered here. Perhaps most
significantly, we have focussed on a linear analysis to provide physical insight into
the localisation of convective flow, but have neglected nonlinear effects. These include
nonlinear interactions with deformation of the mush–liquid interface, nonlinear advective
feedbacks on convective flow and nonlinear evolution of the porosity leading to the
formation of chimneys. Many studies of the nonlinear dynamics of chimney convection
have focussed on the parameter regime C � 1 (see Anderson & Guba 2020), but it would
also be interesting to examine the impact of the convective localisation discussed here on
nonlinear convection in mushy layers in the Stefan regime with C � 1.
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