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Abstract
Let (A, m) be a Cohen–Macaulay local ring, and then the notion of a T-split sequence was introduced in the
part-1 of this paper for the m-adic filtration with the help of the numerical function eT

A. In this article, we explore
the relation between Auslander–Reiten (AR)-sequences and T-split sequences. For a Gorenstein ring (A, m), we
define a Hom-finite Krull–Remak–Schmidt category DA as a quotient of the stable category CM(A). This category
preserves isomorphism, that is, M ∼= N in DA if and only if M ∼= N in CM(A).This article has two objectives: first
objective is to extend the notion of T-split sequences, and second objective is to explore the function eT

A and T-split
sequences. When (A, m) is an analytically unramified Cohen–Macaulay local ring and I is an m-primary ideal, then
we extend the techniques in part-1 of this paper to the integral closure filtration with respect to I and prove a version
of Brauer–Thrall-II for a class of such rings.

1. Introduction

For ease of reference, it is advisable to have a copy of [20] on hand while reading this paper. The notations
employed here are consistent with those used in [20].

Let (A, m) be a Cohen–Macaulay local ring of dimension d ≥ 1 and let CM(A) be the category of max-
imal Cohen–Macaulay A-modules. In [20], the second author has constructed T : CM(A) × CM(A) →
mod(A), a sub-functor of Ext1

A(−, −) as follows: Let M be an MCM A-module. Set

eT
A(M) = lim

n→∞
(d − 1)!

nd−1
�

(
TorA

1 (M,
A

mn+1
)

)
.

This function arose in the second author’s study of certain aspects of the theory of Hilbert functions
[15, 16]. Using [15, Theorem 18], we get that eT

A(M) is a finite number, and it is zero if and only if M
is free. Let s : 0 → N → E → M → 0 be an exact sequence of MCM A-modules. Then by [17, 2.6], we
get that eT

A(E) ≤ eT
A(M) + eT

A(N). Set eT(s) = eT
A(M) + eT

A(N) − eT
A(E).

Definition 1.1. We say s is T-split if eT
A(s) = 0.

Definition 1.2. Let M, N be MCM A-modules. Set

TA(M, N) = {s | s is a T-split extension}.
We proved [20, 1.4],

Theorem 1.3. (with notation as above) TA : CM(A) × CM(A) → mod(A) is a sub-functor of Ext1
A(−, −).
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Note that the most natural context for the sub-functors of Ext is exact categories (e.g., see [9, Section
1], [6]).

It is not clear from the definition whether TA(M, N) is nonzero. Theorem [20, 1.5] shows that there
are plenty of T-split extensions if dim Ext1

A(M, N)> 0. We proved [20, 1.5]

Theorem 1.4. Let (A, m) be a Cohen–Macaulay local ring and let M, N be MCM A-modules. Then

Ext1
A(M, N)/TA(M, N) has finite length.

Note Theorem 1.4 has no content if M is free on the punctured spectrum of A. One of our motivations
of this paper was to investigate TA(M, N) when M is free on the punctured spectrum of A.

Now assume (A, m) is Henselian and M is an indecomposable MCM A-module with Mp is free for
all p ∈ Spec0(A) = Spec(A) \ {m}, then a fundamental short exact sequence is known as the Auslander–
Reiten (AR)-sequence ending at M exists. For a good introduction to AR-sequences, see [23, Chapter 2].

The following result gives a large number of examples of AR-sequences which are T-split.

Theorem 1.5. Let (Q, n) be a Henselian regular local ring and f = f1, . . . , fc ∈ n2 a regular sequence.
Set I = (f1, . . . , fc) and (A, m) = (Q/I, n/I). Assume dim A = 1. Let M be an indecomposable MCM
A-module with cxAM ≥ 2. Assume M is free on Spec0(A). Set Mn = SyzA

n (M), then for n 	 0 the
AR-sequences ending in Mn are T-split.

For hypersurfaces defined by quadrics, we prove:

Theorem 1.6. Let (Q, n) be a Henselian regular local ring with algebraically closed residue field k =
Q/n and let f ∈ n2 \ n3. Assume the hypersurface A = Q/(f ) is an isolated singularity. Then all but
finitely many AR-sequences in A are T-split.

Theorems 1.5 and 1.6 show that T-split sequences are abundant in general. However, the following
example is important:

Example 1.7. There exists a complete hypersurface isolated singularity A and an indecomposable MCM
A-module M such that TA(M, N) = 0 for any MCM A-module N.

Theorem 1.8. Now assume A is Gorenstein. As observed in [17], the function eT
A( − ) is in fact a function

on CM(A) the stable category of all MCM A-modules. Let M and N be MCM A-modules. It is well known
that we have a natural isomorphism:

η : HomA(M, N) ∼= Ext1
A(�−1(M), N)

We denote η−1(TA(�−1(M), N)) by R(M, N). Then η induces the following isomorphism:

HomA(M, N)

R(M, N)
∼= Ext1

A(�−1(M), N)

TA(�−1(M), N)
.

Surprisingly,

Proposition 1.9. R is a relation on CM(A).

Thus, we may consider the quotient category DA = CM(A)/R. Clearly, DA is a Hom-finite additive
category. Surprisingly, the following result holds.

Theorem 1.10. Let (A, m) be a Henselian Gorenstein local ring and let M and N be MCM A-modules.
Then the following holds
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(1) M ∼= N in DA if and only if M ∼= N in CM(A).
(2) M is indecomposable in DA if and only if M is indecomposable in CM(A)
(3) DA is a Krull–Remak–Schmidt (KRS) category.

The main application of T-split sequences was to study Weak Brauer–Thrall-II for associated graded
modules (Recall Weak Brauer–Thrall-II: Do there exist distinct indecomposable MCM modules {Mn}n≥1

with G(Mn) Cohen–Macaulay and e(Mn) bounded?) for a large class of rings. Note that in [20], the
concept was introduced only for the m-adic filtration, but for general I( 
=m)-adic filtrations that method
will not work (see [20, Remark 3.2]).

In this article, we extend the results in [20] to a large family of filtrations. Let (A, m) be an analyti-
cally unramified Cohen–Macaulay local ring of dimension d ≥ 1 and let I be an m-primary ideal. Let
F = {In}n∈Z where I1 = I and In = In for n 	 0 be an I-admissible filtration. Note here “–” denotes the
integral closure. Let M be an MCM A-module.

Theorem 1.11. Set

eT
F (M) = lim

n→∞
(d − 1)!

nd−1
�(TorA

1 (M, A/In+1))

Then eT
F (M) = 0 if and only if M is free (see [13, Theorem 7.5]). Let M, N be maximal Cohen–Macaulay

A-modules and α ∈ Ext1
A(M, N). Let α be given by an extension 0 → N → E → M → 0; here, E is a

maximal Cohen–Macaulay module. Now set

eT
F (α) = eT

F (M) + eT
F (N) − eT

F (E).

It can be shown that eT
F (α) ≥ 0, see 3.6.

Definition 1.12. An extension s ∈ Ext1
A(M, N) is TF -split if eT

F (s) = 0.

As before we can show that TF (M, N) is a submodule of Ext1
A(M, N) (see 4.1). Furthermore,

TF : CM( − ) × CM( − ) → mod(A) is a sub-functor of Ext1
A(−, −), see 4.2.

Theorem 1.13. Let (A, m) be an analytically unramified Cohen–Macaulay local ring of dimension d
with one of the following conditions:

(1) the residue field k( = A/m) is uncountable.
(2) the residue field k is perfect field.

Let I be an m-primary ideal and F = {In}n∈Z where I1 = I and In = In for n 	 0. Let M, N be MCM
A-module then Ext1

A(M, N)/TF (M, N) has finite length.

Next, we prove following theorem.

Theorem 1.14. Let (A, m) be a complete reduced Cohen–Macaulay local ring of dimension d ≥ 1
with either uncountable residue field or a perfect residue field. Let I be an m-primary ideal. Set
R = A[[X1, . . . , Xm]], J = (I, X1, . . . , Xm), I = {In}n∈Z, andJ = {Jn}n∈Z. If A has an MCM module M with
GI(M) Cohen–Macaulay. Then there exists {En}n≥1 indecomposable MCM R-modules with bounded
multiplicity (with respect to J ) and having GJ (En) Cohen–Macaulay for all n ≥ 1.

Let eT
F : Ext1

A(M, N) →N be the function defined by α �→ eT
F (α). When A has characteristic p> 0,

then we can say more about this function. If V is a vector space over a field k, then let P(V) denote the
projective space determined by V .
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Theorem 1.15. (with hypotheses as in 1.13) Further assume A is of characteristic p> 0 and that A
contains a field k ∼= A/m. If Ext1

A(M, N) 
= TF (M, N), then the function eT
F factors as:

[eT
F ] : P(Ext1

A(M, N)/TF (M, N)) →N \ 0.

We now describe in brief the contents of this paper. In section 2, we discuss some preliminary results.
In section 3, we introduce our function 1.11 and discuss few of its properties. We also discuss in detail the
base changes that we need to prove our results. In section 4, we prove Theorem 1.13. In the next section,
we prove Theorem 1.14. In section 6, we prove Theorem 1.15. In the next section, we discuss our result
on relation between T -split sequences and AR-sequences. In section 8, we prove Theorem 1.5. In the
next section, we prove Theorem 1.6 and construct Example 1.7. In section 10, we prove Proposition 1.9
and Theorem 1.10.

2. Preliminaries

Theorem 2.1. Let (A, m) be a Noetherian local ring and I be an m-primary ideal. Then a filtration
F = {Fn}n∈Z is said to be I-admissible filtration if

1. In ⊆ Fn for all n.
2. FnFm ⊆ Fn+m for all n, m ∈Z.
3. Fn = IFn−1 for n 	 0.

Definition 2.2. A Noetherian local ring (A, m) is said to be analytically unramified if its m-adic
completion is reduced.

Theorem 2.3. Let a denote integral closure of the ideal a. If A is analytically unramified then from a
result of Rees [21], the integral closure filtration F = {In}n∈Z is I-admissible.

Theorem 2.4. Let (A, m) be a Noetherian local ring, I an m-primary ideal, and F = {Fn}n∈Z a
I-admissible filtration. Let M be a finite A-module with dimension r. Then the numeri-
cal function HF (M, n) = �(M/Fn+1M) is known as the Hilbert function of M with respect
to F . For large value of n, HF (M, n) coincides with a polynomial PF (M, n) of degree r, and this
polynomial is known as the Hilbert polynomial of M with respect to F . There exist unique integer
eF

0 (M), eF
1 (M), . . . , eF

r (M) such that Hilbert polynomial of M with respect to F can be written as:

PF (M, n) =
r∑

i=0

( − 1)ieF
i (M)

(
n + r − i

r − i

)
.

These integers eF
0 (M), eF

1 (M), . . . , eF
r (M) are known as the Hilbert coefficients of M with respect to

F . In case of m-adic and I-adic filtrations, these coefficients will be denoted as ei(M) and eI
i (M) for

i = 1, . . . , r, respectively.

Theorem 2.5. Let (A, m) be a Noetherian local ring and I be an m-primary ideal. Let F = {Fn}n∈Z be
an I-admissible filtration and M an A-module with positive dimension. Then an element x ∈ F1 \ F2 is
said to be F-superficial element for M if there exists c ∈N such that for all n ≥ c,

(Fn+1M:Mx) ∩ FcM = FnM.

The following facts are well known:

1. If k = A/m is infinite, then F-superficial elements for M exist.
2. If depth M > 0, then every F-superficial element for M is also M-regular.
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3. If x is F-superficial element for M and depthM> 0, then (Fn+1M:Mx) = FnM for n 	 0.
4. If x is F-superficial element for M and depthM > 0, then eF

i (M/xM) = eF
i (M) for

i = 0, 1, . . . , dim M − 1 (here F is the obvious quotient filtration of F).

Theorem 2.6. A sequence x = x1, . . . , xr with r ≤ dim M is said to be F-superficial sequence for M if
x1 is F-superficial element for M and xi is F/(x1, . . . , xi−1)-superficial element for M/(x1, . . . , xi−1)M
for all i ≤ r.

3. The case when A is analytically unramified

Let (A, m) be an analytically unramified Cohen–Macaulay local ring with dim A = d ≥ 1 and I an
m-primary ideal. We are primarily interested in the integral closure filtration of I. However, to prove
our results, we need the following class of I-admissible filtrations F = {In}n∈Z, where I1 = I and In = In

for n 	 0. Let M be an MCM A-module.

Theorem 3.1. The numerical function

n �−→ �(TorA
1 (M, A/In+1))

is polynomial type; that is, there is a polynomial tA
F (M, z) which coincides with this numerical function

for n 	 0.
If M is non-free MCM A-module, then deg tA

F (M, z) = d − 1 (see [13, Theorem 7.5]). Note that
normalized leading coefficient of tA

F (M, z) is eF
1 (A)μ(M) − eF

1 (M) − eF
1 (SyzA

1 (M)).

Theorem 3.2. Set

eT
F (M) = lim

n→∞
(d − 1)!

nd−1
�(TorA

1 (M, A/In+1))

= eF
1 (A)μ(M) − eF

1 (M) − eF
1 (SyzA

1 (M))

Theorem 3.3. Base change: We need to do several base changes in our arguments.
(I) We first discuss the general setup: Let ψ : (A, m) → (B, n) be a flat map such that B is also a

Cohen–Macaulay local ring and (mB = n. If M is an A-module, then set MB = M ⊗A B. If F = {In}n∈Z is
an I-admissible filtration, then set FB = {InB}n∈Z. Then,

1. �(N) = �(NB) for any finite length A-module N.
2. FB is an IB-admissible filtration.
3. dim M = dim MB and depthM = depthMB. In particular, M is an MCM A-module if and only if

MB is MCM B-module.
4. SyzA

i (M) ⊗A B ∼= SyzB
i (MB) for all i ≥ 0.

5. eF
i (M) = eFB

i (MB) for all i.
6. If ψ is regular and a is integrally closed m-primary ideal in A, then aB is integrally closed in

B (for instance, see [11, 2.2(7)]).

(II) Assume A is analytically unramified Cohen–Macaulay local ring and F = {In}n∈Z is an
I-admissible filtration with I, m-primary and furthermore I1 = I and In = In for n 	 0. We need to
base changes as above where FB has the property that InB = InB = InB whenever In = In. Note this
automatically forces B to be analytically unramified. The specific base changes we do are the following:

(i) B = Â the completion of A. Note that if J is an m-primary integrally closed ideal, then JÂ is
also integrally closed, cf., [12, 9.1.1].
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(ii) If A has a finite residue field, then we can consider the extension B = A[X](mA[X]. The residue
field of B is k(X) which is infinite. Note that if J is an m-primary integrally closed ideal, then
JÂ is also integrally closed, cf., [12, 8.4.2].

(iii) Assume dim A ≥ 2. Even if A has infinite residue field, there might not exist an F-superficial
element x such that A/(x) is analytically unramified. However, a suitable extension B has this
property. To see this, we first observe two facts.

Let E be a countable set of MCM of A-modules. Assume that the residue field k of A is uncountable if
E is an infinite set. Otherwise, k is infinite.

(a) There exist x = x1, . . . , xd ∈ I such that x is F-superficial for each N ∈ E . This result is well
known (for instance, see [18, Lemma 2.2]).

(b) There exists a generating set r1, . . . , rt of I such that for each i, ri is I-superficial and
F-superficial element for each N ∈ E (see (a) and [13, Lemma 7.3]).

([7 ], [13, Lemma 7.4, Theorem 7.5]) Choose r1, . . . , rt as in (b). Now consider following flat extension
of rings

A → Â → B = Â[X1, . . . , Xt]mÂ[X1,...,Xt].

Let ζ = r1X1 + . . .+ rtXt. Set C = B/ζB and FC = {InC}. For N ∈ E , set NB = N ⊗A B. Then, we have

1. B is analytically unramified Cohen–Macaulay local ring of dimension d.
2. NB is MCM B-module for each N ∈ E .
3. If J is a integrally closed m-primary ideal in A, then JB a integrally closed n-primary ideal in

B.
4. I1C = IC = IC.
5. InC = InC for all n 	 0.
6. C is analytically unramified Cohen–Macaulay local ring of dimension d − 1.
7. ζ is FB-superficial for each NB (here N ∈ E).

(iv) For some of our arguments, we need the residue field of A to be uncountable. If k is finite or
countably infinite perfect field do the following: First complete A. By (i), this is possible. So,
we may assume A is complete.

Consider extension φ : A −→ A[[X]]mA[[X]] = (B, n). Set B0 = B ⊗A k = B/mB. So, B0 = B/n= k((X))
is uncountable. As k is perfect we get k((X)) is 0-smooth over k, see [14, 28.7]. Using [14, 28.10], we
get B is n( =mB)-smooth. This implies φ is regular (see [1, Theorem]).

By I(6) if a is an integrally closed m-primary ideal in A, then aB is integrally closed in B. Thus,
InB = InB whenever In = In.

Definition 3.4. We say a flat extension ψ : (A, m) → (B, n) with mB = n behaves well with respect to
integral closure if for any integrally closed m-primary ideal a in A, the ideal aB is integrally closed in B.

We need the following result:

Proposition 3.5. Let (A, m) be analytically unramified Cohen–Macaulay local ring with dim A = d ≥ 1
and I an m-primary ideal. Let F = {In}n∈Z be a I-admissible filtration where I1 = I and In = In for n 	 0.

(1) Let (B, n) be a flat extension of A which behaves well with respect to integral closure. Set
FB = {InB}n∈Z. Then for any MCM A-module M, we have eT

F (M) = eT
FB

(MB).
(2) Let dim A ≥ 2. and the residue field of A is infinite. Let V be any countable set of MCM

A-modules (containing A). Assume k = A/m is uncountable if V is infinite otherwise k is
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infinite. Then there exists a flat extension B of A which behaves well with respect to integral clo-
sure such that there exist ζ ∈ IB which is FB-superficial with respect to each NB (for all N ∈ V).
Furthermore, if C = B/ζB then C is analytically unramified with IC = IC and InC = InC for all
n 	 0. Set NC = N ⊗A C. Furthermore, eT

F (N) = eT
FC

(NC) for each N ∈ V .

Proof. (1) This follows from 3.3(I).
(2) Set E = {SyzA

i (N) : i = 0, 1 and N ∈ V}. Then E is a countable set and is finite if V is. Now do the
construction in 3.3(I)(iii) and use 2.5(4) and 3.2 to conclude.

The following lemma follows from [17, Theorem 2.6], but here we give a short proof (similar proof
also works for eT

A()):

Lemma 3.6. Let α:0 → N → E → M → 0 be an exact sequence of MCM A-modules. Then eT
F (E) ≤

eT
F (M) + eT

F (N).

Proof. Consider the long exact sequence of α⊗A A/In+1. We get

. . .→ TorA
1 (N, A/In+1) → TorA

1 (E, A/In+1) → TorA
1 (M, A/In+1) → . . .

So, �(TorA
1 (E, A/In+1)) ≤ �(TorA

1 (M, A/In+1)) + �(TorA
1 (N, A/In+1)). Now from the definition of eT

F ( − ),
required inequality follows.

Theorem 3.7. Let M, N be maximal Cohen–Macaulay A-modules and α ∈ Ext1
A(M, N). Let α be given

by an extension 0 → N → E → M → 0, here E is a maximal Cohen–Macaulay module. Now set

eT
F (α) = eT

F (M) + eT
F (N) − eT

F (E).

Theorem 3.8. Let α1, α2 ∈ Ext1
A(M, N). Suppose αi can be given by 0 → N → Ei → M → 0 for i = 1, 2.

If α1 and α2 are equivalent, then E1
∼= E2. So, eT

F (α1) = eT
F (α2). This implies eT

F (α) is well defined.

Note that eT
F (α) ≥ 0.

Definition 3.9. An extension s ∈ Ext1
A(M, N) is TF -split if eT

F (s) = 0.

Definition 3.10. Let M, N be maximal Cohen–Macaulay A-modules. Set

TF ,A(M, N) = {s|s is a TF -split extension}.
Note that if the choice of the ring A is unambiguous from the context, we denote this set as TF (M, N).

We will need the following two results:

Lemma 3.11. Let (A, m) be an analytically unramified Cohen–Macaulay local ring of dimension d ≥ 1
and let M, N, N1, E, E1 be MCM A-modules. Suppose we have a commutative diagram

α : 0 N E M 0

β : 0 N1 E1 M 0

1M

If α is TF -split, then β is also TF -split.
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Proof. If dim A = 1, then we can give an argument similar to [20, Proposition 3.8]. Now assume
d = dim A ≥ 2 and the result has been proved for all analytically unramified rings of dimension d − 1.
If the residue field of A is finite, then use 3.3II.(ii). So, we may assume A/m is infinite. Using 3.5, we
may assume that (after going to a flat extension) there exists ζ ∈ I such that

(i) ζ is F-superficial with respect to A ⊕ U ⊕ SyzA
1 (U) for each U in the above diagram.

(ii) C = A/ζA is analytically unramified with IC = IC and InC = InC for all n 	 0.
(iii) eT

FC
(U/ζU) = eT

F (U) for each U in the above diagram.

Notice α⊗ C and β ⊗ C are exact. For an A-module V , set V = V/ζV . So, we have a diagram

α ⊗ C : 0 N E M 0

β ⊗ C : 0 N1 E1 M 0

1M

Note α⊗ C is TFC -split. By our induction hypotheses, β ⊗ C is TFC -split. By our construction, it
follows that β is also TF -split.

Lemma 3.12. Let (A, m) be an analytically unramified Cohen–Macaulay local ring of dimension d ≥ 1
and let M, M1, N, E, E1 be MCM A-modules. Suppose we have a commutative diagram

α : 0 N E M 0

β : 0 N E1 M1 0

1N

If β is TF -split, then α is also TF -split.

Proof. This is dual to 3.11.

4. TF -split sequences

In this section, we prove our results regarding TF .

Theorem 4.1. Let (A, m) be an analytically unramified Cohen–Macaulay local ring of dimension d. Let
I be an m-primary ideal and F = {In} where I1 = I and In = In for n 	 0. Let M, N be MCM A-module,
then TF (M, N) is a submodule of Ext1

A(M, N).

Proof. Let α : 0 → N → E → M → 0 be a TF -split extension and r ∈ A, then we can define rα

α : 0 N E M 0

rα : 0 N E1 M 0

r 1M

Note that first square is pushout diagram. Since α is TF -split, this implies rα is also TF -split
(see 3.11).
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Let α : 0 → N → E → M → 0 and α′ : 0 → N → E′ → M → 0 be two TF -split extensions. We want
to show α + α′ is also TF -split. Note that the addition operation on Ext1

A(M, N) is Bear sum, that is,
α + α′: = (∇(α⊕ α′))
.

Since α and α′ are TF -split, this implies α⊕ α′ : 0 → N ⊕ N → E ⊕ E′ → M ⊕ M → 0 also TF -split.
Consider following diagram

(α ⊕ α′) : 0 N ⊕ N E ⊕ E′ M ⊕ M 0

∇(α ⊕ α′) : 0 N E1 M ⊕ M 0

∇ 1M

Note that first square is pushout diagram. From 3.11, ∇(α⊕ α′) is TF -split. Now consider the diagram

∇(α ⊕ α′)Δ : 0 N E2 M 0

∇(α ⊕ α′) : 0 N E1 M ⊕ M 0

1N Δ

Here, second square is pullback diagram. Now from 3.12, α+ α = (∇(α⊕ α′))
 is TF -split.

We now show

Theorem 4.2. (with hypotheses as in 4.1) TF : CM( − ) × CM( − ) → mod(A) is a functor.

Proof. This is similar to [20, 3.13]. We have to use Theorem 4.1 and Lemmas 3.11, 3.12.

Remark 4.3. Theorems 4.1 and 4.2 also follows directly from the Lemma 3.6 and [8, Theorem 4.8,
Proposition 3.8]. Also see [8, Theorem 4.17]. However, for the sake of completion, we have given a
proof of these theorems.

Note that the proof of [8, Theorem 4.8] also works for any totally ordered abelian group in place
of Z.

The following is one of the main results of our paper.

Theorem 4.4. Let (A, m) be an analytically unramified Cohen–Macaulay local ring of dimension d with
uncountable residue field. Let I be an m-primary ideal and F = {In} where I1 = I and In = In for n 	 0.
Let M, N be MCM A-module then Ext1

A(M, N)/TF (M, N) has finite length.

Proof. We prove this theorem by induction. If dim A = 1, then Ext1
A(M, N) has finite length. In fact, for

any prime ideal p 
=m, (Ext1
A(M, N))p = 0 because A is reduced. Note that for dimension one case, we

do not need any assumption on residue field.
We now assume dim A ≥ 2 and result is true for dimension d − 1.
Let α : 0 → N → E → M → 0 ∈ Ext1

A(M, N) and a ∈ I. Then we have following pushout diagram of
R-modules for all n ≥ 1

α : 0 N E M 0

anα : 0 N En M 0

an 1MR
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Set V = {M, N, E, En : n ≥ 1} and set

E = {A} ∪ {SyzA
i (U) : i = 0, 1 and U ∈ V}.

We now do the base change as described in 3.3.II.(iii):

A → Â → B = Â[X1, . . . , Xt]mÂ[X1,...,Xt]

For any MCM A-module L, set LB = L ⊗A B.
Let FB = {InB}n∈Z. From 3.3.II.(iii), for all n ≥ 1, ζ is FB-superficial for

B ⊕ MB ⊕ NB ⊕ En,B ⊕ SyzB
1 (MB) ⊕ SyzB

1 (NB) ⊕ SyzB
1 (En,B).

Set C = B/ζB, FC = {InC}n∈Z. Then C is analytically unramified with dim C = d − 1. Furthermore,
I1C = I1C and InC = InC for n 	 0. From 3.5, we have for all n ≥ 0,

eT
F (anα) = eT

FC ,C(anα⊗ C) = eT
FC ,C(an(α⊗ C)).

But from the assumption result is true for C. So

eT
FC ,C(anα⊗ C) = eT

FC ,C(an(α⊗ C)) = 0 for n 	 0.

This implies eT
F ,A(anα) = 0 for n 	 0. Let I = (a1, . . . , au). It follows that

(an1
1 , . . . , anu

u )Ext1
A(M, N) ⊆ TF (M, N).

So Ext1
A(M, N)/TF (M, N) has finite length.

Theorem 4.5. Let (A, m) be a Cohen–Macaulay analytically unramified local ring of dimension d with
residue field k. Suppose k is perfect field. Let I be an m-primary ideal and F = {In} where I1 = I and
In = In for n 	 0. Let M, N be MCM A-module and then Ext1

A(M, N)/TF (M, N) has finite length.

Proof. By 3.3, we may assume A is complete. If k is uncountable, the result follows from Theorem 4.4.
Now we consider the case when k is finite or countably infinite. Then by 3.3(iv), there exists a flat

local extension (B, n) of A with (mB = n which behaves well with respect to integral closure such that
the residue field of B is uncountable. Set FB = {InB}n∈Z, MB = M ⊗ B, and NB = N ⊗ B. Also note that
InB = InB for n 	 0.

Let α ∈ Ext1
A(M, N) and a ∈m. Then for all n ≥ 1, it is easy to see

eT
F (anα) = eT

FB
((anα) ⊗ B) = eT

FB
((an ⊗ 1)(α⊗ B)).

From Theorem 4.4, eT
FB

((an ⊗ 1)(α⊗ B)) = 0 for n 	 0. So, eT
F (anα) = 0 for n 	 0. Therefore, anα ∈

TF (M, N) for n 	 0. Now the result follows from the similar argument as in Theorem 4.4.

5. Weak Brauer–Thrall-II

We need the following two results.

Lemma 5.1. Let (A, m) be an analytically unramified Cohen–Macaulay local ring of dimension d ≥ 1.
Let I be an m-primary ideal and F = {In} where I1 = I and In = In for n 	 0. If M, N and E are MCM
modules, thenwe have a TF -split sequence 0 → N → E → M → 0. Assume GF (N) is Cohen–Macaulay.
Then we have short exact sequence

0 → GF (N) → GF (E) → GF (M) → 0.

Furthermore, eF
i (E) = eF

i (N) + eF
i (M) for i = 0, . . . , d.

Proof. Follows from an argument similar to [20, Lemma 6.3].
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Proposition 5.2. Let (A, m) be an analytically unramified Cohen–Macaulay local ring of dimension
d ≥ 1 and I anm-primary ideal, andF = {In}n≥0. Assume the residue field k = A/m is either uncountable
or a perfect field. Let M and N be MCM A-modules with GF (M) and GF (N) Cohen–Macaulay. If there
exists only finitely many non-isomorphic MCM A-modules E with GF (E) Cohen–Macaulay and eF (E) =
eF (N) + eF (M), then TF (M, N) has finite length (in particular Ext1

A(M, N) has finite length).

Proof. Follows from an argument similar to [20, Theorem 7.1].

The following result is well known. We indicate a proof for the convenience of the reader.

Lemma 5.3. Let (A, m) be a Noetherian local ring and I be an ideal of A. Set B = A[X] and J = (I, X),
then Jn = ∑n

i=0 In−iXi.

Proof. Consider Rees algebra of I, R(I) = A[It] = A ⊕ It ⊕ I2t2 ⊕ . . .. Its integral closure in A[t] is
R(I) = A ⊕ It ⊕ I2t2 ⊕ . . .. By [2, Chapter 5, Exercise 9], we get that R(I)[X] is integral closure of
R(I)[X] in A[t][X]. Comparing homogeneous components for all n, we get (I, X)n = ∑n

i=0 In−iXi.

Proposition 5.4. Let (A, m) be an analytically unramified Cohen–Macaulay local ring of dimension one
and I an m-primary ideal. Set R = A[X](m,X), J = (I, X), I = {In}n≥0, and J = {Jn}n≥0. Then there exists
an MCM R-module E with GJ (E) Cohen–Macaulay and dim Ext1

R(E, E)> 0.

Proof. Let M be an MCM A-module. Fix large enough n (say n0), then it is easy to see N = In0 M is MCM
and GI(N) is Cohen–Macaulay. From Lemma 5.3, we get GJ (N ⊗ R) = GI(N)[X]. So, GJ (N ⊗ R) is
Cohen–Macaulay.

From [4, Theorem A.11(b)], dim Ext1
R(N ⊗ R, N ⊗ R)> 0.

Theorem 5.5. Let (A, m) be an analytically unramified Cohen–Macaulay local ring of dimension d ≥ 1
and I an m-primary ideal. Set R = A[X1, . . . , Xm](m,X1,...,Xm), J = (I, X1, . . . , Xm), I = {In}n≥0, and J =
{Jn}n≥0. Also set S = R̂ and K = {JnS}n≥0. If A has an MCM module M with GI(M) Cohen–Macaulay,
then

(1) M ⊗ R is an MCM R-module with GJ (M ⊗ R) Cohen–Macaulay and dim Ext1
R(M ⊗ R, M ⊗

R)> 0.
(2) We have JnS = JnS for all n ≥ 1. Furthermore, M ⊗ S is an MCM S-module with GK(M ⊗ S)

Cohen–Macaulay and dim Ext1
S(M ⊗ S, M ⊗ S)> 0.

Proof. (1) It is sufficient to prove the result for n = 1. So, we can assume R = A[X]. It is easy to see
M ⊗ R is MCM R-module and GJ (M ⊗ R) = GI(M)[X] (follows from Lemma 5.3). So, GJ (M ⊗ R) is
Cohen–Macaulay.

From [4, Theorem A.11(b)], dim Ext1
R(M ⊗ R, M ⊗ R)> 0.

(2) The assertion JnS = JnS for all n ≥ 1 follows from [12, 9.1.1]. For the rest observe that M ⊗A S =
(M ⊗A R) ⊗R S. This gives dim Ext1

S(M ⊗ S, M ⊗ S)> 0. Furthermore, GK(S) is a flat extension of GJ (R)
with zero-dimensional fiber. Notice

GK(M ⊗ S) = GJ (M ⊗ R) ⊗GJ (R) GK(S).

By Theorem [14, 23.3], the result follows.

Theorem 5.6. Let (A, m) be a complete reduced Cohen–Macaulay local ring of dimension d ≥ 1
and I an m-primary ideal. Assume the residue field k = A/m is either uncountable or perfect. Set
R = A[[X1, . . . , Xm]], J = (I, X1, . . . , Xm), I = {In}n≥0, and J = {Jn}n≥0. If A has an MCM module M
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with GI(M) Cohen–Macaulay, then R has infinitely many non-isomorphic MCM modules D with GJ (D)
Cohen–Macaulay and bounded multiplicity.

Proof. Follows from 5.1, 5.2, and 5.5.

6. Some results about eT
A()

In this section, we prove Theorem 1.15 (see Theorem 6.3).

Lemma 6.1. Let (A, m, k) be a Cohen–Macaulay local ring and M, N be MCM A-modules. Let α be
T-split and α′ be any extension and then eT

A(α+ α′) ≤ eT
A(α′). Also, if char(A) = pn > 0, then eT(α+ α′) =

eT
A(α′).

Proof. Let α can be represented as 0 → N → E → M → 0 and α′ as 0 → N → E′ → M → 0. Consider
following pullback diagram

β : 0 N E′′ E′ 0

α : 0 N E M 0

1N

From 3.12, β is T-split. So, eT
A(E′ ′) = eT

A(N) + eT
A(E′).

Now α+ α′ can be written as 0 → N → Y → M → 0 where Y = E′ ′/S and S = {( − n, n) ∈ E′ ′|n ∈ N}.
So, we have following commutative diagram

β : 0 N E′′ E′ 0

α + α′ : 0 N Y M 0

1N δ

Here, δ is natural surjection.
Now from the exact sequence γ : 0 → N → E′ ′ δ−→ Y → 0, we get eT

A(γ ) = eT
A(N) + eT

A(Y) − eT
A(E′ ′).

Now we get

eT
A(α + α′) = eT

A(N) + eT
A(M) − eT

A(Y)

= eT
A(α′) + eT

A(E′) − eT
A(Y)

= eT
A(α′) + eT

A(E′ ′) − eT
A(N) − eT

A(Y)

= eT
A(α′) − eT

A(γ )

So, eT
A(α+ α′) ≤ eT

A(α′).
If char(A) = pn > 0, then we have

eT
A(α′) ≤ eT

A((pn − 1)α + α′) ≤ . . .≤ eT
A(α+ α′) ≤ eT

A(α′).

Note that pnα = 0 is split exact sequence.
This implies eT

A(α+ α′) = eT
A(α′).

Let N be the set of non-negative integers.

Remark 6.2. If char(A) = pn > 0, then we have a well defined function
[eT

A] : Ext1
A(M, N)/TA(M, N) →N.

If V is a vector space over a field k, then let P(V) denote the projective space determined by V .
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Theorem 6.3. (with hypotheses as in 6.1) Further assume A is of characteristic p> 0 and that A contains
a field k ∼= A/m. If Ext1

A(M, N) 
= TA(M, N), then the function [eT
A] defined in 6.2 factors as:

[eT
A] : P(Ext1

A(M, N)/TA(M, N)) →N \ 0.

Proof. Let α ∈ Ext1
A(M, N) be represented as 0 → N → E → M → 0. Let r ∈ k∗ and rα be represented

as 0 → N → E′ → M → 0. Consider the diagram

α : 0 N E M 0

rα : 0 N E′ M 0

r ψ 1M

Note ψ : E → E′ is an isomorphism. It follows that eT(α) = eT(rα). The result follows.

Remark 6.4. All the results in this section are also true for eT
F (). The same proofs work in that case

also.

Theorem 6.5. For the rest of this section, we consider the following setup:
(A, m) is a complete reduced CM local ring. Also assume A contains a field k ∼= A/m. Furthermore, k

is either uncountable or a perfect field. Let I be an m-primary ideal and F = {In}n∈Z be an I-admissible
filtration with I1 = I and In = In for n 	 0. Let M, N be MCM A-modules and consider the function:

eT
F : Ext1

A(M, N) →N

α �→ eT(α).

Notice eT
F (α) ≤ eT

F (M) + eT
F (N). So, eT

F (Ext1
A(M, N)) is a bounded set.

If Z is a finite set, then set |Z| denote its cardinality.
Set ZF (M, N) = |eT

F (Ext1
A(M, N))|.

Corollary 6.6. (with hypotheses as in 6.5). Further assume k is a finite field and Ext1
A(M, N) is nonzero

and has finite length as an A-module (and so a finite dimensional k-vector space). Set c(M, N) =
|P(Ext1

A(M, N))|. Let I be any m-primary ideal and F = {In}n∈Z be an I-admissible filtration with I1 = I
and In = In for n 	 0. Then ZF (M, N) ≤ c(M, N).

Proof. We may assume TF (M, N) 
= Ext1
A(M, N). By 6.3, we get that

ZF (M, N) ≤ |P(Ext1
A(M, N)/TF (M, N))|.

Note |P(Ext1
A(M, N)/TF (M, N))| is bounded above by c(M, N). The result follows.

7. T-split sequences and AR-sequences

The goal of this section is to prove the following result:

Theorem 7.1. Let (A, m) be a Henselian Cohen–Macaulay local ring and M be an indecomposable
MCM A-module free on the punctured spectrum of M. The following assertions are equivalent:

1. There exists a T-split sequence α : 0 → K → E → M → 0 with α non-split.
2. There exists a T-split sequence β : 0 → V → U → M → 0 with V indecomposable and β non-

split.
3. The AR-sequence ending at M is T-split.

https://doi.org/10.1017/S0017089524000259 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089524000259


14 Ankit Mishra and Tony J. Puthenpurakal

For definition of AR sequences, see [23, Chapter 2]. From [23, Theorem 3.4], we know that for an
indecomposable MCM module over A, and then there is an AR-sequence ending in M if and only if Mp

is free for all p ∈ Spec0(A) = Spec(A) \ {m}
Before proving Theorem 7.1, we need the following well-known result. We give a proof for the

convenience of the reader.

Lemma 7.2. Let A be a Noetherian ring and N, M, and E are finite A-module. Let N = N1 ⊕ N2, and we
have following diagram

s : 0 N M E 0

si : 0 Ni Mi E 0

f

pi γi 1E

fi

for i = 1, 2. Here, pi : N → Ni is projection map for i = 1, 2. If s is non-split, then one of the si is
non-split.

Proof. Let s1 and s2 are split exact sequences. So, we have gi : Mi → Ni for i = 1, 2 such that gifi = 1Ni .
Consider function g = (g1γ1, g2γ2) : M → N1 ⊕ N2. Let (n1, n2) ∈ N and then

gf (n1, n2) = (g1γ1f (n1, n2), g2γ2f (n1, n2))

= (g1f1p1(n1, n2), g2f2p2(n1, n2))

= (n1, n2)

This implies g is a left inverse of f , so s is split exact sequence.

We now give

Proof of Theorem 7.1. The assertions (iii) =⇒ (ii) =⇒ (i) are clear.
(i) =⇒ (ii). As A is Henselian, the module K splits as a sum of indecomposable modules K = K1 ⊕

K2 ⊕ · · · ⊕ Kr. The result follows from Lemma 7.2.
(ii) =⇒ (iii). Let β : 0 → V → U → M → 0 be T-split and β non-split. As V is indecomposable, we

have following diagram

β : 0 V U M 0

s : 0 τ(M) E M 0

1M

Here, s is an AR-sequence ending in M, see [23, 2.3, 2.8]. This implies s is T-split (see [20,
Proposition 3.8]).

Remark 7.3. Regarding Proof of Theorem 7.1. (ii) ⇒ (iii): The first square is a pushout diagram
[6, Proposition 2.12. (i) ⇔ (iv)]. Now since we know T is a sub-functor of Ext coming from an exact
substructure of mod A, [8, Theorem 4.8, Proposition 3.8], then the AR-sequence is in TA(M, N) from
definition of Exact structure.

8. Some observation about complete intersection

In this section, we prove Theorem 1.5 (see Theorem 8.3).
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Theorem 8.1. Let (A, m) be Noetherian local ring and M a finite A-module. We denote the n-th Betti
number of A module M as βA

n (M). Then complexity of M can be defined as:

cx M = inf
{

r ∈N

∣∣∣∣ there exists polynomial p(t) of degree r − 1
such that βA

n (M) ≤ p(n) for n 	 0

}

Theorem 8.2. Let Q be a Noetherian ring and f = f1, . . . , fc be a Q-regular sequence. Set
A = Q/(f1, . . . , fc). Let M be a finite A-module. Note projdimQM <∞.

Let F is a free resolution of M as an A-module. Let t1, . . . , tc:F( + 2) → F be the Eisenbud operators
(see [10, Section 1]). Consider the polynomial ring B = A[t1, . . . , tc] with deg(ti) = 2 for i = 1, . . . , c.
Let L be an A-module, and then we can think of TorA

∗ (M, L) = ⊕
i≥0 TorA

i (M, L) as a B-module (here we
give degree −i for an element of TorA

i (M, L)).

Theorem 8.3. Let (Q, n, k) be a Henselian regular local ring and f = f1, . . . , fc ∈ n2 a regular sequence.
Assume k is infinite. Set I = (f1, . . . , fc) and (A, m) = (Q/I, n/I). Assume dim A = 1. Let M be an
indecomposable MCM A-module with cxAM ≥ 2 and

F: . . .→ Fn+1 → Fn → Fn−1 → . . .

be the minimal free resolution of M. Set Mr = SyzA
r (M). Then there exists r0 such that for all r ≥ r0, there

are exact sequences αr : 0 → Kr → Mr+2 → Mr → 0 such that

(1) cxKr ≤ cxM − 1 for r ≥ r0.
(2) αr is non-split for r ≥ r0.
(3) αr is T-split for r ≥ r0

If furthermore M is free on the punctured spectrum of A, then the AR-sequence ending at Mr is T-split
for all r ≥ r0.

Proof. Let x be an A-superficial element. The map αn : A/mn → A/mn+1 defined by α(a +mn) = ax +
mn+1 induces an isomorphism of TorA

i (A/mn, M) and TorA
i (A/mn+1, M) for n ≥ red(A) (see [18, Lemma

4.1(3)]).
Fix n0 ≥ red(A). For j = 1, . . . , n0, we have
TorA

∗ (A/mj, M) = ⊕
i≥0 TorA

i (A/mj, M) is ∗-Artinian B = A[t1, . . . , tc] module, where t1, . . . , tc are
Eisenbud operators. Then for i 	 0 (say i ≥ i0) and for j = 1, . . . , n0, we have following exact sequence:

TorA
i+2(A/m

j, M)
ξ−→ TorA

i (A/mj, M) → 0.

Here, ξ is a linear combination of t1, . . . , tc (see [10, Lemma 3.3]).
We have following commutative diagram for i ≥ i0

TorA
i+2(A/mn0 , M) TorA

i (A/mn0 , M) 0

TorA
i+2(A/mn0+1, M) TorA

i (A/mn0+1, M)

ξ

θi+2 θi

ξ

where θi = TorA
i (αn0 , M). As θi and θi+2 are isomorphisms, we get that the bottom row is also surjective.

Iterating we get an exact sequence for all j ≥ 1 and for all i ≥ i0,

TorA
i+2(A/m

j, M)
ξ−→ TorA

i (A/mj, M) → 0.

Note ξ induces a chain map ξ : F[2] → F. As we have a surjection

TorA
i+2(A/m, M)

ξ−→ TorA
i (A/m, M) → 0, for i ≥ i0,
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by Nakayama Lemma we have surjections Fi+2
ξ−→ Fi for all i ≥ i0 (say with kernel Gi). Notice we have a

short exact sequence of complexes:

0 →G≥i0 → F[2]≥i0

ξ−→ F≥i0 → 0.

Thus, we have surjections Mi+2
ξ−→ Mi for all i ≥ i0, say with kernel Ki. We note that G≥i0 is a free res-

olution of Ki0 and that Ki is (possibly upto a free summand) the (i − i0)th syzygy of Ki0 . It follows that
cxKi = cxKi0 ≤ cxM − 1. We have an exact sequenceαr : 0 → Kr → Mr+2 → Mr → 0 for all r ≥ r0. Since
M is indecomposable, Mr = SyzA

r (M) is also indecomposable for all r ≥ 1 (see [23, Lemma 8.17]). As
cxM ≥ 2 it follows that Mr+2 � Mr for all r ≥ 1. It follows that αr is not split for all r ≥ r0.

By 8.2 it follows that for i ≥ i0, we have an exact seqquence

0 → TorA
1 (A/mj, Ki) → TorA

1 (A/mj, Mi+2) → TorA
1 (A/mj, Mi) → 0,

for all j ≥ 1. Clearly, this implies that αi is T-split.
Notice Mr is free on Spec0(A) for all r ≥ 1. As αr is T-split, it follows from 7.1 that the AR-sequence

ending at Mr is T-split for all r ≥ r0.

9. T-split sequences on hypersurfaces defined by quadrics

In this section, we prove Theorem 1.6 (see Theorem 9.4). We also construct Example 1.7 (see 9.5).

Theorem 9.1. In this section, (Q, n) is a Henselian regular local ring with algebraically closed residue
field k = Q/n and let f ∈ n2 \ n3. Assume the hypersurface A = Q/(f ) is an isolated singularity of
dimension d ≥ 1.

Remark 9.2. Here, we are taking the definition of an Ulrich module as a maximal Cohen–Macaulay
module with e0(M) =μ(M) (see also [3]).

It is well known that as f is a quadric, the ring A has minimal multiplicity. It follows that
e0(A) = 2 and e1(A) = 1. We also have that if M is MCM, then N = SyzA

1 (M) is Ulrich, that is, μ(N) =
e0(N) (furthermore, e1(N) = 0). As A is also Gorenstein, we get that any MCM A-module M ∼= F ⊕ E
where F is free and E has no-free summands and is a syzygy of an MCM A-module; in particular, E is
Ulrich.

The following results compute eT( − ) for MCM A-modules. We also give a sufficient condition for a
short exact sequence to be T-split.

Proposition 9.3. (with hypotheses as in 9.1) Let M, N, U, V be MCM A-modules with M, N having no
free summands. Then

(1) eT(M) =μ(M).
(2) Let U = L ⊕ F where F is free and L has no free summands. Then eT(U) =μ(L).
(3) Let α : 0 → N → V → M → 0. If μ(V) =μ(N) +μ(M) then

(a) V is Ulrich
(b) α is T-split.

Proof. (1) Note SyzA
1 (M) is also Ulrich. Using 9.2, we have

eT(M) = e1(A)μ(M) − e1(M) − e1(SyzA
1 (M)) =μ(M).

(2) Note eT(U) = eT(L) + eT(F) =μ(L) + 0 =μ(L).
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(3) We have

e0(V) = e0(M) + e0(N),

=μ(M) +μ(N) as M, N are Ulrich,
=μ(V).

In particular, V is Ulrich. Note that, this also follows from [8, Lemma 5.2.2]. So, V has no free summands.
We have

eT(α) = eT(M) + eT(N) − eT(V) =μ(M) +μ(N) −μ(V) = 0.

So, α is T-split.

We now state and prove the main result of this section.

Theorem 9.4. (with hypotheses as in 9.1) All but a finitely many AR-sequences of A are T-split.

Proof. We may assume that A is of infinite CM representation type (i.e., there exists infinitely many
mutually non-isomorphic indecomposable MCM A-modules); otherwise, there is nothing to prove. The
AR-quiver of A is locally finite graph, [23, 5.9]. It follows that for all but finitely many MCM indecom-
posable A-modules, the middle term of the AR-sequence ending at M and SyzA

1 (M) will not contain a
free summand. Let M be such a indecomposable MCM A-module and let s : 0 → τ (M) → V → M → 0
be the AR-sequence ending at M. Then by [19, 7.11], we have μ(V) =μ(M) +μ(τ (M)). Note that the
hypotheses of [19, 7.11] are satisfied, especially, there is no irreducible map A → M because V has no
free summand, [23, 2.12]. The reason for the absence of the irrudicble map A → SyzA

1 (M) due to [19,
2.3, 7.4, 7.6]. By 9.3(3), it follows that s is T-split.

We now give example of an AR-sequence which is not split.

Example 9.5. (with hypotheses as in 9.1) Let s : 0 → N → E → M → 0 be an AR-sequence such that E
has a free summand. Then

(1) s is NOT T-split.
(2) If t : 0 → V → U → M → 0 is any non-split exact sequence of MCM A-modules then t is NOT

T-split.

Proof. (1) Note μ(N) ≥μ(E) −μ(M). Furthermore, equality cannot hold for otherwise by Proposition
9.3 we will get E is Ulrich, a contradiction. Let E = L ⊕ F with F 
= 0 free and L has no free summands.
We note that

eT(s) = eT(N) + eT(M) − eT(E),

=μ(N) +μ(M) −μ(L)

>μ(N) +μ(M) −μ(E)> 0.

Thus, s is NOT T-split.
(2) This follows from Theorem 7.1.

10. An application of T-split sequences in Gorenstein case

In this section, we prove Proposition 1.9 (see 10.6). We also prove Theorem 1.10 (see 10.10 and 10.11).
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Theorem 10.1. Let (A, m) be a Gorenstein local ring. Let CM(A) denotes the category of MCM
A-modules and CM(A) the stable category of CM(A). Note that objects of CM(A) are same as the objects
of CM(A) and if M and N are MCM A-modules, then

HomA(M, N) = HomA(M, N)

{f : M → N| f factors through a projective module} .

Theorem 10.2. (Co-syzygy) Let (A, m) be a Gorenstein local ring and M be an MCM A-module. Let
M∗ = Hom(M, A), and then M∗∗ ∼= M. Suppose G

ε−→ F → M∗ → 0 is a minimal presentation of M∗.
Dualizing this, we get 0 → M → F∗ ε∗−→ G∗. Co-syzygy of M can be defined as coker(ε∗) and denoted as
�−1(M). So, we have exact sequence 0 → M → F →�−1(M) → 0.

Note that co-syzygy does not depend on the minimal presentation, that is, if we take another minimal

presentation G′ ε
′

−→ F′ → M∗ → 0, then coker(ε∗) ∼= coker((ε ′)∗).

Theorem 10.3. Let �−1(M) be the co-syzygy of M, and then we have following exact sequence:

0 → M → F →�−1(M) → 0

here F is a free A-module (see 10.2).
For any f ∈ HomA(M, N), we have following diagram

0 M F Ω−1(M) 0

αf : 0 N C(f) Ω−1(M) 0

f 1

i p

Here, the first sequare is a pushout diagram.

Remark 10.4. Note that CM(A) is an triangulated category with the projection of the sequence
M

f−→ N
i−→ C(f )

−p−→�−1(M) in CM(A) as a basic triangles for any morphism f . Exact triangles are tri-
angles isomorphic to a basic triangle (see [5, 4.7]). Also note that for any short exact sequence 0 →
U → V → W → 0 in CM(A), we have exact triangle U → V → W →�−1(U) (see [17, Remark 3.3]).

Theorem 10.5. Let M and N be MCM A-modules, and then it is easy to show that

HomA(M, N)
η∼= Ext1

A(�−1(M), N) as A-modules.

In fact, the map η : f �→ αf is an isomorphism. It is clear that η is natural in M and N.
Let TA(�−1(M), N) denotes the set of all T-split sequences in Ext1

A(�−1(M), N). If we denote
η−1(TA(�−1(M), N)) by R(M, N), then η induces following isomorphism:

HomA(M, N)

R(M, N)
∼= Ext1

A(�−1(M), N)

TA(�−1(M), N)
.

Proposition 10.6. R is a relation on CM(A).

Proof. To prove that R is a relation on CM(A), we need to show:
if M1, M, N, N1 ∈ CM(A), u ∈R(M, N), f ∈ HomA(M1, M), and g ∈ HomA(N, N1), then u ◦ f ∈R(M1, N)
and g ◦ u ∈R(M, N1).
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We first prove u ◦ f ∈R(M1, N). We have following diagram of exact traingles

M1 N C(u ◦ f) Ω−1(M1)

M N C(u) Ω−1(M)

u◦f

f 1 h

u

Note that the map h exists from the property (TR3) (see [22, Definition 10.2.1]).
So we have following diagram of exact sequences

αu◦f : 0 N C(u ◦ f) ⊕ F Ω−1(M1) 0

αu : 0 N C(u) ⊕ G Ω−1(M) 0

1 h

where F and G are free A-modules. Now since u ∈R(M, N), this implies αu is T-split. So from
[20, Proposition 3.9], αu◦f is T-split. In other words, u ◦ f ∈R(M1, N).

Next, we prove g ◦ u ∈R(M, N1). We have following diagram of exact traingles

M N C(u) Ω−1(M)

M N1 C(g ◦ u) Ω−1(M)

u

1 g θ

g◦u

Note that the property (TR3) (see [22, Definition 10.2.1]) guarantees the existence of map θ .
So we have following diagram of exact sequences

αu : 0 N C(u) ⊕ F ′ Ω−1(M) 0

αg◦u : 0 N1 C(g ◦ u) ⊕ G′ Ω−1(M) 0

g θ 1

where F′ and G′ are free A-modules. Now since u ∈R(M, N), this implies αu is T-split. So from [20,
Proposition 3.8], αg◦u is T-split. In other words, g ◦ u ∈R(M1, N).

Remark 10.7. To prove αu◦f , αg◦u ∈ TA(M, N), we can use the fact that T is a sub-functor of Ext coming
from exact substructure of mod A (see [8, Theorem 4.8, Proposition 3.8]).

Theorem 10.8. Since R is a relation on CM(A), the factor category DA = CM(A)/R is an addi-
tive category. Note that objects of DA are the same as those of CM(A), and for any M, N ∈ Obj(DA),
HomDA (M, N) = HomA(M, N)/R(M, N).

Also note that �(HomDA (M, N))<∞ (see [20, Theorem 4.1]).

Next, we want to prove the main result of this section. But, first we prove a lemma.

Lemma 10.9. Let (A, m) be a Henselian Gorenstein local ring and M be an MCM A-module. Then
R(M, M) ⊆ Jac(End A(M)) in CM(A).
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Proof. We prove this result in three cases:
Case 1: M is indecomposable MCM module.
Let u ∈R(M, M) and if possible assume that u /∈ Jac(EndA(M)). This implies u is invertible. Now, we

have following diagram of exact sequences

0 M F Ω−1(M) 0

αu : 0 M C(u) Ω−1(M) 0

u 1

From here, we get C(u) ∼= F. Also from the assumption, αu is T-split. We know that eT(αu) = eT(M) +
eT(�−1(M)) − eT(C(u)).

So, eT(αu) = eT(M) + eT(�−1(M)) because C(u) ∼= F. This implies
eT(αu)> 0, but this is a contradiction because αu is T-split. Therefore, u ∈ Jac(EndA(M)).
Case 2: M ∼= En for some indecomposable MCM module E.
It is clear that R(M, M) =R(En, En) ∼= Mn(R(E, E)). Here, Mn() denotes n × n-matrix.
We also know that End(En) ∼= Mn(End(E)) and
Jac(End(En)) ∼= Mn(Jac(End(E))). From the case (1),
Mn(R(E, E)) ⊆ Mn(Jac(End(E))).
So, R(M, M) ⊆ Jac(End(M)).
Case 3: M ∼= Mr1

1 ⊕ . . .⊕ M
rq
q with each Mi indecomposable for all i = 1, . . . , q and Mi � Mj if i 
= j

(since A is complete, KRS holds for CM(A)).
We can assume that q> 1 because q = 1 case follows from case (2).
Now it is sufficient to prove the following claim.
Claim: Let E and L be MCM A-module. Assume that E ∼= Ea1

1 ⊕ . . .⊕ Ean
n and L ∼= Lb1

1 ⊕ . . .⊕ Lbr
r

where Ei and Lj are distinct indecomposable MCM modules and Ei � Lj for i = 1, . . . , n and j = 1, . . . , r.
If the lemma is true for E and L, then it is also true for N = E ⊕ L.

Proof of the claim: We know that

EndA(N) =
(

EndA(E) HomA(L, E)
HomA(E, L) EndA(L)

)
,

Jac(EndA(N)) =
(

Jac(EndA(E)) HomA(L, E)
HomA(E, L) Jac(EndA(L))

)
and

R(N, N) =
(R(E, E) R(L, E)
R(E, L) R(L, L)

)
Since the result is true for E and L, this implies R(N, N) ⊆ Jac(EndA(N)).

Theorem 10.10. Let (A, m) be a Henselian Gorenstein local ring, M and N be MCM A-modules. Then
M ∼= N in DA if and only if M ∼= N in CM(A).

Proof. Let f : M → N be an isomorphism in CM(A). Then, f is an isomorphism of M and N in DA.
For the other direction, suppose f : M → N be an isomorphism in DA. Then there exists an isomor-

phism g : N → M such that g ◦ f =μ and μ= 1 + δ for some δ ∈R(M, M). From Lemma 10.9, δ ∈
Jac(EndA(M)). This impliesμ is an isomorphism in CM(A). Therefore, g ◦ f is an isomorphism in CM(A).
Similarly, f ◦ g is also an isomorphism in CM(A). This implies M ∼= N in CM(A).

Proposition 10.11. Let (A, m) be a Henselian Gorenstein local ring. If M is indecomposable in CM(A),
then it is indecomposable in DA. Furthermore, DA is a (KRS) category.
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Proof. Let M be an MCM A-module, and then M ∼= Ma1
1 ⊕ . . .⊕ Man

n in CM(A); here, each Mi is distinct
indecomposable non-free MCM A-module.

For any indecomposable non-free MCM module N, we know EndA(N) is a local ring and EndDA (N) =
EndA(N)/R(N, N). From Lemma 10.9, R(N, N) ⊆ Jac(EndA(N)). So, EndDA (N) is a local ring. Thus,
N is indecomposable in DA.

Remark 10.12. The statements of the Lemma 10.9, Theorem 10.10, and Proposition 10.11 are valid
for any relation R coming from a sub-functor of Ext of the exact substructure of mod A as long as the
subadditive function φ is 0 on free modules ( also see [8, Theorem 4.8]).
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