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Abstract

Let [a1(x), a2(x), . . . , an(x), . . .] be the continued fraction expansion of x ∈ [0, 1) and qn(x) be the
denominator of its nth convergent. The irrationality exponent and Khintchine exponent of x are respectively
defined by

v(x) = 2 + lim sup
n→∞

log an+1(x)
log qn(x)

and γ(x) = lim
n→∞

1
n

n∑
i=1

log ai(x).

We study the multifractal spectrum of the irrationality exponent and the Khintchine exponent for continued
fractions with nondecreasing partial quotients. For any v > 2, we completely determine the Hausdorff
dimensions of the sets {x ∈ [0, 1) : a1(x) ≤ a2(x) ≤ · · · , v(x) = v} and

{
x ∈ [0, 1) : a1(x) ≤ a2(x) ≤ · · · , lim

n→∞

log a1(x) + log a2(x) + · · · + log an(x)
ψ(n)

= 1
}
,

where ψ : N→ R+ is a function satisfying ψ(n)→ ∞ as n→ ∞.

2020 Mathematics subject classification: primary 11K55; secondary 28A80.

Keywords and phrases: continued fractions, irrationality exponent, Khintchine exponent, Hausdorff
dimension.

1. Introduction

Diophantine approximation is a branch of number theory that can be described as a
quantitative analysis of the density of the rational numbers in the real numbers. The
first result is due to Dirichlet and is a simple consequence of the pigeonhole principle.

THEOREM 1.1 (Dirichlet, 1842). For any x ∈ [0, 1) and t > 1, there exists (q, p) ∈ N2

such that
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∣∣∣∣∣x − p
q

∣∣∣∣∣ < 1
qt

and 1 ≤ q ≤ t.

Denote

J(v) =
{
x ∈ [0, 1) :

∣∣∣∣∣x − p
q

∣∣∣∣∣ < 1
qv for infinitely many (q, p) ∈ N2

}
.

Dirichlet’s theorem implies that the set J(v) equals [0, 1) for any v ≤ 2. Khintchine
[16] proved that the set J(v) is of Lebesgue measure zero for any v > 2. Jarník [13] and
Besicovitch [1] independently showed that the Hausdorff dimension of these null sets
J(v) is 2/v. Since the map v→ J(v) is nonincreasing, it is natural to define

v(x) = sup{v ∈ R : x ∈ J(v)}. (1.1)

We call v(x) the irrationality exponent of an irrational number x ∈ [0, 1). The irra-
tionality exponent v(x) reflects how well an irrational number x can be approximated
by rational numbers: the higher the exponent, the better the approximation.

The theory of continued fractions is closely related to Diophantine approximation.
It is well known that continued fraction expansions can be induced by the Gauss map
T : [0, 1)→ [0, 1) defined by

T(0) := 0, T(x) := 1/x (mod 1) for x ∈ (0, 1).

Each irrational number x ∈ [0, 1) admits a unique continued fraction expansion

x =
1

a1(x) +
1

a2(x) +
1
. . .

= [a1(x), a2(x), . . . , an(x), . . .], (1.2)

where a1(x) = �1/x� and an(x) = a1(Tn−1(x)) (n ≥ 2) are called the partial quotients of
the continued fraction expansion of x. For each n ≥ 1, let the fraction

pn(x)
qn(x)

=
1

a1(x) +
1

a2(x) +
1

. . . +
1

an(x)

= [a1(x), a2(x), . . . , an(x)]

be the nth convergent of the continued fraction expansion of x. Via continued fractions,
the irrationality exponent defined in (1.1) can be represented by

v(x) = 2 + lim sup
n→∞

log an+1(x)
log qn(x)

. (1.3)

From the fundamental work of Khintchine [16] (see Bugeaud [3, Ch. 1]), v(x) = 2 for
Lebesgue almost all irrational numbers. The Khintchine exponent of x with continued
fraction expansion (1.2) is defined (if the limits exist) by
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γ(x) := lim
n→∞

1
n

n∑
i=1

log ai(x) = lim
n→∞

1
n

n∑
i=1

log a1(Ti−1(x)).

The Gauss map T is ergodic (see, for example, [11]) with respect to the Gauss measure
dx/((x + 1) log 2). By Birkhoff’s ergodic theorem, for Lebesgue almost all x ∈ [0, 1),

γ(x) =
∫ 1

0

log a1(x)
(x + 1) log 2

dx = log(2.6584 · · · ).

For more details about continued fractions, we refer to [11, 17].
Much attention has been paid to the multifractal analysis of the level sets of the

irrationality exponent and Khintchine exponent. For any v > 2, a result of Good
[10, Theorem 9] implies that the set Ev(x)≥v(v) = {x ∈ [0, 1) : v(x) ≥ v} is of Hausdorff
dimension 2/v. The main result of Bugeaud [2, Theorem 1] shows that the set
Ev(x)=v(v) = {x ∈ [0, 1) : v(x) = v} is also of Hausdorff dimension 2/v. Sun and Wu [22]
considered the set

E(v) =
{
x ∈ [0, 1) : 2 + lim

n→∞

log an+1(x)
log qn(x)

= v
}

and proved that E(v) has Hausdorff dimension 1/v. Replacing the lim sup by lim inf in
(1.3), one can define the corresponding irrationality exponent by

v(x) = 2 + lim inf
n→∞

log an+1(x)
log qn(x)

.

Tan and Zhou [23] calculated the Hausdorff dimension of the intersection of level sets
defined by v(x) and v(x), and also showed that the set Ev(x)≥v(v) = {x ∈ [0, 1) : v(x) ≥ v}
is of Hausdorff dimension 1/v for any v > 2. Based on these dimensional results for the
sets E(v) and Ev(x)≥v(v), it follows easily that the set Ev(x)=v(v) = {x ∈ [0, 1) : v(x) = v}
is of Hausdorff dimension 1/v for any v > 2. For the multifractal analysis of level sets
of the Khintchine exponent γ(x), Fan et al. [6, Theorem 1.2] presented a complete
characterisation for the Hausdorff dimension of the sets

Eγ(x)=ξ(ξ) = {x ∈ [0, 1) : γ(x) = ξ} (0 ≤ ξ ≤ ∞).

More precisely, they proved that the Hausdorff dimension of the set Eγ(x)=ξ(ξ), as a
function of ξ ∈ [0,∞), is neither concave nor convex, and that the set Eγ(x)=ξ(∞) is of
Hausdorff dimension 1/2. This shows that there exist uncountably many points with
infinite Khintchine exponent. Fan et al. [6, 7] gave a more refined classification for
the set Eγ(x)=ξ(∞) by considering the multifractal spectrum of the level sets of the fast
Khintchine exponent defined by

K(ψ) =
{
x ∈ [0, 1) : lim

n→∞

log a1(x) + log a2(x) + · · · + log an(x)
ψ(n)

= 1
}
,

where ψ : N→ R+ is a function satisfying ψ(n)/n→ ∞ as n→ ∞.
Various related exponents have been investigated. For example, Pollicott and Weiss

[19] studied the Lyapunov exponent of the Gauss map, Kesseböhmer and Stratmann
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[15] the Minkowski’s question mark function, Nicolay and Simons [18] the Hölder
exponent, Jaffard and Martin [12] the Brjuno function, Fang et al. [8] the convergence
exponent and Song et al. [21] the irrationality exponent and the convergence exponent.

Multifractal analysis of sets characterised by two (or more) different Diophantine
characteristics could potentially show that they are independent or, conversely, help to
detect profound links between these characteristics. This paper is mainly concerned
with the multifractal spectrum of the irrationality exponent and the Khintchine
exponent defined by a nondecreasing sequence of partial quotients. That is, we
investigate the Hausdorff dimension of the intersection of the sets Ev(x)=v(v), K(ψ) and
Λ, where

Λ = {x ∈ [0, 1) : an(x) ≤ an+1(x) for all n ≥ 1}.
By a result of Ramharter [20], the setΛ is of Hausdorff dimension 1/2 (see also Jordan
and Rams [14] for general results in the setting of infinite iterated function systems).

Throughout this paper, we use the notation dimH to denote the Hausdorff dimension
(see [5]). We are now in a position to state our main results.

THEOREM 1.2. For any v > 2,⎧⎪⎪⎨⎪⎪⎩
dimH(E(v) ∩ Λ) = dimH(Ev(x)=v(v) ∩ Λ) = dimH(Ev(x)≥v(v) ∩ Λ) = 1/v,
dimH(Ev(x)=v(v) ∩ Λ) = dimH(Ev(x)≥v(v) ∩ Λ) = 1/v.

We are also interested in the Hausdorff dimension of the intersection of Λ with the
sets Ev(x)≤v(v) = {x ∈ [0, 1) : v(x) ≤ v} and Ev(x)≤v(v) = {x ∈ [0, 1) : v(x) ≤ v}.
THEOREM 1.3. For any v > 2,

dimH(Ev(x)≤v(v) ∩ Λ) = dimH(Ev(x)≤v(v) ∩ Λ) = 1
2 .

Let ψ and ψ̃ be positive functions defined on N. We say ψ and ψ̃ are equivalent if
ψ(n)/ψ̃(n)→ 1 as n→ ∞. Fan et al. [7, Lemma 3.1] proved that K(ψ) � ∅ if and only if
ψ is equivalent to a nondecreasing function. This also applies to the subset K(ψ) ∩ Λ.
In the following we always assume that ψ is nondecreasing.

THEOREM 1.4. Let ψ : N→ R+ be a function satisfying ψ(n)→ ∞ as n→ ∞.

(i) If ψ(n)/(n log n)→ α (0 ≤ α < ∞) as n→ ∞, then

dimH(K(ψ) ∩ Λ) =

⎧⎪⎪⎨⎪⎪⎩
0, 0 ≤ α < 1,
(α − 1)/2α, 1 ≤ α < ∞.

(ii) If ψ(n)/(n log n)→ ∞ as n→ ∞ and the sequence {ψ(n) − ψ(n − 1)}n≥1 is nonde-
creasing, then

dimH(K(ψ) ∩ Λ) =
1

1 + lim sup
n→∞

ψ(n + 1)/ψ(n)
.

From the proof of Theorem 1.4, we can calculate the Hausdorff dimension of the
intersection of the level sets of the Khintchine exponent γ(x) and Λ.
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COROLLARY 1.5. For any 0 ≤ ξ ≤ ∞,

dimH(Eγ(x)=ξ(ξ) ∩ Λ) =

⎧⎪⎪⎨⎪⎪⎩
0, 0 ≤ ξ < ∞,
1/2, ξ = ∞.

The Lyapunov exponent of a dynamical system is a quantity that characterises the
rate of separation of infinitesimally close trajectories. In the dynamical system of
continued fractions, the Lyapunov exponent of orbits of the Gauss map T is defined
whenever the limits exist by

λ(x) := lim
n→∞

1
n

log |(Tn)′(x))| = lim
n→∞

1
n

n−1∑
j=0

log |T ′(Tj(x))|

(see Devaney [4]). The Hausdorff dimension of the level sets

Eλ(x)=ξ(ξ) = {x ∈ [0, 1) : λ(x) = ξ} (0 ≤ ξ ≤ ∞)

has been completely characterised in Fan et al. [6, Theorem 1.3]. Similarly, we can
define the so-called fast Lyapunov exponent of the Gauss map T by

λψ(x) := lim
n→∞

1
ψ(n)

log |(Tn)′(x))| = lim
n→∞

1
ψ(n)

n−1∑
j=0

log |T ′(Tj(x))|,

where ψ : N→ R+ is a function satisfying ψ(n)/n→ ∞ as n→ ∞. Let

L(ψ) = {x ∈ [0, 1) : λψ(x) = 1}.

From [6, Lemma 2.7],

λ(x) = lim
n→∞

2 log qn(x)
n

. (1.4)

The following result follows directly from the proof of Corollary 1.5.

COROLLARY 1.6. For any 0 ≤ ξ ≤ ∞,

dimH(Eλ(x)=ξ(ξ) ∩ Λ) =

⎧⎪⎪⎨⎪⎪⎩
0, 0 ≤ ξ < ∞,
1/2, ξ = ∞.

Under the condition ψ(n)/n→ ∞ as n→ ∞, we deduce from (1.4) and (2.2) (see
below) that K(ψ) = L(2ψ). Then from Theorem 1.4, the Hausdorff dimension of the
intersection of the sets L(ψ) and Λ is also determined.

COROLLARY 1.7. Let ψ : N→ R+ be a function satisfying ψ(n)/n→ ∞ as n→ ∞.

(i) If ψ(n)/(n log n)→ α (0 ≤ α < ∞) as n→ ∞, then

dimH(L(ψ) ∩ Λ) =

⎧⎪⎪⎨⎪⎪⎩
0, 0 ≤ α < 2,
(α − 2)/2α, 2 ≤ α < ∞.
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(ii) If ψ(n)/(n log n)→ ∞ as n→ ∞ and the sequence {ψ(n) − ψ(n − 1)}n≥1 is nonde-
creasing, then

dimH(L(ψ) ∩ Λ) =
1

1 + lim sup
n→∞

ψ(n + 1)/ψ(n)
.

We use N to denote the set of all positive integers, | · | denotes the length of a
subinterval of [0, 1), exp(x) the natural exponential function, �x� the largest integer
not exceeding x andH s the s-dimensional Hausdorff measure of a set.

The paper is organised as follows. In Section 2 we present some elementary prop-
erties and useful lemmas concerning the dimensional results in continued fractions.
Section 3 is devoted to the proofs of the main results.

2. Preliminaries

2.1. Elementary properties of continued fractions. For n≥ 1 and (a1, . . . , an) ∈Nn,
we call

In(a1, . . . , an) := {x ∈ [0, 1) : a1(x) = a1, . . . , an(x) = an}

a basic interval of order n for the continued fraction. All points in In(a1, . . . , an) have
the same pn(x) and qn(x). Thus, for x ∈ In(a1, . . . , an), we write

pn(a1, . . . , an) = pn = pn(x) and qn(a1, . . . , an) = qn = qn(x).

It is well known (see [17, page 4]) that pn and qn satisfy the recursive formula:⎧⎪⎪⎨⎪⎪⎩
p−1 = 1, p0 = 0, pn = an pn−1 + pn−2 (n ≥ 1);
q−1 = 0, q0 = 1, qn = anqn−1 + qn−2 (n ≥ 1).

(2.1)

By the second formula of (2.1),
n∏

k=1

ak ≤ qn ≤
n∏

k=1

(ak + 1) ≤ 2n
n∏

k=1

ak. (2.2)

PROPOSITION 2.1 [11, page 18]. For any (a1, a2, . . . , an) ∈ Nn, In(a1, a2, . . . , an) is the
interval with the endpoints

pn

qn
and

pn + pn−1

qn + qn−1
.

As a result, the length of In(a1, a2, . . . , an) is

|In(a1, a2, . . . , an)| = 1
qn(qn + qn−1)

.

Combining (2.2) and Proposition 2.1, we deduce that

2−2n−1
( n∏

k=1

ak

)−2
≤ |In(a1, a2, . . . , an)| ≤

( n∏
k=1

ak

)−2
. (2.3)
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2.2. Some useful lemmas. The first lemma below gives a lower bound of the
Hausdorff dimension of some sets of points whose partial quotients are nondecreasing.

LEMMA 2.2 [8, Lemma 3.4]. Let {sn}n≥1 be a sequence of positive integers tending to
infinity with sn ≥ 2 for any n ≥ 1. Set

F({sn}n≥1) = {x ∈ [0, 1) : nsn ≤ an(x) < (n + 1)sn for all n ≥ 1}.

Then

dimH F({sn}n≥1) =
1

2 + lim sup
n→∞

(2 log((n + 1)! ) + log sn+1)/log(s1s2 · · · sn)
.

Combining [8, Theorem 2.4] and [9, Lemma 3.1] immediately yields the Hausdorff
dimension of some lim inf level sets whose partial quotients are nondecreasing.

LEMMA 2.3. For any 0 ≤ α < ∞,

dimH

{
x ∈ Λ : lim inf

n→∞

log an(x)
log n

≤ α
}
=

⎧⎪⎪⎨⎪⎪⎩
0, 0 ≤ α < 1,
(α − 1)/2α, 1 ≤ α < ∞.

3. Proofs of main results

This section is devoted to the proofs of the main results. Our method is inspired by
those of Fan et al. [7] and Fang et al. [8].

PROOF OF THEOREM 1.2. For any v > 2, it is clear that

E(v) ⊆ Ev(x)=v(v) ⊆ Ev(x)≥v(v) and E(v) ⊆ Ev(x)=v(v) ⊆ Ev(x)≥v(v) ⊆ Ev(x)≥v(v).

The next lemma follows from the monotonicity of Hausdorff dimension [5, page 32].

LEMMA 3.1. For any v > 2,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dimH(E(v) ∩ Λ) ≤ dimH(Ev(x)=v(v) ∩ Λ) ≤ dimH(Ev(x)≥v(v) ∩ Λ),
dimH(E(v) ∩ Λ) ≤ dimH(Ev(x)=v(v) ∩ Λ) ≤ dimH(Ev(x)≥v(v) ∩ Λ)

≤ dimH(Ev(x)≥v(v) ∩ Λ). �

In view of Lemma 3.1, we divide the proof of Theorem 1.2 into two steps: the upper
bound of dimH(Ev(x)≥v(v) ∩ Λ) and the lower bound of dimH(E(v) ∩ Λ).

The upper bound of dimH(Ev(x)≥v(v) ∩ Λ). Our method is to choose a suitable positive
real number s such thatH s(Ev(x)≥v(v) ∩ Λ) < ∞. Let us remark that countable sets are
of Hausdorff dimension zero, and the difference of the sets Λ and

Λ∞ = {x ∈ [0, 1) : an(x) ≤ an+1(x) for all n ≥ 1 and an(x)→ ∞ as n→ ∞}

is a countable set. Thus we only need to consider the Hausdorff dimension of the set
Ev(x)≥v(v) ∩ Λ∞. For 0 < ε < v − 2 and M ≥ 1, let
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Jn(σ1, . . . ,σn) =
⋃

	≥(σ1···σn)v−2−ε

In+1(σ1, . . . ,σn, 	)

and Cn = {(σ1, . . . ,σn) ∈ Nn : σ1 · · ·σn ≥ Mn}. Then by (2.2),

Ev(x)≥v(v) ∩ Λ∞

⊆
{
x ∈ Λ∞ : lim sup

n→∞

log an+1(x)
log a1(x) + · · · + log an(x)

≥ v − 2
}

⊆
∞⋂

N=1

∞⋃
n=N

{x ∈ [0, 1) : an+1(x) ≥ (a1(x) · · · an(x))v−2−ε and a1(x) · · · an(x) ≥ Mn}

=

∞⋂
N=1

∞⋃
n=N

⋃
(σ1,...,σn)∈Cn

Jn(σ1, . . . ,σn). (3.1)

It follows from (2.3) that
∣∣∣∣
⋃

	≥(σ1···σn)v−2−ε

In+1(σ1, . . . ,σn, 	)
∣∣∣∣ ≤

∑
	≥(σ1···σn)v−2−ε

1
	2 · (σ1 · · ·σn)2 ≤

1
(σ1 · · ·σn)v−ε .

(3.2)

We are now in a position to obtain the upper bound of dimH(Ev(x)≥v(v) ∩ Λ). Let s, M
be two real numbers satisfying

s =
1 + 2ε
v − ε and

1
Mε
·
∞∑

j=1

1
j1+ε

<
1
2

. (3.3)

Then we deduce from (3.1), (3.2) and (3.3) that

H s(Ev(x)≥v(v) ∩ Λ∞) ≤ lim inf
n→∞

∞∑
n=N

∑
(σ1,...,σn)∈Cn

|Jn(σ1, . . . ,σn)|s

≤ lim inf
n→∞

∞∑
n=N

∑
(σ1,...,σn)∈Cn

1
(σ1 · · ·σn)1+2ε

≤ lim inf
n→∞

∞∑
n=N

( 1
Mε
·
( ∞∑

j=1

1
j1+ε

))n
= 0.

This shows that

dimH(Ev(x)≥v(v) ∩ Λ) = dimH(Ev(x)≥v(v) ∩ Λ∞) ≤ 1 + 2ε
v − ε

and letting ε→ 0+ gives the desired upper bound.

The lower bound of dimH(E(v) ∩ Λ). Recall that

E(v) ∩ Λ =
{
x ∈ Λ : lim

n→∞

log an+1(x)
log qn(x)

= v − 2
}
.
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To bound dimH(E(v) ∩ Λ) from below, we shall construct a Cantor subset of E(v) ∩ Λ.
Let sn = exp((v − 1)n) and

F({sn}n≥1) = {x ∈ [0, 1) : nsn ≤ an(x) < (n + 1)sn for all n ≥ 1}.

We claim that

F({sn}n≥1) ⊆ E(v) ∩ Λ. (3.4)

If x ∈ F({sn}n≥1), then it is easy to see that an(x) ≤ an+1(x) for any n ≥ 1. Now it remains
to show that

lim
n→∞

log an+1(x)
log qn(x)

= v − 2.

In fact, we deduce from (2.2) that

v − 2 = lim
n→∞

log(n + 1) + (v − 1)n+1

n log 2 + log(n + 1)!+(v − 1) + · · · + (v − 1)n

≤ lim
n→∞

log an+1(x)
n log 2 + log a1(x) + · · · + log an(x)

≤ lim
n→∞

log an+1(x)
log qn(x)

≤ lim
n→∞

log an+1(x)
log a1(x) + · · · + log an(x)

≤ lim
n→∞

log(n + 2) + (v − 1)n+1

log n!+(v − 1) + · · · + (v − 1)n = v − 2.

It follows from (3.4) and Lemma 2.2 that

dimH(E(v) ∩ Λ) ≥ dimH F({sn}n≥1) =
1

2 + lim sup
n→∞

2 log(n+1)!+(v−1)n+1

(v−1)+···+(v−1)n

=
1

2 + (v − 2)
=

1
v

.

PROOF OF THEOREM 1.3. For any v > 2, recall that

Ev(x)≤v(v) ∩ Λ =
{
x ∈ Λ : 2 + lim sup

n→∞

log an+1(x)
log qn(x)

≤ v
}
.

It is clear that Ev(x)≤v(v) ∩ Λ ⊆ Ev(x)≤v(v) ∩ Λ ⊆ Λ and so

dimH(Ev(x)≤v(v) ∩ Λ) ≤ dimH(Ev(x)≤v(v) ∩ Λ) ≤ dimHΛ =
1
2 .

Now it suffices to construct a subset of Ev(x)≤v(v) ∩ Λ and then show that the subset is
of Hausdorff dimension 1/2. Let sn = 2n and let

F({sn}n≥1) = {x ∈ [0, 1) : nsn ≤ an(x) < (n + 1)sn for all n ≥ 1}.

Then by (2.2), it is easy to prove that

F({sn}n≥1) ⊆ Ev(x)≤v(v) ∩ Λ. (3.5)
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Applying Lemma 2.2, we conclude from (3.5) that

dimH(Ev(x)≤v(v) ∩ Λ) ≥ dimH F({sn}n≥1) =
1

2 + lim sup
n→∞

2 log(n+1)!+(n+1) log 2
1
2 n(n+1) log 2

=
1
2

. (3.6)

�

PROOFS OF THEOREM 1.4 AND COROLLARY 1.5. We shall divide the proof of
Theorem 1.4 into two cases. Recall that

K(ψ) ∩ Λ =
{
x ∈ Λ : lim

n→∞

log a1(x) + · · · + log an(x)
ψ(n)

= 1
}
.

Case 1: ψ(n)/(n log n)→ α (0 ≤ α < ∞) as n→ ∞. For the upper bound of
dimH(K(ψ) ∩ Λ), we shall construct a larger set containing K(ψ) ∩ Λ by using the
general form of the Stolz–Cesàro theorem which states that if {bn}n≥1 and {cn}n≥1 are
two sequences such that {cn}n≥1 is monotone and unbounded, then

lim inf
n→∞

bn+1 − bn

cn+1 − cn
≤ lim inf

n→∞

bn

cn
≤ lim sup

n→∞

bn

cn
≤ lim sup

n→∞

bn+1 − bn

cn+1 − cn
. (3.7)

It follows from (3.7) that

K(ψ) ∩ Λ ⊆
{
x ∈ Λ : lim inf

n→∞

log a1(x) + · · · + log an(x)
n log n

= α
}

⊆
{
x ∈ Λ : lim inf

n→∞

log an(x)
log n

≤ α
}
.

Thus we conclude from Lemma 2.3 that

dimH(K(ψ) ∩ Λ) ≤
⎧⎪⎪⎨⎪⎪⎩

0, 0 ≤ α < 1,
(α − 1)/2α, α ≥ 1.

To bound dimH(K(ψ) ∩ Λ) from below, we shall construct a suitable Cantor subset
of K(ψ) ∩ Λ. By the upper bound estimate, we have dimH(K(ψ) ∩ Λ) = 0 for α = 1. In
what follows, we assume that α > 1. Let sn = 2�nα−1� and let

F({sn}n≥1) = {x ∈ [0, 1) : nsn ≤ an(x) < (n + 1)sn for all n ≥ 1}.

Then we claim that

F({sn}n≥1) ⊆ K(ψ) ∩ Λ. (3.8)

On the one hand, since the sequence of positive integers {sn}n≥1 is nondecreasing, the
set F({sn}n≥1) is a subset of Λ. On the other hand, for each x ∈ F({sn}n≥1),

α = lim
n→∞

∑n
k=1 log(2(kα − k))

n log n
≤ lim

n→∞

log a1(x) + · · · + log an(x)
n log n

≤ lim
n→∞

∑n
k=1 log(4kα)

n log n
= α.
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Applying Lemma 2.2, we deduce from (3.7) that

dimH F({sn}n≥1) =
1

2 + lim sup
n→∞

2 log((n+1)!)+log sn+1
log(s1s2···sn)

≥ 1

2 + lim sup
n→∞

2 log(n+2)+log sn+2−log sn+1
log sn+1

=
1

2 + 2
α−1

=
α − 1

2α
. (3.9)

Combining this with (3.8) and (3.9) completes the proof.

Case 2: ψ(n)/(n log n)→ ∞ as n→ ∞. Note that ψ(n) is a nondecreasing function. For
the upper bound of dimH(K(ψ) ∩ Λ), we deduce from [7, Theorem 1.1] that

dimH(K(ψ) ∩ Λ) ≤ dimH K(ψ) =
1

1 + lim sup
n→∞

ψ(n + 1)/ψ(n)
.

For the lower bound, the strategy is again to construct a suitable Cantor subset. Let
sn = 2�exp(ψ(n) − ψ(n − 1))� and set ψ(0) = 0 for convenience. Let

F({sn}n≥1) = {x ∈ [0, 1) : nsn ≤ an(x) < (n + 1)sn for all n ≥ 1}.

The sequence {ψ(n) − ψ(n − 1)}n≥1 is nondecreasing and it is easy to check that

F({sn}n≥1) ⊆ K(ψ) ∩ Λ.

Before proceeding, we remark that

lim
n→∞

ψ(n)
n log n

= ∞ implies lim sup
n→∞

log((n + 1)! )
ψ(n)

= 0.

Combining these observations, we deduce from Lemma 2.2 that

dimH(K(ψ) ∩ Λ) ≥ dimH F({sn}n≥1) =
1

2 + lim sup
n→∞

2 log((n+1)!)+log sn+1
log(s1s2···sn)

≥ 1

2 + lim sup
n→∞

2 log((n+1)!)
ψ(n) + lim sup

n→∞

ψ(n+1)−ψ(n)
ψ(n)

=
1

1 + lim sup
n→∞

ψ(n+1)
ψ(n)

. �

PROOF OF COROLLARY 1.5. For the case 0 ≤ ξ < ∞, we deduce from the definition
of the set Eγ(x)=ξ(ξ) and (3.7) that

Eγ(x)=ξ(ξ) ∩ Λ ⊆
{
x ∈ Λ : lim

n→∞

log a1(x) + log a2(x) + · · · + log an(x)
n log n

= 0
}

⊆
{
x ∈ Λ : lim inf

n→∞

log an(x)
log n

≤ 0
}
.
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Then by Lemma 2.3,

dimH(Eγ(x)=ξ(ξ) ∩ Λ) = 0.

For the case ξ = ∞, clearly

dimH(Eγ(x)=ξ(∞) ∩ Λ) ≤ dimHΛ =
1
2 .

It is easy to prove that the set F({sn}n≥1) constructed in (3.5) is also a subset of
Eγ(x)=ξ(∞) ∩ Λ. Combining this with (3.6) gives

dimH(Eγ(x)=ξ(∞) ∩ Λ) ≥ dimH F({sn}n≥1) = 1
2 . �
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