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Abstract. We find very simple examples of C°°-arcs of diffeomorphisms of the
two-dimensional torus, preserving the Lebesgue measure and having the following
properties: (1) the beginning of an arc is inside the set of Anosov diffeomorphisms; (2)
after the bifurcation parameter every diffeomorphism has an elliptic fixed point with
the first Birkhoff invariant non-zero (the KAM situation) and an invariant open area
with almost everywhere non-zero Lyapunov characteristic exponents, moreover
where the diffeomorphism has Bernoulli property; (3) the arc is real-analytic except
on two circles (for each value of parameter) which are inside the Bernoulli property
area.

Topologically after the bifurcation parameter we have hyperbolic toral auto-
morphisms with 0 'blown up'.

1. Introduction
In this paper we find a simple one-parameter family of diffeomorphisms of the
two-dimensional torus T2, Ht:T

2^T2 for te[-e, e], preserving the Lebesgue
measure and satisfying the properties (l)-(5) listed below.

(1) For every t>0,H, is inside the set of Anosov diffeomorphisms An (T2). For
every f >0, H, is topologically conjugate with the hyperbolic toral automorphism
A given by the matrix (1 2)-

(2) The family H, at t = 0 is transversal to the set Fr An (T2) - the boundary of
An (T2). We mean by this that there exists a constant C >0 such that

distc>(Hh Fr An (T2)) > C • \t\.

(3) For every t <0 there exists an elliptic island around Oe T2. This means that
the differential DH,{0) is elliptic, the eigenvalues of DH,(0) are not roots of unity
of low degree and in the Birkhoff normal form the frequency of oscillations depends
on the amplitude. More exactly, the first Birkhoff invariant is non-zero. Then by
Kolmogorov-Arnold-Moser theory most of the neighbourhood of 0 is filled with
//,-invariant closed curves.
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(4) For every t < 0 there exists an open, non-empty //(-invariant set S, <=• T2 on
which H, behaves stochastically. More exactly the Lyapunov characteristic
exponents for H,\Si are almost everywhere non-zero and H, restricted to 5, has the
Bernoulli property.

(5) H: [-e, e ] x T2 -» T2 is a C00-function and is real-analytic except on the two
families of circles [-e, e]x{a,b}xS1.

We look for H, in the form of a toral-linked twist mapping, see [1] and [9], i.e.

Ht = Gg,°Ff,
where

Ft,(x, y) = (x +f,(y), y), Ggt(x, y) = (x, y +g,(x)),

for every x, y € R and some integers k and /.
We take /, = id so that

H,(x,y) = (x+y,y+gt(x+y)).

We take g, satisfying the following properties:

fFor every t e [-e, e] g, is an odd function,

g,(0) = 0, g,(l) = l, dgo/dx(0) = d2go/dx2(0) = 0, d3go/dx\0)>0, (1)

Id2g,/dx dt(x)\x =0,1=0 >0 and dgo/dx(x) > 0 for every x £Z.

If t > 0, the point 0 e T2 is a saddle for //,. When f passes 0 in the negative
direction two saddles p, and q, appear on the opposite sides of 0 on the x-axis while
0 itself becomes elliptic.

Checking the properties (l)-(3) is straightforward so we do not dwell on them.
Let us only mention that / / 0 corresponds to diffeomorphisms studied in [1] and [6]
and that for t<0, \t\ sufficiently small, the first Birkhoff invariant at OeT2 is
non-zero since d3g,/dx3(0) # 0.

Thus, the main aim of the paper is to prove property (4) for a special family gt.
In general the stable and unstable manifolds of p, and q, intersect transversally

(see the phase portrait in figure 1) and in such a case we do not know how to
estimate the Lyapunov exponents. Moreover, in view of a recent result by R. Mane
[7] there exists a C1-generic subset

where Lyapunov exponents are zero almost everywhere. So our H, must be disjoint
with s4L- (The subscript L means that we consider diffeomorphisms preserving the
Lebesgue measure.) In connection with the Mane result Katok has suggested
studying the Lyapunov exponents for small perturbations of Ho-

FIGURE 1 FIGURE 2
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In the case of our special H, the saddles p, and q, are joined by separatrices, see
figure 2. Throughout the paper we use only this property of Ht, together with
properties (1). In the theorem in § 2, we consider a specific H, only to be concrete.

Denote the domain between the separatrices by U,. An idea which explains
property (4) is that T2\cl U, is //,-invariant so the behaviour along the trajectory
of every point from T2\cl U, is hyperbolic as the trajectory keeps far away from
the elliptic island around Oe T2.

In fact we 'blow up' the saddle of the Anosov diffeomorphism into the disk cl U,.
We use the Hamiltonian function y2-x2(x2 + 2t). In a neighbourhood of cl U, the
saddle-like dynamics are preserved.

Section 2 is devoted to the construction of H,. In §§ 3-5 we prove property (4)
using the technique of invariant cones. In § 6 we prove that for each t < 0, Ht\T*\ciUt

is an almost Anosov diffeomorphism. Namely, it has continuous, uniquely integrable
stable and unstable sub-bundles; it has almost everywhere non-zero Lyapunov
exponents for every H, invariant probability measure on T2\cl U, and it is topologi-
cally conjugate to the Anosov diffeomorphism A|r2\{o>- However proposition 3, § 6
proves that our 'blowing up' is in no sense C1. Our study in § 6 corresponds to the
Katok study for the //0-type example [6] and to the Gerber and Katok study of
smoothed pseudo-Anosov diffeomorphisms [4].

One reason why it is easy to construct our examples of coexistence is that we
perturb the twist Fid with Ggt where g, is not periodic, i.e. the average twisting

f ^(x)dx*0.
Jo dx

The classical problem is to consider g, to be periodic. Nevertheless the facts of
local character i.e. the dynamics in the neighbourhood of cl Ut, like lemmas 2, 3,
5, concern the classical situation. See § 7 for further comments.

2. Construction of the example

THEOREM. Let H, be the one-parameter family of diffeomorphisms

Ht=Hid,g,:T
2^T2 forte[-e,el

with g, defined as follows:

g, is extended to [-£ l]+Zby

gt(x+n) = gt(x) + n forxe[-H],neZ
and extended to ]1, | [ + Z in anyway so that

int{dg,/dx(x): x e-£J[} = dg,/dx(l);
gt - id is periodic with period 1;
g : [-e, e] x R-» R is C°° and
glt-«,«]x<R\(i-z+i)) is real-analytic.

Then the family H, satisfies properties (l)-(5) from the introduction.

For example, for x e ]!, l[ set
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(p(x) = exp (sin 2TT{X + b)~1.

Let us consider the following one-parameter family of Hamiltonian functions
denned in the neighbourhood off = x = y = 0 :

For t > 0 the Hamiltonian vector field V, corresponding to ht has a saddle at 0 € T2.
For t < 0 this saddle changes into an elliptic fixed point and V, acquires two saddles

joined by two separatrices, see figure 2 in § 1. We look for g, such that

has the same saddles and separatrices.
The union of stable and unstable manifolds for the saddles p, and q, in the

neighbourhood of Oe T2 coincides with the set of zeros of the function:

Consider the set of zeros of\Vt(x,y) = x2 + t + y and then the zeros of W, (x ± \y, y)
(broken lines in figure 3). Write these sets as graphs of the functions

Define g, = yt —yT- We obtain the formula from the statement of the theorem.

y? = graph y,+ __

y

—

-^ graph y,

FIGURE 3

From the construction:

Fid(graph y,+) = graph y ', and Ggt (graph y D = graph y «*\

So our goal has been reached: Hid,g, has the separatrices

yt = graph y,+ and y7=-yt-

They are Fi|d images of the separatrices of V,.
The vectors (1 =T=v|7|, ±2-N/|7|) are eigenvectors of p, and q,. The corresponding

eigenvalues are

and (l-y/\i\)/a+y/\F\).
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These numbers will appear throughout the paper. Sometimes we shall use the
notation (v)x, (u)y, (z)x, (z)y to denote the x- or y-coordinate of a vector v or of
a point z.

3. Existence of invariant families of cones
We shall describe here families of unstable and stable cones in the region T2\cl U,,
where U, is the region between the separatrices yf.

Denote for every a <b, \a -b\ < 1, the strip ]a, b[xS1 by P(a, b).
Denote by ^,(5) the region ('triangle') bounded by the components of the stable

and unstable manifolds of p, in clP{—\\t\ — 8, —vj7|) containing p, and the line

{x = -VjTf-8} for any small 8 > 0

and denote 3~',{8) = -&,(8) (see figure 4).

FIGURE 4

Let us start now with

LEMMA 1. There exists a constant Cx>0 (d « 1) such that for every 8: 0 < 8 < C\
and te[-e, 0[, if z, H,z <=P(-8,8)\(d U,uFr 9~,(8)vFr&',(8)) then there exists
integersNi>0,N2>l such that

H7N>(z), H?Hz)eclP(8,l-8) and H?(z)eP(-8,8)

for every n: —Ni <n< N2, and one of the following possibilities occurs:
(1) ZnS^iS- Vjfj) for every n: -Ni <n<N2 where by definition

zn=(xn,yn) = H"(z);

(2) zne^',(8 -Vjrf) for every n: -N1<n <N2;
(3) 0<yn<2S+sup{g,(;c):xe[-<5,5]} for -Ni<n<N2 and the sequence

(*„), n = —Ni,... ,N2is increasing;
(4) 0>yn>-28 + inf{g,(x):xe[-8,8]} for -Ni<n<N2 and the sequence

(xn), n = —Ni,... ,N2is decreasing.

The proof is straightforward so it is omitted.
For t < 0 denote by a, the smallest positive number such that

dgjdx (a,) = 4VM/U - > # . (2)
Remark 1. There is no need to compute a, exactly. Observe only that a, exists and
it is of order v|7| since

gl(x) = 2Q(t,x)(x where 0(0, 0) = 1.
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This follows easily from the definition of g,(x).
For every x such that |JC| < Vffj denote by <€(x) the cone:

«(*) = {(£, TJ)€ R2: dyt/dx(x)<T,/£}.

For every z e T2 we shall identify the tangent space TZ(T2) with R2. Define now
®(z)<= TZ(T2) for every z = (x, y)6 T2\cl £/, as follows:

(i) 3s(z) = c€{-yl\t\) if zed P(a»l-aty,

(ii) S(z) = «(-Vir|) ifz6^,=P(-ar ,-^i)uP(v^I,a () ;
and the backward trajectory HT" (z), n = 1, 2 , . . . , either hits cl P(at, 1 -a,) earlier
than cl P(—<J\t\, J\t\) or never hits cl P(-Vj7j, VjTJ);

(iii) 3i(z) = eS(y/\F\) if as in case (ii) ze0>, but hits the set c\P(-y/\F\,y/\F\)
earlier thanP(at, l—at);

(iv) 9(z) = <g(>/\F\) if z ec lP( -VR, >/M), H,(z)^P(-VM, VfTJ);
(v) 3i(z) = <€(x) if z, //r(z)eP(-Vj71,V17|) and y > 0 (y>0 makes sense since,

by lemma 1, |y| is small);
(vi) 3)(z) = <£(-*) if in (v) we replace y >0 by y < 0.
Now we are going to prove the invariance of this cone bundle. If z and

H,(z) = (xi, yi) are as in cases (i) or (ii) then

so
(PH,U3>(z)) =

If z = (x, y) as in (i) or (ii) and H,(z) = (xi, yi) as in (v) (or similarly (vi)), then
we use the concavity of the function y t- Let zi = (xi, yi) be the point on the same
vertical as (xi, yi), lying in the yt (see figure 5). Let H71 (z i) = z = (x, y). Then

x)) =

FIGURE 5

If z and H,(z) are both as in (v) (or (vi)) the argument is similar.
It is also similar for z given by (v) or (vi) and H,(z) given by (iv).
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If 2 is as in (iv) or (iii) and H,(z) as in (iii), then analogously to the first-considered
case:

(DH,U9>(z)) =

Finally if z is as in (iii) or (iv) and Ht(z) = (xi, yi) as in (i), then by (2) we have

hence

Note that due to lemma 1 it cannot happen that z is as in case (iii) and in the
same time H,(z) as in cases (iv), (v) or (vi).

So the invariance of this cone bundle has been proved. We have the cone bundle
3} over T2\cl U, and

DHt(2>)<z2>.

The analogous stable cone bundle 3)s i.e. such that DHi1 (31s) c 3)s can be defined
by

where Sy is the symmetry with respect to the y-axis.

Remark 2. At this stage we can immediately deduce the existence of a set of
positive Lebesgue measure with non-zero Lyapunov characteristic exponents as
follows.

The set of line sub-bundles of cl (3>) over T2\cl U, is a partially ordered set, with
angle order over every point. Take the bundle L(d/dy) spanned by the vector field
d/dy. For every z e T2\cl Ut,

L{d/dy)(z)ecl3)(z)

and the sequence DH"(L(d/dy)) is monotonous with respect to the considered
partial order. Hence the pointwise limit, a measurable line bundle, is a fixed point
for DH, (see [2, theorem 3.8.1] for the details). Denote this bundle by E,. Now
use the Birkhoff ergodic theorem for the function ||ZW,|E,||.

Let A : T2\cl U, -* U be the Lyapunov characteristic exponent for the vectors from
Et. Then

f K { z ) d z = \
Jr2\ci u, JT2\CI U,

which is clearly positive for \t\ sufficiently small. So A (2) is positive on a set of
positive Lebesgue measure. The second Lyapunov exponent, which is equal to
-A (2), is negative on the same set. •

4. Lyapunov characteristic exponents are non-zero almost everywhere on T2\cl Ut

LEMMA 2. Let

z=(x,y) eel P(-y/\F\,0)\clU,,

Ht(z) = (Xl,yi)eclP(O,J\i\),

y, y i>0 and |JC|<|JCI|.
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As in lemma 1 let us put

F. Przytycki

= zn = (xmyn) forneZ.

Then for every n > 1

|x_n+1|<|xB|<|x_n|. (3)

Proof. Observe that the backward (i.e. forward under Hi1) H,-trajectory of the
point z0 is the reflection in the y-axis of the forward trajectory under Fid ° Ggl of
the point (-x0, yo)- So the latter trajectory is the sequence of points (—x-n, y_n).

graph y

FIGURE 6

Assume that xo^t/2. At t/2 the function yt reaches its maximum (see figure
6). We have

y o - y T (-xo) = y o - y t (x0)

since x1>xo + yt(xo) and the function y 7 is decreasing to the right from x0 + y t (xo).
If XQ < t/2 we have again

yo-yr t -xo^yo-yrUi) (4)

since by our assumptions —t/2 < —x0 ^X\.
In the case —xo = x\ the lemma is trivially true so we can assume that -JCO<*I-

Joint the points (-x0, yo) and (JCI, y0) by a curve a :[0, l]-» R2 which is the interval
in the coordinates (x, y —y7(x)). Due to (4), for every Soe[0,1],

Da((d/ds)(so))e(DFM(2>))(a(s0)),

so that for every n > 0

D(H? °Ggloa)((d/ds)(s0))e2!(H'; °Gg,oa(s0))

and the ^-coordinate

(D(W ° Gg, o a)((d/ds)(so)))x >0.

Hence xn > -x-n+i for n >0. This proves the left hand side inequality in (3).
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To prove the right hand side inequality we observe that

yo-yih(*o) = yo-yr(-*o) = y-i-yil"(--xo).
We join the points (x0, yo) and (-x0, y-i) by the interval in the coordinates
(x, y -y,+ (x))(unlessxo = 0,whichisthetrivialcase)andthenproceedasbefore. •

LEMMA 3. For every 5 > 0 such that Vj7|+5^Ci, where C\ is the constant from
lemma 1, if

and n(z)>0 is the first integer such that

H?u)(z)edP(J\F\ + 8,l-yJ\F\-8),

ifve3)(z), then

(DH?(z)(v))x>(l-6s/\T\) • (DH,(v))x.

Proof. We can assume that n(z)>4. Put

H"(z) = zn=(xn,yn),

assume for example that yn > 0 (n = 0 , 1 , . . . n (z)), i.e. the sequence (xn) is increasing
(see lemma 1). It is possible because the case yn <0 is similar, and if n(z)<4 or

the lemma is true for obvious reasons.
Put DH1 (v) = vn = (£,, rjn) and /„ = £n+i/€n. Using the fact that vn e 3) and the

description of 31 from § 3 we obtain the following estimates.

\ \ \ \ M
if zn eclP(-M VjTf), /„ > 1 +dy:/dx(xn);

JfJi\ VNow look what happens to vn under DH71. Equivalently, consider DG&1 (vn+i)
under DFTa- For

we obtain

l~l<

hence

ln>(l+dyt/dx(-xn+1))-\
Let m = n2(z), «i = «i(z) and n3 = n3(z) be respectively the smallest non-negative

integers such that xn >-V|f|, *,, >0 and xB>V|/|. Now make two additional
assumptions:

n3(z)-n2(z)>3; (5)

l-Km-lMkJ. (6)
Due to (5) and (6) the point zni_i satisfies the assumptions of lemma 2 about z.

Hence, for every k: -\<k^n3-3-ni

lnx+k • /n i^_3 > ( l + ^ - (-xBl+k+1)) ( l + ^ - (xBl-k_3)) a 1. (7)
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We used here the fact that by lemma 2

and that the function dyt/dx is defined and decreasing between x^-k-3 and
-xni+k+i- It is defined because by the left hand inequality in (3)

l*m-fc-3| ̂  |xn,+fc+2| ^ \xn3-i\ for k < « 3 - 3 - n i .

We know, also by lemma 2, that |n2 — l — (n(z) — n3)\<l. So
n(z)—1 "lZ^ n^—1 n(z)— 1

&u)/fi = n /«= n /. • ( w • i«3-2 • iH3-i • r u • n '.

(We put the terms +1 and ln2 into parentheses because they appear only in the
c a s e « 3 — Mi = / i i — « 2 ~ 1 a n d d o n o t a p p e a r if 0 3 — « i = w i — / 1 2 O

In the case when (6) is not satisfied i.e. if |xni_i| > |JCMI| we consider the reflection
in the y-axis of the Fid ° GgI-trajectory (-x-n, y~n) or the //,-trajectory
zn = (-x-n, y-n-i). We can use lemma 2 for (zn), so we obtain for every k >0

This also gives £,(z)/f 1 > 1 -6Vj7|. The only difference in computation is that the
term /ni_i has no pair, see (7). But clearly |jcni_i| > \t\/2, hence lni-X > 1.

We eliminate assumption (5) in the following way.

i.e. it is of the order of at least -J\t\. lnidg,/dx>3t for t<0 and \t\ sufficiently
small. This follows easily from the representation

gt = Q(t,x)-2(x3 + tx), with O(0, 0) = l,
see remark 1 in § 3. Thus

Vn + l/in + l = bin/(in + Vn)) + dg,/dx (xn+l),
hence if r\j£n >K-J\t\, then

If we fix any integer N>0 and proceed by induction starting with k =n2 — l we
can prove that for every k:

n2-l<ic<n2+JV,

is of the order of vjfj for \t\ sufficiently small (depending on N), hence
>0. In particular, we can take

N = n3 —n2<3.

Then for n: n2-l ^n < n 3 - l ,

ln=(€n+1tn)/€n*l.
For all other n we have trivially /„ > 1. This proves the lemma. •
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Now we can estimate the Lyapunov exponents. Take the constant C\ from lemma
1. Let a (Ci) > 0 be a constant such that

o(Ci)<inf {dgo/dx(x): x e[Cu 1 - d ] } .

Then the similar inequality

a(C1)<mf{dgt/dx(x):xe[Cu 1-d]}

holds for every t with \t\ sufficiently small.
Put Q = c\P(Cu 1-Ci). If \t\ is sufficiently small we can replace the cones 3)

over Q by smaller cones

and leave the old cones over the complement of Q. Then clearly the new system
of cones 21' is also £>//,-invariant.

For ve3l'(z), z eQ and n(z)>0 the first time when H"M(z)&Q, we have by
lemma 3

:<Z) {v))J(DH,(v))x) • ((DH,(v))J(v)x)

for |f | sufficiently small.
This proves that for the first return mapping (H,)o, for almost every z eQ one

of the Lyapunov exponents is not less than log A,, i.e. positive and the second one
is negative.

It can be easily proved by use of the Birkhoff ergodic theorem that almost every
point from Q returns to C? with positive frequency, see [1] for example. Hence
also for almost every point from the set U^=-°o H" (Q) the Lyapunov characteristic
exponents are non-zero. But the latter set by lemma 1 is equal to J"2\cl Ut. This
finishes the proof that Lyapunov exponents for //,|T2\CI U, are non-zero. •

5. H,\T
2\ci U, has the Bernoulli property

By the Pesin theory [8], for almost every z e T2\cl Ut there exist local unstable and
stable manifolds W"oc(z), Wioc{z). To prove the Bernoulli property, also by use
of the Pesin theory, it is enough to prove that for almost every pair z, z'e T2\cl Ut,
for every m, n > 0, sufficiently large integers (depending on z and z')

H?(W?oc(z))nH-m(Ws
loc(z'))*0. (8)

We consider in fact any lifts of these curves and a lift of the dynamics to U2

without any change of notation.
The vectors tangent to the curves H"(W^iz)), H^m{W\oc{z')) lie in the cone

bundles 3l and 2 s respectively, hence the coordinate x is monotonic along these
curves, so that we can introduce a natural orientation on those curves and denote
the beginning of the curve H"{W?oc(z)) by (x(n, u, b), y(n, u, b)) and its end by
(x(n, u,e), y(n, u, e)). Use similar notation for the ends of H~m(Wloc{z)) with u
replaced by 5. For almost every z, z'

lengthHiiW^iz)), lengthH7m(Ws
loc(z')) >oo,

m,n-»oo

hence
\x(n, u,b)-x(n, u,e)\ »oo, \x(m, s, b)-x(m, s, e)\ » oo.
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From this it easily follows that

\y(n, u, b)-y(n, u, e)\ »oo, |y(m, s, b)-y(m, s, e)\ * oo
rt-*oo m-*oo

and that
x(n, u, b)-x(n, u, e) x{m,s,b)-x(m,s,e)
y(n,u,b)-y(n,u,e) ' y(m, s, b)-y(m, s, e)

for n, m sufficiently large.
This for geometric reasons proves (8). •

6. Additional properties ofH,\T
2\d u,

We begin with the following lemma, where we gather standard facts about the
dynamics near a saddle, which we shall need later.

LEMMA 4. Let 0 e R2 be a saddle for a C2-diffeomorphism <f> of R2, with eigenvectors
(d/djc)(O), (d/dy)(O), corresponding eigenvalues /x > 1, /J.~1 and stable and unstable
manifolds coinciding respectively with the y- th and x- th axes. Let

y = (yi,T2):[0,l]->R2

be a C -curve such that

y(0) = 0 anddyt/ds(0)>0 fori = l,2.

Let Ube a small neighbourhood of 0. The curve y divides the domain

U+ = Un{(x, y)6R2: x >0, y >0}

into U\ whose closure contains an interval from the y-axis and U?..
Then for every S, C > 0 there exists an integer m > 0 such that for every

z=(xo,yo)6lR2, ueTzR2

with the properties:

z,4>N(z)^U, <{>n(z)eU+ for every n=l,...,N-\

and

\\Dcf>N(v)\\^C-\\v\\,

the following properties are true:
(a) <f>n (z)eU! for every n: l sn<( JV/2 ) -m;
{b) <f>n(z)eU2for(N/2) + m<n<N-l;
(c) |[D^'1+1(l))||/||D^'t(i))||>^-5/or (N/2) + m < « < N ;
(d) angle (£><£"(v), d/dx)<Sfor (N/2) + m < n <N ;
(e) / /m addition the angle (u, a/9y)<C"1x0, then for 0<n<(N/(2 + 8))-m

We now fix a negative t and study the individual map H,.

PROPOSITION 1. The measurable, DH,-invariant stable and unstable sub-bundles Es

and E", which exist over almost whole T2\cl U, according to Pesin, are actually
defined and continuous over the whole T2\cl Ut.
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Moreover for every v eE", v ̂  0,

lim inf - log \\DH7 (v)\\ > 0; (9")
n-»oo n

for all neighbourhoods Uu U2 of p, and q, respectively, there exists S(UU U2)>0
such that:

||i>||: n >0, v eEu(z), v*0,

z eT2\cl (U,uf/,uU2)}<S(UU U2); (10")

for every ue£" ,

0. (11")

The analogous properties hold for Es. We denote the respective formulae by

(9s)-un.
Proof. We take as E" the line bundle E, described in remark 2, § 3. Similarly we
define Es. For every z e Q = cl P{CU 1 - C,),

(see notation at the end of § 4). Clearly for every ze Q,

If |̂  | is so small that

-2M/(1 -J\t\)+a(Cl)>2y/\t\/(l -y/\F\),

then there exist two constant cones of width /? > 0 which separate ® Q and 3JQ,
hence separate EU\Q and ^ ' l o (figure 7). So there exists a number M(/3) such that
if u e®o is decomposed into

where

vu(z)<=Eu(z), vs(z)eEs(z) andzeQ,

then
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Now assume that z £ W"(p,) u W"{q,) (global unstable manifolds). In this case the
continuity of E" at z can be proved similarly to the case of Anosov diffeomorphisms.
Namely, let us take a constant C2 > Ci (C2 ~C{) and denote

Q' = P(C2,1-C2).

Let J'I < i2 < • • • < ik < • • • be all consecutive non-negative integers such that
H7'k(z)eQ'. We can consider the continuity of Eu at H7'1 (z), i.e. assume that
z e Q' (h = 0).

If z' is close to z then H7'k (z') is close to H7'k (z) for fc = 1 , . . . , K with K large.
Hence

H7'k(z')eQ.

Let u e£'"(z') and denote DH7'k (v) = Vs +vt the decomposition in

Es(H7ik(z))®Eu(H7ik(z)).

Then

for small 5 > 0. We recall from § 4 that A, > 1 is the constant of hyperbolicity for
the differential D((Ht)Q) of the first return map (H,)o. The coefficient Mi appears
when we pass from the x-coordinate ( )x used as a norm on Es and £" in § 4 to
the norm || ||. In particular,

\\vl(z)\\/\\v1
u{z)\\^M1 -M(0) • (A,-^-2 '*-1 1

is small.
In the case z e VK"(p,)u Wu(q,) the continuity of E" in z follows immediately

from lemma 4(d) and the following lemma.

LEMMA 5. For every S > 0 there exists C(S) > 0 such that if

veE"(z), v*0, zeT2\c\U,

andforN>0

H?(z)edP(y/\F\+8,l-y/\F\-8)

then

\pH?(v)\\/\\v\\>C(8).
Proof. Let ix < i2 < • • • be the sequence (finite or infinite) of all consecutive non-
negative times when H',k (z)eQ. We know that for k = 1, 2 , . . . ,

(DH{ri {v))J{DH\k{v))x a A, > 1.

Let n (z) 3:0 be the first time such that

H"(z)<=dP(J\F\ + 8, l-VJTj-5)

for every n: n(z)<n <*'i(z). Clearly the set of all possible integers i\{z)-n{z) is
bounded from above.

It can happen that z'i(z), and consequently n(z), do not exist if z belongs to a
component of Ws(p,)\C? or Ws(qt)\Q containing p, or q, respectively. It can also
happen that N<n(z) if 8<Ci—"f\t~\. However the set of all possible N in these
cases is bounded from above. In the latter case this is due to lemma 1 which implies
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that for every n: 0 < n < TV,

453

H7(z)edP(-Clt-y/\i\-S)

or for every n: 0 < n < N,

H?(z)edP(y/\F\+S,C1).

The above observations also apply to the point H'k+X (z) where k is the largest
integer such that ik < N.

Thus, the proof of the lemma reduces to estimating

\pH?l2)(v)\\/\\o\\ for n{z) large.

Let z = (x, y) and for example y >0. Consider the case when

z,H,(z)edP(O,J\F\).

Put

z =Zo = (xo,yo), 2i=Fid(z) = (xi, y0)
and consider the points z\ = (*,', y,') lying on the same vertical as z, belonging to
y,+, for i = 0 and to graph y7 for / = 1, see figure 8.

y = graph y , x ^ ^ - ^

/ / / g r a p h y,"

yfp.

Za Z\

z
° / \ \ i

FIGURE 8

Denote by Wo the vector tangent to yt at zo such that (W0)x = 1 and by
vector tangent to graph yT at zi such that

the

Denote the vectors Wt at z, instead of at zj by Wi(zt), for / = 0,1. Instead of v it
is enough to consider W0(z0).

Put u =DFid(Wo(zo))-W1(z1)). Since

DFid(Wo(zo))=DFid(Wo)

if we identify the respective tangent spaces, we have

(yo-yo) • ( l -
Of course (M)X =0.
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Let / : [0, l]-» T2 be the interval, joining z [ with z\. Using the convexity of the
function g, in the domain [0, | ] one can prove by induction that for every s e [0,1]
and n : 0 < n < n ( z ) - l :

(D(H? o GJ(u))x > (D(m ° Ggt o 7)(O/as)(s)))x.

Since

£>(//r o Gft)(lVi(zi)),D(Hr ° G J ( « ) e 0 for n > l ,

we have

(£>(//? o GJ(Wi(zi)))x, (D(H? o G J ( K ) ) X >0.

So

Jo
?™-1 ° Gg,

<2)"1 "Gj .K

since (//r(2H1Ggl)(zi) stays in y^, hence in P(->/jr|, V|f|) and

We have considered the case z,H,(z)eclP(0, Vffj).
The case z €P(-Ci , 0) reduces to the previous one since

(DHr1 {v))J{DHi(v))x a 1 for every n = 0 , 1 , . . . , «i(z)-2,

where n = «i(z) is the first time when

Then also

due to the assumption that n (z) is large.
Also for z 6 ̂ ,(Ci - Vffj) u 3", {Cx - VfTj) we have

(DW+l (v))x/(DH?(v))x>l for every n = 0 , 1 , . . . , n ( z ) - l .
The less trivial case is when z eP(Vjf|, Vffj + 5). We still assume that y >0:
Let n = n '(z) > 0 be the first time that

//r"(z)eclP(0,Vj7|-5).

Notice that it is enough to prove the lemma only for 5 « \\t\. Now we shall use
lemma 4 for the saddle q,, its neighbourhood: the square with the sides x =v|7f±5
and y = ±8 and for the curve {x - v|7}, y >0}. For that we need to change coordin-
ates. Its assumptions, for the vector DH~t

n U) (v) tangent of Hi"(z) (z) are satisfied
due to the proved case of lemma 5.

So, by lemma 4(c)

\pH7+1(v)\\/\pH7(v)\^l (12)
for every n such that
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Here we use the Euclidean norm || ||' connected with the coordinates of lemma 4.
By lemma 4(a), since z ei^Vjfi, V|f[+5)

n(z) + n'(z)
n'(z)a m.

Hence (12) holds for every n = 2m,..., n(z) — 1. So

:M
 {V)\\/\\V\\ >CL-2m,

where L is the Lipschitz constant for Hi1 and C is a coefficient connected with
the change of the norms. This ends the proof of lemma 5. •

We still need to prove (9"(s))-(llM<s)) in proposition 1. Let us start with (9U). This
is obvious for

ze\Vs(pt)uWs(q,).

To prove the other case it is enough to find n, > 1 such that for every z e Q, if the
first positive integer n(z) such that H"(z) e O is larger than a constant integer N,

(DHn
t(v))J{v)x >n1 for n = 0 , 1 , . . . , n(z).

Then we would obtain in (9") the estimate by

min (AT1 log A,, log /xt).

Let 2 = (JC, y) 6 Q, n (z) be as above with y > 0. Let n = n i (z) be the first positive
integer such that

H?(z)eP(0,C1).
We extend the notation from the proof of lemma 3, §4:Foreveryn = 0 , 1 , . . . , n(z)
put

R(n) = (DH?(v))J(v)x = "U lk

k=0

where /„ = (DH?+i (v)J{DH" (v))x. Put as usual H" (z) = (xn, yn) and, furthermore:

rI1 = l-2>/iri/(l->/ir[)+a(C1) forn=0;

rn = (1 + Vff|)/(1 -Vfrj) for n >0 and such that xn < -Vjfj;
rn = l+dyt/dx(xn) if —J\t\<xn and M < « I ( Z ) - 2 and also for n= / t ! ( z ) - l

we assume that |xni(2)_i| > k,l(z)|;

rn = (\ -dy7/dxixn+jy1 if xn+1<J\F\ and n ^ndz)

and also for n =n\{z) — \ we assume that l*,,^)-!! < |xni<Z)|;

rB = (1-VJ7I)/(1+VJ7T) if xB+i»/k[ and n <«(z).
Recall that / ,>rn. Due to lemma 5 we can use lemma 4(b) and (c), so there

exists m >0 such that for every n satisfying:

n4(z) = n1(z) + (n(z)-n1(z))/2 + m <n <n(z)
we have

xn>s/\F\ and /B>((l+Vjr[)/(l->/j7i))*. (13)
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So
n4(z)-l /n(z)-l \ /n(z)-l

^ 4 ( z ) = n iM n M - f n -
i=0 \ i=0 / \i=n4(z)

We have used the fact that for large n(z), n4(z)<tn(z). This is true due to the
definition of n4(z) and due to lemma 2, §4 which gives |ni(z)-n(z)/2|< 1.

For n s:n4(z), we have due to (13):

R(n)=R(nA(z))-( "fl l)

For n < «4(z) similar estimates follow from

,-=o

and from the fact that the sequence /•„ i = 0 , . . . , «4(z) is decreasing.
Concluding, we can take

A more careful estimate in (14) would show that we could take

for arbitrarily small S > 0.
Now let us prove (10"). Let U\, U2 contain respectively some balls B(pt,S),

B(q,,S). For

z ecli)(Vj7|+5/2,1 -VjTj-5/2)

(10") follows from lemma 5. If

zedP(-J\F\-8/2, VR+5/2),
then z is within the distance of at least 8/2 from the components W and Wq of

Wu(Pt)nclP(-s/\F\-8/2, ->

or

containing p, or <7,, respectively, since W and W" are almost horizontal if |f| is
sufficiently small. So after bounded time n > 0 and some time m ^ 0 during which
DH71 contracts on E",

H7n(z)sclP(J\i\ +5/2,l->/M -5/2)

and we have the previous case.

https://doi.org/10.1017/S0143385700001711 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001711


Conservative diffeomorphisms of the two-dimensional torus 457

(11") is obvious in the case z € Wu(pt) u W"(q,). In the other case it follows from
(10") and from the fact that

(DH71-*1 (v))x/(DH7'" («)), < Ar1

for every two consecutive times ik, ik+\ when the backward trajectory H7"(z) of
2 hits Q. The proof of proposition 1 is finished. •

COROLLARY 1. For every Ht-invariant probability measure on T2\c\ U,, the Lyapunov
characteristic exponents are almost everywhere non-zero and of opposite signs.

Proof. This corollary follows from (9") and (9s).

COROLLARY 2. For every 8>0 there exists C0(S)>0 such that for every
yu : [0,1]-* T2\cl U, an integral curve for Eu, if

then

sup (length HTn (yu)/length y") < C0(S) (15)

and

lim length H7"(yu) = 0.
n-*oo

The analogous facts hold for integral curves for Es.

Proof.

lim lengthH7"(yu) = lim \p(P7n °yu)(d/ds)(s)\\ds
n-*oo n-*oo JQ

= f (lim \\D{H7" °yu)(d/ds){s))\\ds=0.
Jo " -0 °

We used the fact that the integrands are uniformly bounded by (10") and converge
to 0 pointwise by (11"). (10") gives (15) with

C0(S) = C(B(p,,S),B(q,,S)). •

Let z = (JCO, yo) € T2\cl U,. Consider the rectangle

S ={(*, y): xo-S <x <xo + 8, yo~KS <y <yo+-KS},

where K - 1 +sup dgjdx and 5 such that 5 ncl U, = 0 and

(*• +1) • fi • C0(dist (5, {p,}ufo,}))« 1.

Let y" 32 be a maximal integral curve for Eu in 5. By the definition of K it
joins the left and right hand sides of 5. Then y", the candidate for a local unstable
manifold has the following characterization:

yu={z'eS:dist(H7n(z'),H7n(z))^dist(z',z)-(K + l)

x C0(dist (5, {p,} u {q,})) for every n > 0}.
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The inclusion ' c ' follows from (15) in corollary 2. To prove '=>' take

and put u' = (x\, yi) the point on the same vertical as u, in y". Take the interval /
joining u with u'. For every n >2 the vectors tangent to Hi" (I) belong to the
stable cones 3ss. Hence

sup dist (H7n (u), HT" (z)) 2= sup dist (H7n («), # 7 " («'))
n>0 n>0

-sup dist (H7n(u'),H7n(z))

>\L~l-{K + \)-S •C0(dist(5,{p,}u{q,}))>const>0.

L is the Lipschitz constant for Hi1.
The above characterization of y" and an analogous characterization of y5 prove:

COROLLARY 3. The line bundles E" and Es are uniquely integrable.

Remark. The bundles E" and Es extend to the continuous bundles E" and Es

over T2\(U, u{p,}u{<?,}) which are tangent to yf over yf. It is easy to see that
(10"<s>), (11"<S)), corollary 2 and corollary 3 hold if Eu(s) is replaced by Eu(s).

PROPOSITION 2. There exists a continuous semiconjugacy <p : T2 -»onto T2 from H, to
the Anosov automorphism A (i.e. <p ° H,=A ° <p) such that <p~ (0) =cl U,and(p\T2\ci u,
is 1-1. 77i/s means that H,\T

2\C\ u, is topologically conjugated with A|T
2\{o}.

Compare this proposition with property (1) of H,, f 5=0, from the introduction.

Proof. The existence of a semiconjugacy follows from [3, proposition 2.1].
Denote by <p, H, A lifts of <p, H,, A to R2 keeping 0 € R2 invariant, such that

<p ° H = A ° <p.

(p - id is a bounded function and A is expansive in the following sense:

sup dist (A " (z), A " (z')) = 00

for every z, z' e R2, 2 ^ z'.
Hence <p (z) # cp (z') is equivalent to

supdist(//"(z),Jfir
n(z')) = oo. (16)

neZ

Denote by LI the projection II: R2 -»D^/Z2 = T2. Then

is equivalent to (16) for every pair z + w,z' where w eZ2.
Due to this criterion we immediately have <p (cl U,) = 0. To finish the proof it is

enough to check that for every pair z €rT^T^cl U,), z 'e n~l(T2\Ut), we have

sup dist (H"(z),H"(z')) = « .
neZ

We shall only check the case when z = zo = (*o, yo) and z' = (x', y') are close to
0 and y0, y' >0 and leave the other cases to the reader.
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Consider the new coordinates x, (2(x, y) = y — yt (x, y) in a neighbourhood W of
0. Put

V1={z =(x,y)eW: (x -x0) • 03(z)
and

See figure 9.

FIGURE 9

Join z = z0 with 2' by the interval / : [0, l]-» IR2 in the coordinates (x, /3). We lift
our £>//, (DHr1 ^invariant cones and bundles E"(s) to TOR2) and use the same
notation for them as in T(T2). Now if z'€ V\

D(Hn°I)(d/ds)(s)e@ (17)

for every n = 1, 2 , . . . and s e [0,1] except maybe s = s0 such that /(s0) 6 y? where
® has not been defined. There exists at most one such s0 since z and z' do not
both belong to yt- Hence

D(H"oI)(d/ds)(s)£E'.

This is true for 5 # 50 since

2)nint3)s = 0
andinfactE'cint®5.

For every 5 # 50 decompose

according to the decomposition ES@E". We have the function ||i>i(s)|| bounded
from above on [0,1]\/ where / is a neighbourhood of s0 and also ||u2(s)||>0 for
every se[0, l ] \ / .

Thenby(9")-(11")

length (Hn •> /|[0,i]u) * °°
n-*co

so length (H" ° /) ^n^oo 00.

Since by (17) the functions (DH"(d/ds)(s))x have constant signs and

(DHn(d/ds)(s))y/(DH"(d/ds)(s))x < 1 + sup dg,/dx

is uniformly bounded,

dist (Hn (z), Hn (z')) > 00.
o
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The proof for z'e V2 is similar. In that case expansiveness occurs under backward
iterates. The proof of proposition 2 is finished. •

It occurs that (p\r2\c\u, cannot be C1. Moreover, we shall prove the following
proposition.

PROPOSITION 3. There exist no C1 -diffeomorphisms

B:T2-> T2 and <p : (T2\c\ Ut) •* T2\{0}

such that (p ° H, = B ° <p.

Proof. We use the method used by Gerber and Katok [4] to prove the analogous
fact for pseudo-Anosov homeomorphisms. Due to proposition 2 we can find a
Markov partition for H,\T

2\ci u, containing the cells Mt, i = 1,2 being closures of a
neighbourhood of cl U, intersected with 3~t and {y >0}\(2T, ^JST',) respectively. So
there exist sequences of //,-periodic points zn, wn with periods an, (3n -+ oo such that

zneintAfi, wn e int M2, zn, wn * D,
n-»oo

which is a fundamental domain in Ws(p,), and there exists a constant integer N > 0
such that for every /, n: 0 < i < an —N,

Hi(zn)eM1

and for every /, n: 0 < / < /3n - N,

Hi{wn)eM2

(see figure 10).

FIGURE 10

Clearly the Lyapunov exponents A±(zn) converge to the logarithms of the eigen-
values at pt, i.e. to

For v eEu(wn) we have clearly

for n large, where n\{wn) is the first time when

The bundle Eu is Lipschitz continuous at y*. This is a property of dynamics
around the saddle p,, compare with [5, theorem 6.3.b].
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Hence we can use lemma 4(e) for a neighbourhood of q, and conclude by use
of lemma 4(c) that

log (WDH^iVnWWDH^ («B)||~0

for n large.
By lemma 2 |ni(wn)-/3n/2| is uniformly bounded for all n. So, the Lyapunov

exponents A±(wn) converge to

ALW) = ±1 log ((1 + >/[rf)/(i - > # ) .

If <p and B existed, the Lyapunov exponents over <p(zn) and (p(wn) would also
converge to A±', \(±] respectively.

Meanwhile, if one of the eigenvalues of DB(O) were 0, then

lim - log \\DB%iZn) || = 0 or lim - log \pB~"z"n)|| = 0,
n » o o fl n » o o fl

g \ \ % i n ) ||
n-»oo fl n-»oo

so log A +' and log A^z) could not have difTerent signs. This is a contradiction.
If 0 were a saddle for B then cp(zn), <p(wn) -»„_«,<?(£>) - a fundamental domain

in a local stable manifold for B at 0. But the set of limit spaces of the sequences
D(p(Eu(zn)) and D(E"(wn)) is disjoint with the bundle tangent to <p(D). Hence one
of the Lyapunov exponents at (p(zn) and at <p(wn) converge to the same number,
to the logarithm of an eigenvalue of DB (0). So A +} = A '-T \ This is a contradiction. •

7. Final remarks

Remark 1. We do not know whether there exists a family g, satisfying property (1)
§ 1, with separatrices joining p, with q, for the corresponding H,, such that g, on U,
and hence, H, on T2, is real-analytic.

The problem is to solve the system of functional equations:

y7 (x + yt (x)) = yt (x) gt = yt-y7

close to t = 0, x = 0, in real-analytic functions satisfying property (1) (its part, at
t = x = 0), so that g, - id is periodic with period 1.

The periodicity condition does not hold for g, denned by (*) in the theorem in
§ 2. There, the functions g, have real poles.

We can attempt to solve the problem by starting with the family of the Hamil-
tonian functions:

for a constant C > 0.
Then we obtain g, - id bounded (not periodic unfortunately).
We have chosen the above h, so that the set of their zeros consists of branches

of hyperboles. The choice is motivated by the fact that if we want g, to be
real-analytic, then graph yT must coincide with the unstable manifold of qt for H,
(when x -* +oo). So, when x -> +oo, graph yt must be within the finite distance from
the unstable manifold of 0 for the Anosov diffeomorphism A, which is the straight
line (2JC/V5) — y = 0. This is so because of the existence of a semiconjugacy from
H, to A, see proposition 3, § 6.
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Remark 2. We could consider directly the time-one diffeomorphism Hltl for the
Hamiltonian vector field corresponding to the function

see § 2. The trouble then is with a simple extension of this diffeomorphism from
a neighbourhood of cl U, to the whole T2. Such HtA on U, would be integrable (i.e.
U,\{Q) would consist of closed invariant curves).

Our H,'s, close to 0, are perturbations of such Hui. The intuition to treat H, as
a time-one solution for a differential equation has been basic to the existence of
invariant cones (such a cone cannot pass to the other side of the trajectory of the
flow, figure 11) and in lemma 2.

FIGURE 11

Remark 3. In the proof of proposition 3 § 6 we used the fact that in the construction
of H,, t<0 only two out of four sectors between stable and unstable manifolds of
a saddle of an Anosov diffeomorphism were 'blown up'.

We can however use the Hamiltonian function:

For t < 0, the separatrices y,, / = 1 , . . . , 4, joining the saddles p, = {±J\F\, ±Vfr|),
(' = 1 , . . . , 4, form a circle S,, see figure 12.

FIGURE 13

Now we should either somehow extend the time-one diffeomorphism for the
resulting Hamiltonian vector field or find functions /=f,, g = gt, U -* U with property
(1) § 1 such that the toral linked twist mapping Hftg still preserves the saddles p,
and a closed curve S,, built from separatrices y,, i = 1 , . . . , 4 (close to S,).
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For each individual t it is easy to find such /, g of class C°° as follows: Define
any reasonable / = g in a small neighbourhood of ±v2|7|, then extend four small
arcs F_i/(72(4)), <^g("yi(3)) to a curve S', (invariant under rotation by TT/2) and, using
also S', symmetric to S, with respect to the x- or y-axis, find / and g.

Is it possible to find such /,, g, real-analytic, at least in a neighbourhood of
f = x = y = 0 ?

The whole theory from this paper holds for the resulting H, = Hfyg except for
proposition 3. Can the resulting H, on T2\cl U, (U, is the domain bounded by S,)
be C^-conjugate with A|T2\{0}? The obstruction used in the proof of proposition 3
disappears in this case.

Remark 4. We can consider a secondary bifurcation Hts of H,. Let us start with
the Hamiltonian function:

See the phase portrait of figure 13.
Now as in remark 3 we can look for functions fus, gus, t < 0 such that Hfltgl preserves

the saddles p,jS, qtiS and a separatrix yus close to yus from pus (or qUs) to itself.
Observe that we dropped the assumption from property (1) § 1 that g,,s is an odd

function, since for 5^0 hus is not an even function with respect to x.
As in remark 3 it is easy to find /,,s, gus C*° for each individual t, s.
Is it possible to find /,,„ gt)S real-analytic at least in a neighbourhood of

t = s = x = y = 0 ?
Are the Lyapunov exponents outside the separatrix y,,s different from zero for

H,,s, s # 0, t < 0?

The author gratefully acknowledges the financial support of the Stiflung Volk-
swagenwerk for a visit to the Institut des Hautes Etudes Scientifique during which
this paper was partially written.

REFERENCES

[1] R. Burton & R. Easton. Ergodicity of linked twist mappings. Global Theory of Dynamical Systems:
Lectures Notes in Math. No. 819. Springer: Berlin, 1980, pp. 35^9.

[2] R. E. Edwards. Functional Analysis. Holt, Rinehart and Winston: New York, 1965.
[3] J. Franks. Anosov diffeomorphisms. Global Analysis. Proc. Symp. Pure Math. 14 (1970), 61-93.
[4] M. Gerber & A. Katok. Smooth models of Thurston's pseudo-Anosov maps. Ann. Sci. de VEcole

Normale Superieure, A' serie, 15 (1982), 173-204.
[5] M. Hirsch & Ch. Pugh. Stable manifolds and hyperbolic sets. Global Analysis, Proc. Symp. Pure

Math. 14 (1970), 133-163.
[6] A Katok. Bernoulli diffeomorphisms on surfaces. Ann. Math. 110 (1979), 529-547.
[7] R. Mane. The Lyapunov exponents of generic area preserving diffeomorphisms. Preprint.
[8] Ya. B. Pesin. Lyapunov characteristic exponents and smooth ergodic theory. Uspekhi Math. Nauk.

32 No. 4 (1977), 55-112. English translation: Ross. Math. Surveys 32 No. 4 (1977), 55-114.
[9] F. Przytycki. Linked twist mappings: Ergodicity. Preprint I.H.E.S., February 1981. (To appear in

part in Ann. Scientifiques de VEcole Norm. Sup.)

https://doi.org/10.1017/S0143385700001711 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001711

