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107.06 Proving inequalities via definite integration: a visual
approach

Fascination with inequalities has encouraged numerous visual proofs. It
is quite interesting to see and feel the beauty. There are several techniques to
do these proofs logically. Definite integration of one variable is seemed to
be a greater tool in this case. Geometrically, definite integration means area
under a given curve. So, basically it will assign a number. If we use different
curves in the same region then it will give us different numerical
expressions and we can compare between them. We can use this tool in such
a way that it will give us the required expression for an inequality. Also, it
will give us a clear visual representation in order to prove our claims. In this
Note, we provide another area argument on the general inequality (see [1])

e ≤ A < B ⇒ AB > BA

and also two visual proofs of two different inequalities using area under the
curves.

Inequality 1
The constants  and  have encouraged numerous visual proofs of the

inequality  (see [2]). In [3], Gallant provided the most general proof
for which this inequality is a consequence, showing that when ,
we have ; he used slopes of secant lines connecting the origin to
points on the curve . We provide an alternate visual proof for this
general inequality.

e π
πe < eπ

e ≤ A < B
AB > BA

y = ln (x)
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Claim: .e ≤ A < B ⇒ AB > BA

Proof

y = ln (A)

y =
1
x

1 B
A

FIGURE 1

If , thene ≤ A < B

∫
B
A

1
ln (A) dx > ∫

B
A

1

1
x

 dx ⇒ ln (A) (B
A

− 1) > ln
B
A

⇒
B
A

>
ln (B)
ln (A)

⇒ AB > BA.

Corollary: .e < π ⇒ eπ > πe

Inequality 2
This visual proof is of the famous Jordan's inequality, named after

Camille Jordan, which states that  for . The first

Proof without words of this inequality was given by Yuefeng [4], using the
geometry of circles. The second visual proof was given by Nelsen [5] by
putting a concave curve between two straight lines. We give another visual
proof of this inequality using an area argument.

2
π

x < sin x x ∈ (0, 1
2π)
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Claim: .0 < α <
π
2

⇒ sin α >
2α
π

Proof

1

y = cos
π
2

x y = cos αx

FIGURE 2

If , then0 < α < 1
2π

∫
1

0
(cos αx − cos

πx
2 ) dx > 0 ⇒

sin α
α

−
2
π

> 0 ⇒ sin α >
2α
π

.

Corollary:  for .1 −
2
π

x < cos x x ∈ (0, 1
2π)

The proof is by substituting  for  into Jordan's inequality. The
inequality is called Kober's inequality.

1
2π − x x

Inequality 3
Though there are slight differences, the third inequality is quite similar

to Napier's inequality, which states that,

0 < a < b ⇒
1
b

<
ln b − ln a

b − a
<

1
a

.

The following is an alternative visual proof of a conclusion drawn by
Plaza [6, 7].
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Claim: 0 < a < b ⇒
2

b + a
<

ln b − ln a
b − a

<
1
2 (1

a
+

1
b) .

Proof

y =
1
x

1
a

�

�

�1
b

a ba + b
2

2
a + b

FIGURE 3

Using the formula for the area of a trapezium, region  of the diagram shows�

∫
b

a

1
x

 dx <
1
2

(b − a) (1
a

+
1
b) .

Also, comparing the areas of regions  and � �

∫
1
2(a+ b)

a

1
x

 dx −
2

a + b
⎡⎢⎣
a + b

2
− a⎤⎥⎦ >

2
a + b

⎡⎢⎣b −
a + b

2
⎤⎥⎦ − ∫

b

1
2(a+ b)

1
x

 dx

⇒ ∫
b

a

1
x

 dx > 2
b − a
b + a

.

Clearly, from the above inequalities we get

2
b − a
b + a

< ∫
 b

a

1
x

 dx <
b − a

2 (1
a

+
1
b) ,

2
b + a

<
ln b − ln a

b − a
<

1
2 (1

a
+

1
b) ,

[A (a, b)]−1 < [L (a, b)]−1 < [H (a, b)]−1

where, ; ;

are, respectively, the arithmetic mean, logarithmic mean and harmonic mean
of two positive different numbers.

A (a, b) = 1
2 (a + b) L (a, b) =

b − a
ln b − ln a

H (a, b) =
2

1
a + 1

b
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107.07 A geometric illustration for infinite sequences and series

We can use a positive vanishing sequence to construct a sequence of
squares. This so-called square set can then be used to visualise sums
involving the sequence. As a first example, we use the sequence
to construct the arrangement of squares seen in Figure 1, which we call the
square set for . We define  to be the length of this set,  to be the height to
which the squares converge, and  to be the total area of the set.
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FIGURE 1: The square set for 
1
2n
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