N Proceedings of the Nutrition Society

Summer Meeting, 11–14 July 2016, New technology in nutrition research and practice

Chronic consumption of conventional and saturated-fat reduced dairy products have differential effects on low-density lipoprotein cholesterol levels in adults at moderate cardiovascular disease risk

D. Vasilopoulou^{1,2}, O. Markey^{1,2}, C.C. Fagan¹, K.E. Kliem², D.J. Humphries², K.G. Jackson¹, S. Todd³, D.I. Givens² and J.A. Lovegrove¹

¹Hugh Sinclair Unit of Human Nutrition and Institute of Cardiovascular and Metabolic Research, Department of Food and Nutritional Sciences, ²Food Production and Quality Division, School of Agriculture, Policy and Development and ³Department of Mathematics and Statistics, University of Reading, Reading, RG6 6AP, UK

Reducing the intake of dietary saturated fatty acids (SFA) to $\leq 10 \%$ of total energy intake is a key public health strategy aimed at lowering current cardiovascular disease (CVD) incidence. Consumption of dairy products (including butter) represents approximately 35 % of total dietary SFA intake⁽¹⁾. Supplementation of the bovine diet with oleic acid-rich plant oil has been reported to depress SFA and increase *cis*-monounsaturated fatty acids levels in milk, providing a strategy to lower total dietary SFA intake ⁽²⁾. This human intervention study aimed to investigate whether consumption of SFA-reduced, compared with conventional dairy products, would impact on the fasting lipid profile, glucose and insulin concentrations of adults at moderate CVD risk.

Fifty-four adults (mean age 53 (SD 13) years, BMI 26 (SD 3) kg/m²), completed a double blind, randomised, controlled 12-week cross-over study with an 8-week washout period between treatment arms. Participants replaced habitual dairy foods/snacks with SFA-reduced or conventional UHT milk, Cheddar cheese and butter (fatty acid (FA) composition of SFA-reduced vs. conventional dairy products: total SFA: -7·0 g/d, C18:1cis: 3·0 g/d, C18:1trans: 2·4 g/d), achieving an isoenergetic daily dietary exchange (41 g/d total fat). At the beginning and end of each treatment period, fasting blood samples were collected for biochemical analysis. LDL-C was estimated using the Friedewald formula. The homeostatic model assessment of insulin resistance (HOMA-IR) was calculated using the glucose and insulin data.

	Diet A				Diet B				
Fasting parameters	Baseline		Δ		Baseline		Δ		
	Mean	SE	Mean	SE	Mean	SE	Mean	SE	P
Total Cholesterol (mmol/L)	5.54	0.13	0.12	0.07	5.47	0.12	0.29	0.06	0.08
LDL-C (mmol/L)	3.47	0.11	0.03	0.06	3.43	0.1	0.19	0.05	0.03
HDL-C (mmol/L)	1.51	0.04	0.04	0.02	1.5	0.04	0.07	0.02	0.55
Triacylglycerol (mmol/L)	1.24	0.07	-0.48	0.16	1.18	0.06	-0.74	0.14	0.32
Glucose (mmol/L)	5.38	0.1	-0.06	0.07	5.4	0.1	0.04	0.09	0.34
Insulin (pmol/L)	41.3	3.2	-1.9	1.9	39.8	3.5	7.5	4.5	0.09
HOMA-IR	1.66	0.13	-0.11	0.08	1.59	0.14	0.04	0.12	0.08

Values are mean ± SE. Due to ongoing blinding, treatments are referred to as Diet A and B. HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; Δ, change from baseline (wk12-wk0).

Preliminary results using mixed model analyses indicate that from baseline, only LDL-C concentrations were influenced by the FA composition of the dairy products, with the observed increase in LDL-C concentrations with Diet B shown to be significantly attenuated following Diet A. These preliminary findings are part of the RESET intervention trial (NCT02089035), which will also investigate the impact of consumption of SFA-reduced dairy products on inflammatory markers and vascular function.

This research was supported by the MRC (MR/K020218/1), ARLA Foods and AarhusKarlshamn (AAK) UK.

- 1. Dept. of Health (2014) NDNS: Headline results from Y1-4 (combined) of the rolling programme 2008/9-2011/12.
- 2. Kliem KE et al. (2013) J Dairy Sci 96 (5), 3211–3221.