Ergod. Th. & Dynam. Sys. (1982), 2, 439–463 Printed in Great Britain

Examples of conservative diffeomorphisms of the two-dimensional torus with coexistence of elliptic and stochastic behaviour

FELIKS PRZYTYCKI

Institute of Mathematics, Polish Academy of Sciences, ul. Sniadeckich 8, 00-950 Warsaw, Poland

(Received 7 July 1982)

Dedicated to the memory of V. M. Alexeyev

Abstract. We find very simple examples of C^{∞} -arcs of diffeomorphisms of the two-dimensional torus, preserving the Lebesgue measure and having the following properties: (1) the beginning of an arc is inside the set of Anosov diffeomorphisms; (2) after the bifurcation parameter every diffeomorphism has an elliptic fixed point with the first Birkhoff invariant non-zero (the KAM situation) and an invariant open area with almost everywhere non-zero Lyapunov characteristic exponents, moreover where the diffeomorphism has Bernoulli property; (3) the arc is real-analytic except on two circles (for each value of parameter) which are inside the Bernoulli property area.

Topologically after the bifurcation parameter we have hyperbolic toral automorphisms with 0 'blown up'.

1. Introduction

In this paper we find a simple one-parameter family of diffeomorphisms of the two-dimensional torus T^2 , $H_t: T^2 \to T^2$ for $t \in [-\varepsilon, \varepsilon]$, preserving the Lebesgue measure and satisfying the properties (1)-(5) listed below.

(1) For every t > 0, H_t is inside the set of Anosov diffeomorphisms An (T^2) . For every $t \ge 0$, H_t is topologically conjugate with the hyperbolic toral automorphism A given by the matrix $\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$.

(2) The family H_t at t = 0 is transversal to the set Fr An (T^2) – the boundary of An (T^2) . We mean by this that there exists a constant C > 0 such that

$$\operatorname{dist}_{C^1}(H_t,\operatorname{Fr}\operatorname{An}(T^2)) \ge C \cdot |t|.$$

(3) For every t < 0 there exists an elliptic island around $0 \in T^2$. This means that the differential $DH_t(0)$ is elliptic, the eigenvalues of $DH_t(0)$ are not roots of unity of low degree and in the Birkhoff normal form the frequency of oscillations depends on the amplitude. More exactly, the first Birkhoff invariant is non-zero. Then by Kolmogorov-Arnold-Moser theory most of the neighbourhood of 0 is filled with H_t -invariant closed curves.

(4) For every t < 0 there exists an open, non-empty H_t -invariant set $S_t \subset T^2$ on which H_t behaves stochastically. More exactly the Lyapunov characteristic exponents for $H_t|_{S_t}$ are almost everywhere non-zero and H_t restricted to S_t has the Bernoulli property.

(5) $H: [-\varepsilon, \varepsilon] \times T^2 \to T^2$ is a C^{∞} -function and is real-analytic except on the two families of circles $[-\varepsilon, \varepsilon] \times \{a, b\} \times S^1$.

We look for H_t in the form of a toral-linked twist mapping, see [1] and [9], i.e.

$$H_t = G_{g_t} \circ F_{f_t},$$

where

$$F_{f_t}(x, y) = (x + f_t(y), y), \quad G_{g_t}(x, y) = (x, y + g_t(x)),$$

$$f_t, g_t : \mathbb{R} \to \mathbb{R}, \quad f_t(y+1) = f_t(y) + k,$$

$$g_t(x+1) = g_t(x) + l,$$

for every $x, y \in \mathbb{R}$ and some integers k and l.

We take $f_t = id$ so that

$$H_t(x, y) = (x + y, y + g_t(x + y)).$$

We take g_t satisfying the following properties:

For every
$$t \in [-\varepsilon, \varepsilon] g_t$$
 is an odd function,
 $\begin{cases} g_t(0) = 0, \quad g_t(1) = 1, \quad dg_0/dx(0) = d^2g_0/dx^2(0) = 0, \quad d^3g_0/dx^3(0) > 0, \quad (1) \\ d^2g_t/dx \, dt(x)|_{x=0,t=0} > 0 \text{ and } dg_0/dx(x) > 0 \text{ for every } x \notin Z. \end{cases}$

If t > 0, the point $0 \in T^2$ is a saddle for H_t . When t passes 0 in the negative direction two saddles p_t and q_t appear on the opposite sides of 0 on the x-axis while 0 itself becomes elliptic.

Checking the properties (1)-(3) is straightforward so we do not dwell on them. Let us only mention that H_0 corresponds to diffeomorphisms studied in [1] and [6] and that for t < 0, |t| sufficiently small, the first Birkhoff invariant at $0 \in T^2$ is non-zero since $d^3g_t/dx^3(0) \neq 0$.

Thus, the main aim of the paper is to prove property (4) for a special family g_t . In general the stable and unstable manifolds of p_t and q_t intersect transversally (see the phase portrait in figure 1) and in such a case we do not know how to estimate the Lyapunov exponents. Moreover, in view of a recent result by R. Mañé [7] there exists a C^1 -generic subset

$$\mathscr{A}_L \subset \operatorname{Diff}^1_L(T^2) \backslash \operatorname{An}_L(T^2)$$

where Lyapunov exponents are zero almost everywhere. So our H_t must be disjoint with \mathcal{A}_L . (The subscript L means that we consider diffeomorphisms preserving the Lebesgue measure.) In connection with the Mañé result Katok has suggested studying the Lyapunov exponents for small perturbations of H_0 .

https://doi.org/10.1017/S0143385700001711 Published online by Cambridge University Press

In the case of our special H_t the saddles p_t and q_t are joined by separatrices, see figure 2. Throughout the paper we use only this property of H_t , together with properties (1). In the theorem in § 2, we consider a specific H_t only to be concrete.

Denote the domain between the separatrices by U_t . An idea which explains property (4) is that $T^2 \setminus U_t$ is H_t -invariant so the behaviour along the trajectory of every point from $T^2 \setminus U_t$ is hyperbolic as the trajectory keeps far away from the elliptic island around $0 \in T^2$.

In fact we 'blow up' the saddle of the Anosov diffeomorphism into the disk cl U_t . We use the Hamiltonian function $y^2 - x^2(x^2 + 2t)$. In a neighbourhood of cl U_t the saddle-like dynamics are preserved.

Section 2 is devoted to the construction of H_t . In §§ 3-5 we prove property (4) using the technique of invariant cones. In § 6 we prove that for each t < 0, $H_t|_{T^2 \setminus cl U_t}$ is an almost Anosov diffeomorphism. Namely, it has continuous, uniquely integrable stable and unstable sub-bundles; it has almost everywhere non-zero Lyapunov exponents for every H_t invariant probability measure on $T^2 \setminus cl U_t$ and it is topologically conjugate to the Anosov diffeomorphism $A|_{T^2 \setminus \{0\}}$. However proposition 3, § 6 proves that our 'blowing up' is in no sense C^1 . Our study in § 6 corresponds to the Katok study for the H_0 -type example [6] and to the Gerber and Katok study of smoothed pseudo-Anosov diffeomorphisms [4].

One reason why it is easy to construct our examples of coexistence is that we perturb the twist F_{id} with G_{g_t} where g_t is not periodic, i.e. the average twisting

$$\int_0^1 \frac{dg_t}{dx}(x)\,dx\neq 0.$$

The classical problem is to consider g_t to be periodic. Nevertheless the facts of local character i.e. the dynamics in the neighbourhood of cl U_t , like lemmas 2, 3, 5, concern the classical situation. See § 7 for further comments.

2. Construction of the example

THEOREM. Let H_t be the one-parameter family of diffeomorphisms

$$H_t = H_{\mathrm{id}, g_t} : T^2 \to T^2 \quad \text{for } t \in [-\varepsilon, \varepsilon],$$

with g_t defined as follows:

(*)
$$g_t(x) = 2(\sqrt{1-t+2x} - \sqrt{1-t-2x} - 2x), \text{ for } |x| \le \frac{1}{4};$$

 g_t is extended to $\left[-\frac{1}{4}, \frac{1}{4}\right] + Z$ by

$$g_t(x+n) = g_t(x) + n$$
 for $x \in [-\frac{1}{4}, \frac{1}{4}], n \in \mathbb{Z}$

and extended to $]\frac{1}{4}, \frac{3}{4}[+Z \text{ in anyway so that}]$

inf $\{dg_i/dx(x): x \in]_4^1, \frac{3}{4}[\} = dg_i/dx(\frac{1}{4});$ g_i - id is periodic with period 1; $g: [-\varepsilon, \varepsilon] \times \mathbb{R} \to \mathbb{R}$ is C^{∞} and

$$g|_{[-\varepsilon,\varepsilon]\times(\mathbb{R}\setminus(\frac{1}{2}\cdot\mathbb{Z}+\frac{1}{4}))}$$
 is real-analytic.

Then the family H_t satisfies properties (1)–(5) from the introduction.

For example, for $x \in \frac{1}{4}, \frac{3}{4}$ set

$$g_t(x) = g_t(\frac{1}{4}) + (x - \frac{1}{4}) \cdot \frac{dg_t}{dx}(\frac{1}{4}) + \left(\int_{\frac{1}{4}}^x \varphi(s) \, ds\right) \left(1 - 2g_t(\frac{1}{4}) - \frac{1}{2}\frac{dg_t}{dx}(\frac{1}{4}) \right) \int_{\frac{1}{4}}^{\frac{1}{4}} \varphi(s) \, ds$$

where

$$\varphi(x) = \exp\left(\sin 2\pi (x + \frac{1}{4})\right)^{-1}$$

Let us consider the following one-parameter family of Hamiltonian functions defined in the neighbourhood of t = x = y = 0:

$$h_t(x, y) = y^2 - x^2(x^2 + 2t).$$

For t > 0 the Hamiltonian vector field V_t corresponding to h_t has a saddle at $0 \in T^2$. For t < 0 this saddle changes into an elliptic fixed point and V_t acquires two saddles

$$p_t = (-\sqrt{|t|}, 0), \quad q_t = (\sqrt{|t|}, 0)$$

joined by two separatrices, see figure 2 in § 1. We look for g_t such that

$$F_{2\mathrm{id}}^1 \circ H_{\mathrm{id},g_t} \circ F_{2\mathrm{id}}^{-1}$$

has the same saddles and separatrices.

The union of stable and unstable manifolds for the saddles p_t and q_t in the neighbourhood of $0 \in T^2$ coincides with the set of zeros of the function:

$$h_t(x, y) - h_t(p_t) = y^2 - x^2(x^2 + 2t) - t^2$$

= $y^2 - (x^2 + t)^2$
= $-(x^2 + t + y)(x^2 + t - y)$

Consider the set of zeros of $W_t(x, y) = x^2 + t + y$ and then the zeros of $W_t(x \pm \frac{1}{2}y, y)$ (broken lines in figure 3). Write these sets as graphs of the functions

$$y_t^{\pm}(x) = 2(-1 \mp x + \sqrt{1 \pm 2x} - t).$$

Define $g_t = y_t^+ - y_t^-$. We obtain the formula from the statement of the theorem.

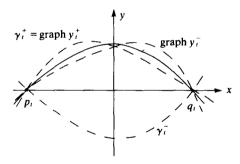


FIGURE 3

From the construction:

 $F_{id}(\operatorname{graph} y_t^+) = \operatorname{graph} y_t^-$ and $G_{g}(\operatorname{graph} y_t^-) = \operatorname{graph} y_t^+$. So our goal has been reached: $H_{id,g}$ has the separatrices

 $\gamma_t^+ = \text{graph } y_t^+ \text{ and } \gamma_t^- = -\gamma_t^+.$

They are F_{2id}^{-1} images of the separatrices of V_t . The vectors $(1 \pm \sqrt{|t|}, \pm 2\sqrt{|t|})$ are eigenvectors of p_t and q_t . The corresponding eigenvalues are

$$(1+\sqrt{|t|})/(1-\sqrt{|t|})$$
 and $(1-\sqrt{|t|})/(1+\sqrt{|t|})$.

These numbers will appear throughout the paper. Sometimes we shall use the notation $(v)_x$, $(v)_y$, $(z)_x$, $(z)_y$ to denote the x- or y-coordinate of a vector v or of a point z.

3. Existence of invariant families of cones

We shall describe here families of unstable and stable cones in the region $T^2 \setminus U_t$, where U_t is the region between the separatrices γ_t^{\pm} .

Denote for every a < b, |a-b| < 1, the strip $]a, b[\times S^1$ by P(a, b).

Denote by $\mathcal{T}_t(\delta)$ the region ('triangle') bounded by the components of the stable and unstable manifolds of p_t in cl $P(-\sqrt{|t|}-\delta, -\sqrt{|t|})$ containing p_t and the line

 $\{x = -\sqrt{|t|} - \delta\}$ for any small $\delta > 0$

and denote $\mathcal{T}'_t(\delta) = -\mathcal{T}_t(\delta)$ (see figure 4).

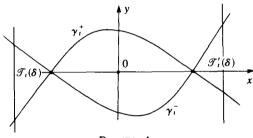


FIGURE 4

Let us start now with

LEMMA 1. There exists a constant $C_1 > 0$ ($C_1 \ll 1$) such that for every $\delta: 0 < \delta \le C_1$ and $t \in [-\varepsilon, 0[, if z, H_i z \in P(-\delta, \delta) \setminus (cl U_t \cup \operatorname{Fr} \mathcal{F}_t(\delta) \cup \operatorname{Fr} \mathcal{F}_t'(\delta))$ then there exists integers $N_1 > 0, N_2 > 1$ such that

$$H_t^{-N_1}(z), \quad H_t^{N_2}(z) \in \operatorname{cl} P(\delta, 1-\delta) \quad and \quad H_t^n(z) \in P(-\delta, \delta)$$

for every $n: -N_1 < \underline{n} < N_2$, and one of the following possibilities occurs:

(1) $z_n \in \mathcal{F}_t(\delta - \sqrt{|t|})$ for every $n : -N_1 < n < N_2$ where by definition

$$z_n = (x_n, y_n) = H_t^n(z);$$

(2) $z_n \in \mathcal{T}'_t(\delta - \sqrt{|t|})$ for every $n : -N_1 < n < N_2$;

(3) $0 < y_n < 2\delta + \sup \{g_i(x) : x \in [-\delta, \delta]\}$ for $-N_1 < n < N_2$ and the sequence $(x_n), n = -N_1, \ldots, N_2$ is increasing;

(4) $0 > y_n > -2\delta + \inf \{g_t(x) : x \in [-\delta, \delta]\}$ for $-N_1 < n < N_2$ and the sequence $(x_n), n = -N_1, \ldots, N_2$ is decreasing.

The proof is straightforward so it is omitted.

For t < 0 denote by a_t the smallest positive number such that

$$dg_t/dx(a_t) = 4\sqrt{|t|}/(1-\sqrt{|t|}).$$
 (2)

Remark 1. There is no need to compute a_t exactly. Observe only that a_t exists and it is of order $\sqrt[4]{|t|}$ since

$$g_t(x) = 2Q(t, x)(x^3 + tx)$$
 where $Q(0, 0) = 1$.

This follows easily from the definition of $g_t(x)$.

For every x such that $|x| \le \sqrt{|t|}$ denote by $\mathscr{C}(x)$ the cone:

$$\mathscr{C}(\mathbf{x}) = \{ (\xi, \eta) \in \mathbb{R}^2 : dy_t^+ / dx(\mathbf{x}) \le \eta / \xi \}.$$

For every $z \in T^2$ we shall identify the tangent space $T_z(T^2)$ with \mathbb{R}^2 . Define now $\mathcal{D}(z) \subset T_z(T^2)$ for every $z = (x, y) \in T^2 \setminus cl U_t$ as follows:

(i)
$$\mathscr{D}(z) = \mathscr{C}(-\sqrt{|t|})$$
 if $z \in \operatorname{cl} P(a_t, 1-a_t);$

(ii) $\mathscr{D}(z) = \mathscr{C}(-\sqrt{|t|})$ if $z \in \mathscr{P}_t = P(-a_t, -\sqrt{|t|}) \cup P(\sqrt{|t|}, a_t);$

and the backward trajectory $H_t^{-n}(z)$, n = 1, 2, ..., either hits cl $P(a_t, 1-a_t)$ earlier than cl $P(-\sqrt{|t|}, \sqrt{|t|})$ or never hits cl $P(-\sqrt{|t|}, \sqrt{|t|})$;

(iii) $\mathscr{D}(z) = \mathscr{C}(\sqrt{|t|})$ if as in case (ii) $z \in \mathscr{P}_t$ but hits the set $\operatorname{cl} P(-\sqrt{|t|}, \sqrt{|t|})$ earlier than $P(a_t, 1-a_t)$;

(iv) $\mathscr{D}(z) = \mathscr{C}(\sqrt{|t|})$ if $z \in \operatorname{cl} P(-\sqrt{|t|}, \sqrt{|t|}), H_t(z) \notin P(-\sqrt{|t|}, \sqrt{|t|});$

(v) $\mathscr{D}(z) = \mathscr{C}(x)$ if z, $H_t(z) \in P(-\sqrt{|t|}, \sqrt{|t|})$ and y > 0 (y > 0 makes sense since, by lemma 1, |y| is small);

(vi) $\mathscr{D}(z) = \mathscr{C}(-x)$ if in (v) we replace y > 0 by y < 0.

Now we are going to prove the invariance of this cone bundle. If z and $H_t(z) = (x_1, y_1)$ are as in cases (i) or (ii) then

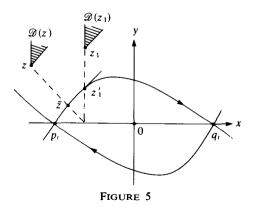
$$\frac{dg_t}{dx}(x_1) \ge \frac{dg_t}{dx}(-\sqrt{|t|})$$

so

$$(DH_t)_z(\mathscr{D}(z)) = (DH_t)_z(\mathscr{C}(-\sqrt{|t|})) \subset (DH_t)_{p_t}(\mathscr{C}(-\sqrt{|t|}))$$
$$= \mathscr{C}(-\sqrt{|t|}) = \mathscr{D}(H_t(z)).$$

If z = (x, y) as in (i) or (ii) and $H_t(z) = (x_1, y_1)$ as in (v) (or similarly (vi)), then we use the concavity of the function y_t^+ . Let $z'_1 = (x_1, y'_1)$ be the point on the same vertical as (x_1, y_1) , lying in the γ_t^+ (see figure 5). Let $H_t^{-1}(z'_1) = \bar{z} = (\bar{x}, \bar{y})$. Then

$$(DH_t)_z(\mathscr{D}(z)) = (DH_t)_z(\mathscr{C}(-\sqrt{|t|})) \subset (DH_t)_z(\mathscr{C}(\bar{x}))$$
$$= (DH_t)_{\bar{z}}(\mathscr{C}(\bar{x})) = \mathscr{C}(x_1) = \mathscr{D}(H_t(z)).$$



If z and $H_t(z)$ are both as in (v) (or (vi)) the argument is similar. It is also similar for z given by (v) or (vi) and $H_t(z)$ given by (iv).

If z is as in (iv) or (iii) and $H_t(z)$ as in (iii), then analogously to the first-considered case:

$$(DH_t)_z(\mathscr{D}(z)) = (DH_t)_z(\mathscr{C}(\sqrt{|t|})) \subset (DH_t)_{q_t}(\mathscr{C}(\sqrt{|t|}))$$
$$= \mathscr{C}(\sqrt{|t|}) = \mathscr{D}(H_t(z)).$$

Finally if z is as in (iii) or (iv) and $H_t(z) = (x_1, y_1)$ as in (i), then by (2) we have $\frac{dg_t}{dx(x_1)} \ge 4\sqrt{|t|}/(1-\sqrt{|t|}),$

hence

$$(DH_t)_z(\mathscr{D}(z)) = (DH_t)_z(\mathscr{C}(\sqrt{|t|})) \subset \mathscr{C}(-\sqrt{|t|}) = D(H_t(z)).$$

Note that due to lemma 1 it cannot happen that z is as in case (iii) and in the same time $H_t(z)$ as in cases (iv), (v) or (vi).

So the invariance of this cone bundle has been proved. We have the cone bundle \mathscr{D} over $T^2 \setminus cl U_t$ and

$$DH_t(\mathcal{D}) \subset \mathcal{D}.$$

The analogous stable cone bundle \mathcal{D}^s i.e. such that $DH_t^{-1}(\mathcal{D}^s) \subset \mathcal{D}^s$ can be defined by

$$\mathcal{D}^{s} = D(S_{v} \circ F_{id})(\mathcal{D})$$

where S_y is the symmetry with respect to the y-axis.

Remark 2. At this stage we can immediately deduce the existence of a set of positive Lebesgue measure with non-zero Lyapunov characteristic exponents as follows.

The set of line sub-bundles of cl (\mathcal{D}) over $T^2 \setminus cl U_r$ is a partially ordered set, with angle order over every point. Take the bundle $L(\partial/\partial y)$ spanned by the vector field $\partial/\partial y$. For every $z \in T^2 \setminus cl U_r$,

$$L(\partial/\partial y)(z) \in \operatorname{cl} \mathcal{D}(z)$$

and the sequence $DH_t^n(L(\partial/\partial y))$ is monotonous with respect to the considered partial order. Hence the pointwise limit, a measurable line bundle, is a fixed point for DH_t (see [2, theorem 3.8.1] for the details). Denote this bundle by E_t . Now use the Birkhoff ergodic theorem for the function $\|DH_t\|_{E_t}\|$.

Let $\lambda : T^2 \setminus U_t \to \mathbb{R}$ be the Lyapunov characteristic exponent for the vectors from E_t . Then

$$\int_{T^2 \setminus cl U_t} \lambda(z) dz = \int_{T^2 \setminus cl U_t} \log \|DH_t|_{E_t}(z)\| dz$$

which is clearly positive for |t| sufficiently small. So $\lambda(z)$ is positive on a set of positive Lebesgue measure. The second Lyapunov exponent, which is equal to $-\lambda(z)$, is negative on the same set.

4. Lyapunov characteristic exponents are non-zero almost everywhere on $T^2 \setminus c U_t$

LEMMA 2. Let

$$z = (x, y) \in \text{cl } P(-\sqrt{|t|}, 0) \setminus \text{cl } U_t,$$

$$H_t(z) = (x_1, y_1) \in \text{cl } P(0, \sqrt{|t|}),$$

$$y, y_1 > 0 \quad and \quad |x| < |x_1|.$$

As in lemma 1 let us put

$$H_t^n(z) = z_n = (x_n, y_n) \quad for \ n \in \mathbb{Z}.$$

Then for every $n \ge 1$

$$|x_{-n+1}| \le |x_n| \le |x_{-n}|. \tag{3}$$

Proof. Observe that the backward (i.e. forward under H_t^{-1}) H_t -trajectory of the point z_0 is the reflection in the y-axis of the forward trajectory under $F_{id} \circ G_{g_t}$ of the point $(-x_0, y_0)$. So the latter trajectory is the sequence of points $(-x_{-n}, y_{-n})$.

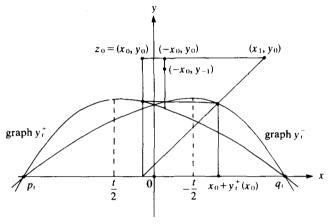


FIGURE 6

Assume that $x_0 \ge t/2$. At t/2 the function y_t^+ reaches its maximum (see figure 6). We have

$$y_0 - y_t^-(-x_0) = y_0 - y_t^+(x_0)$$

= $y_0 - y_t^-(x_0 + y_t^+(x_0)) < y_0 - y_t^-(x_1),$

since $x_1 > x_0 + y_t^+(x_0)$ and the function y_t^- is decreasing to the right from $x_0 + y_t^+(x_0)$. If $x_0 < t/2$ we have again

$$y_0 - y_t^-(-x_0) \le y_0 - y_t^-(x_1)$$
(4)

since by our assumptions $-t/2 < -x_0 \le x_1$.

In the case $-x_0 = x_1$ the lemma is trivially true so we can assume that $-x_0 < x_1$. Joint the points $(-x_0, y_0)$ and (x_1, y_0) by a curve $\alpha : [0, 1] \rightarrow \mathbb{R}^2$ which is the interval in the coordinates $(x, y - y_t^-(x))$. Due to (4), for every $s_0 \in [0, 1]$,

$$D\alpha((\partial/\partial s)(s_0)) \in (DF_{id}(\mathcal{D}))(\alpha(s_0)),$$

so that for every $n \ge 0$

$$D(H_t^n \circ G_{g_t} \circ \alpha)((\partial/\partial s)(s_0)) \in \mathcal{D}(H_t^n \circ G_{g_t} \circ \alpha(s_0))$$

and the x-coordinate

$$(D(H_t^n \circ G_{g_t} \circ \alpha)((\partial/\partial s)(s_0)))_x > 0.$$

Hence $x_n > -x_{-n+1}$ for n > 0. This proves the left hand side inequality in (3).

To prove the right hand side inequality we observe that

$$y_0 - y_t^+(x_0) = y_0 - y_t^-(-x_0) = y_{-1} - y_t^+(-x_0).$$

We join the points (x_0, y_0) and $(-x_0, y_{-1})$ by the interval in the coordinates $(x, y - y_t^+(x))$ (unless $x_0 = 0$, which is the trivial case) and then proceed as before.

LEMMA 3. For every $\delta > 0$ such that $\sqrt{|t|} + \delta \leq C_1$, where C_1 is the constant from lemma 1, if

$$z \in \operatorname{cl} P(\sqrt{|t|} + \delta, 1 - \sqrt{|t|} - \delta)$$

and n(z) > 0 is the first integer such that

$$H_t^{n(z)}(z) \in \operatorname{cl} P(\sqrt{|t|} + \delta, 1 - \sqrt{|t|} - \delta),$$

if $v \in \mathcal{D}(z)$, then

$$(DH_t^{n(z)}(v))_x \ge (1 - 6\sqrt{|t|}) \cdot (DH_t(v))_x$$

Proof. We can assume that $n(z) \ge 4$. Put

$$H_t^n(z) = z_n = (x_n, y_n),$$

assume for example that $y_n > 0$ (n = 0, 1, ..., n(z)), i.e. the sequence (x_n) is increasing (see lemma 1). It is possible because the case $y_n < 0$ is similar, and if n(z) < 4 or

$$y_n \in \mathcal{T}_t \cup \mathcal{T}_t'$$

the lemma is true for obvious reasons.

Put $DH_t^n(v) = v_n = (\xi_n, \eta_n)$ and $l_n = \xi_{n+1}/\xi_n$. Using the fact that $v_n \in \mathcal{D}$ and the description of \mathcal{D} from § 3 we obtain the following estimates.

If $z_n \in P(-\sqrt{|t|} - \delta, -\sqrt{|t|}), \quad l_n > (1 + \sqrt{|t|})/(1 - \sqrt{|t|});$ if $z_n \in cl P(-\sqrt{|t|}, \sqrt{|t|}), \quad l_n \ge 1 + dy_t^+/dx(x_n);$ if $z_n \in cl P(\sqrt{|t|}, \sqrt{|t|} + \delta), \quad l_n \ge (1 - \sqrt{|t|})/(1 + \sqrt{|t|}).$

Now look what happens to v_n under DH_t^{-1} . Equivalently, consider $DG_{g_t}^{-1}(v_{n+1})$ under DF_{id}^{-1} . For

$$z_{n+1} \in \operatorname{cl} P(-\sqrt{|t|}, \sqrt{|t|})$$

we obtain

$$l_n^{-1} \leq 1 - dy_t^{-}/dx(x_{n+1}),$$

hence

$$l_n \ge (1 + dy_t^+/dx(-x_{n+1}))^{-1}$$

Let $n_2 = n_2(z)$, $n_1 = n_1(z)$ and $n_3 = n_3(z)$ be respectively the smallest non-negative integers such that $x_n \ge -\sqrt{|t|}$, $x_n > 0$ and $x_n > \sqrt{|t|}$. Now make two additional assumptions:

$$n_3(z) - n_2(z) \ge 3;$$
 (5)

$$|x_{n_1-1}| \le |x_{n_1}|. \tag{6}$$

Due to (5) and (6) the point z_{n_1-1} satisfies the assumptions of lemma 2 about z. Hence, for every $k: -1 \le k \le n_3 - 3 - n_1$

$$l_{n_1+k} \cdot l_{n_1-k-3} \ge \left(1 + \frac{dy_t^+}{dx}(-x_{n_1+k+1})\right)^{-1} \left(1 + \frac{dy_t^+}{dx}(x_{n_1-k-3})\right) \ge 1.$$
(7)

We used here the fact that by lemma 2

$$|x_{n_1+k+1}| \leq |x_{n_1-k-3}|$$

and that the function dy_t^+/dx is defined and decreasing between x_{n_1-k-3} and $-x_{n_1+k+1}$. It is defined because by the left hand inequality in (3)

$$|x_{n_1-k-3}| \le |x_{n_1+k+2}| \le |x_{n_3-1}|$$
 for $k \le n_3 - 3 - n_1$.

We know, also by lemma 2, that $|n_2 - 1 - (n(z) - n_3)| \le 1$. So

$$\begin{aligned} \xi_{n(z)}/\xi_1 &= \prod_{i=1}^{n(z)-1} l_i = \prod_{i=n_2(+1)}^{n_3-3} l_i \cdot (l_{n_2}) \cdot l_{n_3-2} \cdot l_{n_3-1} \cdot \prod_{i=1}^{n_2-1} l_i \cdot \prod_{i=n_3}^{n(z)-1} l_i \\ &\ge \left(\frac{1-\sqrt{|t|}}{1+\sqrt{|t|}}\right)^3 > 1-6\sqrt{|t|}. \end{aligned}$$

(We put the terms +1 and l_{n_2} into parentheses because they appear only in the case $n_3 - n_1 = n_1 - n_2 - 1$ and do not appear if $n_3 - n_1 = n_1 - n_2$.)

In the case when (6) is not satisfied i.e. if $|x_{n_1-1}| > |x_{n_1}|$ we consider the reflection in the y-axis of the $F_{id} \circ G_{g_i}$ -trajectory $(-x_{-n}, y_{-n})$ or the H_i -trajectory $z_n = (-x_{-n}, y_{-n-1})$. We can use lemma 2 for (z_n) , so we obtain for every $k \ge 0$

$$|x_{n_1+k}| \leq |x_{n_1-k-1}| \leq |x_{n_1+k+1}|.$$

This also gives $\xi_n(z)/\xi_1 > 1 - 6\sqrt{|t|}$. The only difference in computation is that the term l_{n_1-1} has no pair, see (7). But clearly $|x_{n_1-1}| > |t|/2$, hence $l_{n_1-1} \ge 1$.

We eliminate assumption (5) in the following way.

$$\eta_{n_2-1}/\xi_{n_2-1} \ge 2\sqrt{|t|}/(1-\sqrt{|t|}),$$

i.e. it is of the order of at least $\sqrt{|t|}$. Inf $dg_t/dx \ge 3t$ for t < 0 and |t| sufficiently small. This follows easily from the representation

$$g_t = Q(t, x) \cdot 2(x^3 + tx), \text{ with } Q(0, 0) = 1,$$

see remark 1 in § 3. Thus

$$\eta_{n+1}/\xi_{n+1} = (\eta_n/(\xi_n + \eta_n)) + dg_t/dx(x_{n+1}),$$

hence if $\eta_n/\xi_n \ge K\sqrt{|t|}$, then

$$\eta_{n+1}/\xi_{n+1} \ge \min(\frac{1}{2} \cdot K, \frac{1}{2}) \cdot \sqrt{|t|} - 3|t|.$$

If we fix any integer N > 0 and proceed by induction starting with $k = n_2 - 1$ we can prove that for every k:

$$n_2 - 1 \le k \le n_2 + N,$$

 η_k/ξ_k is of the order of $\sqrt{|t|}$ for |t| sufficiently small (depending on N), hence $\eta_k/\xi_k > 0$. In particular, we can take

$$N=n_3-n_2<3.$$

Then for $n: n_2 - 1 \le n \le n_3 - 1$,

$$l_n = (\xi_n + \eta_n) / \xi_n \ge 1.$$

For all other n we have trivially $l_n \ge 1$. This proves the lemma.

https://doi.org/10.1017/S0143385700001711 Published online by Cambridge University Press

Now we can estimate the Lyapunov exponents. Take the constant C_1 from lemma 1. Let $\alpha(C_1) > 0$ be a constant such that

$$\alpha(C_1) < \inf \{ dg_0/dx(x) : x \in [C_1, 1 - C_1] \}.$$

Then the similar inequality

$$\alpha(C_1) < \inf \{ dg_t / dx(x) : x \in [C_1, 1 - C_1] \}$$

holds for every t with |t| sufficiently small.

Put $Q = \operatorname{cl} P(C_1, 1 - C_1)$. If |t| is sufficiently small we can replace the cones \mathcal{D} over Q by smaller cones

$$\mathcal{D}_Q = \{(\xi, \eta): \eta/\xi \ge -2\sqrt{|t|}/(1-\sqrt{|t|}) + \alpha(C_1)\}$$

and leave the old cones over the complement of Q. Then clearly the new system of cones \mathcal{D}' is also DH_r -invariant.

For $v \in \mathcal{D}'(z)$, $z \in Q$ and n(z) > 0 the first time when $H_t^{n(z)}(z) \in Q$, we have by lemma 3

$$(DH_t^{n(z)}(v))_x/(v)_x = ((DH_t^{n(z)}(v))_x/(DH_t(v))_x) \cdot ((DH_t(v))_x/(v)_x)$$

$$\ge (1 - 6\sqrt{t}) \cdot (1 - 2\sqrt{t}/(1 - \sqrt{|t|}) + \alpha(C_1)) = \lambda_t > 1,$$

for |t| sufficiently small.

This proves that for the first return mapping $(H_i)_Q$, for almost every $z \in Q$ one of the Lyapunov exponents is not less than $\log \lambda_b$ i.e. positive and the second one is negative.

It can be easily proved by use of the Birkhoff ergodic theorem that almost every point from Q returns to Q with positive frequency, see [1] for example. Hence also for almost every point from the set $\bigcup_{n=-\infty}^{+\infty} H_t^n(Q)$ the Lyapunov characteristic exponents are non-zero. But the latter set by lemma 1 is equal to $T^2 \setminus U_t$. This finishes the proof that Lyapunov exponents for $H_t|_{T^2 \setminus cl U_t}$ are non-zero.

5. $H_t|_{T^2\setminus cl U_t}$ has the Bernoulli property

By the Pesin theory [8], for almost every $z \in T^2 \setminus U_t$ there exist local unstable and stable manifolds $W_{loc}^u(z)$, $W_{loc}^s(z)$. To prove the Bernoulli property, also by use of the Pesin theory, it is enough to prove that for almost every pair $z, z' \in T^2 \setminus U_t$, for every m, n > 0, sufficiently large integers (depending on z and z')

$$H^n_t(W^u_{\operatorname{loc}}(z)) \cap H^{-m}(W^s_{\operatorname{loc}}(z')) \neq \emptyset.$$
(8)

We consider in fact any lifts of these curves and a lift of the dynamics to \mathbb{R}^2 without any change of notation.

The vectors tangent to the curves $H_t^n(W_{loc}^u(z))$, $H_t^{-m}(W_{loc}^s(z'))$ lie in the cone bundles \mathcal{D} and \mathcal{D}^s respectively, hence the coordinate x is monotonic along these curves, so that we can introduce a natural orientation on those curves and denote the beginning of the curve $H^n(W_{loc}^u(z))$ by (x(n, u, b), y(n, u, b)) and its end by (x(n, u, e), y(n, u, e)). Use similar notation for the ends of $H^{-m}(W_{loc}^s(z))$ with u replaced by s. For almost every z, z'

length
$$H_t^n(W_{\text{loc}}^u(z))$$
, length $H_t^{\neg m}(W_{\text{loc}}^s(z')) \xrightarrow[m,n\to\infty]{} \infty$

hence

$$|x(n, u, b) - x(n, u, e)| \xrightarrow[n \to \infty]{} \infty, \quad |x(m, s, b) - x(m, s, e)| \xrightarrow[m \to \infty]{} \infty.$$

From this it easily follows that

$$|y(n, u, b) - y(n, u, e)| \xrightarrow[n \to \infty]{} \infty, |y(m, s, b) - y(m, s, e)| \xrightarrow[m \to \infty]{} \infty$$

and that

$$\frac{x(n, u, b) - x(n, u, e)}{y(n, u, b) - y(n, u, e)} > 0, \quad \frac{x(m, s, b) - x(m, s, e)}{y(m, s, b) - y(m, s, e)} < 0$$

for n, m sufficiently large.

This for geometric reasons proves (8).

6. Additional properties of $H_t|_{T^2 \setminus cl U_t}$

We begin with the following lemma, where we gather standard facts about the dynamics near a saddle, which we shall need later.

LEMMA 4. Let $0 \in \mathbb{R}^2$ be a saddle for a C^2 -diffeomorphism ϕ of \mathbb{R}^2 , with eigenvectors $(\partial/\partial x)(0)$, $(\partial/\partial y)(0)$, corresponding eigenvalues $\mu > 1$, μ^{-1} and stable and unstable manifolds coinciding respectively with the y-th and x-th axes. Let

$$\boldsymbol{\gamma} = (\boldsymbol{\gamma}_1, \boldsymbol{\gamma}_2) : [0, 1] \to \mathbb{R}^2$$

be a C^2 -curve such that

$$\gamma(0) = 0$$
 and $d\gamma_i/ds(0) > 0$ for $i = 1, 2$.

Let U be a small neighbourhood of 0. The curve γ divides the domain

 $U^{+} = U \cap \{(x, y) \in \mathbb{R}^{2} : x > 0, y > 0\}$

into U_1 whose closure contains an interval from the y-axis and U_2 .

Then for every δ , C > 0 there exists an integer m > 0 such that for every

$$z = (x_0, y_0) \in \mathbb{R}^2, \quad v \in T_z \mathbb{R}^2$$

with the properties:

$$z, \phi^N(z) \notin U, \quad \phi^n(z) \in U^+ \text{ for every } n = 1, \dots, N-1$$

and

$$|D\phi^N(v)|| \ge C \cdot ||v||,$$

the following properties are true:

- (a) $\phi^{n}(z) \in U_{1}$ for every $n: 1 \le n \le (N/2) m$;
- (b) $\phi^{n}(z) \in U_{2}$ for $(N/2) + m \le n \le N 1$;
- (c) $\|D\phi^{n+1}(v)\|/\|D\phi^n(v)\| > \mu \delta$ for $(N/2) + m \le n \le N$;
- (d) angle $(D\phi^n(v), \partial/\partial x) < \delta$ for $(N/2) + m \le n \le N$;
- (e) If in addition the angle $(v, \partial/\partial y) < C^{-1}x_0$, then for $0 \le n \le (N/(2+\delta)) m$ $||D\phi^{n+1}(v)||/||D\phi^n(v)|| \le \mu^{-1} + \delta.$

We now fix a negative t and study the individual map H_t .

PROPOSITION 1. The measurable, DH_t -invariant stable and unstable sub-bundles E^s and E^u , which exist over almost whole $T^2 \setminus cl U_t$ according to Pesin, are actually defined and continuous over the whole $T^2 \setminus cl U_t$.

450

Moreover for every $v \in E^{u}$, $v \neq 0$,

$$\lim_{n\to\infty}\inf\frac{1}{n}\log\|DH_t^n(v)\|>0; \qquad (9^u)$$

for all neighbourhoods U_1 , U_2 of p_i and q_i respectively, there exists $\delta(U_1, U_2) > 0$ such that:

$$\sup \{ \|DH_{\iota}^{-n}(v)\| / \|v\| : n \ge 0, v \in E^{u}(z), v \ne 0, \\ z \in T^{2} \setminus cl(U_{\iota} \cup U_{1} \cup U_{2}) \} < \delta(U_{1}, U_{2});$$
(10^u)

for every $v \in E^{\mu}$,

$$\lim_{n \to \infty} \|DH_t^{-n}(v)\| = 0.$$
 (11^{*u*})

The analogous properties hold for E^{s} . We denote the respective formulae by $(9^{s})-(11^{s})$.

Proof. We take as E^{u} the line bundle E_{t} described in remark 2, § 3. Similarly we define E^{s} . For every $z \in Q = \operatorname{cl} P(C_{1}, 1 - C_{1})$,

$$E^{u}(z) \subset \mathcal{D}_{Q} = \mathcal{D}_{Q}^{u}$$

(see notation at the end of § 4). Clearly for every $z \in Q$,

$$E^{s}(z) \subset \mathcal{D}_{z}^{s} \subset \mathcal{D}_{Q}^{s} = \left\{ (\xi, \eta) \in \mathbb{R}^{2} : \frac{2\sqrt{|t|}}{1-\sqrt{|t|}} \ge \eta/\xi \ge -1 \right\}.$$

If |t| is so small that

$$-2|t|/(1-\sqrt{|t|})+\alpha(C_1)>2\sqrt{|t|}/(1-\sqrt{|t|}),$$

then there exist two constant cones of width $\beta > 0$ which separate \mathcal{D}_Q^u and \mathcal{D}_Q^s , hence separate $E^u|_Q$ and $E^s|_Q$ (figure 7). So there exists a number $M(\beta)$ such that if $v \in \mathcal{D}_Q^u$ is decomposed into

$$v = v_u(z) + v_s(z),$$

where

$$v_u(z) \in E^u(z), \quad v_s(z) \in E^s(z) \quad \text{and } z \in Q,$$

then

$$||v_s(z)||/||v_u(z)|| < M(\beta).$$

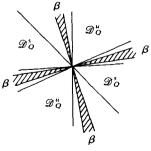


FIGURE 7

Now assume that $z \notin W^{u}(p_{t}) \cup W^{u}(q_{t})$ (global unstable manifolds). In this case the continuity of E^{u} at z can be proved similarly to the case of Anosov diffeomorphisms. Namely, let us take a constant $C_{2} > C_{1}$ ($C_{2} \approx C_{1}$) and denote

$$Q' = P(C_2, 1-C_2).$$

Let $i_1 < i_2 < \cdots < i_k < \cdots$ be all consecutive non-negative integers such that $H_t^{-i_k}(z) \in Q'$. We can consider the continuity of E^u at $H_t^{-i_1}(z)$, i.e. assume that $z \in Q'$ ($i_1 = 0$).

If z' is close to z then $H_t^{-i_k}(z')$ is close to $H_t^{-i_k}(z)$ for k = 1, ..., K with K large. Hence

 $H_{\iota}^{-i_{k}}(z') \in Q.$ Let $v \in E^{u}(z')$ and denote $DH_{\iota}^{-i_{k}}(v) = v_{s}^{k} + v_{u}^{k}$ the decomposition in $E^{s}(H_{\iota}^{-i_{k}}(z)) \oplus E^{u}(H_{\iota}^{-i_{k}}(z)).$

Then

 $||v_{s}^{k}||/||v_{u}^{k}|| \leq M_{1} \cdot M(\beta) \cdot (\lambda_{t} - \delta)^{-2(K-k)}$

for small $\delta > 0$. We recall from §4 that $\lambda_t > 1$ is the constant of hyperbolicity for the differential $D((H_t)_Q)$ of the first return map $(H_t)_Q$. The coefficient M_1 appears when we pass from the x-coordinate ()_x used as a norm on E^s and E^u in §4 to the norm || ||. In particular,

$$||v_{s}^{1}(z)||/||v_{u}^{1}(z)|| \leq M_{1} \cdot M(\beta) \cdot (\lambda_{t} - \delta)^{-2(K-1)}$$

is small.

In the case $z \in W^u(p_t) \cup W^u(q_t)$ the continuity of E^u in z follows immediately from lemma 4(d) and the following lemma.

LEMMA 5. For every $\delta > 0$ there exists $C(\delta) > 0$ such that if

$$v \in E^u(z), v \neq 0, z \in T^2 \setminus cl U_t$$

and for N > 0

$$H_t^N(z) \in \operatorname{cl} P(\sqrt{|t|} + \delta, 1 - \sqrt{|t|} - \delta)$$

then

$$\|DH_t^N(v)\|/\|v\|>C(\delta).$$

Proof. Let $i_1 < i_2 < \cdots$ be the sequence (finite or infinite) of all consecutive non-negative times when $H_t^{i_k}(z) \in Q$. We know that for $k = 1, 2, \ldots$,

 $(DH_t^{i_{k+1}}(v))_x/(DH_t^{i_k}(v))_x \ge \lambda_t > 1.$

Let $n(z) \ge 0$ be the first time such that

$$H^n(z) \in \operatorname{cl} P(\sqrt{|t|} + \delta, 1 - \sqrt{|t|} - \delta)$$

for every $n: n(z) \le n \le i_1(z)$. Clearly the set of all possible integers $i_1(z)-n(z)$ is bounded from above.

It can happen that $i_1(z)$, and consequently n(z), do not exist if z belongs to a component of $W^s(p_t) \setminus Q$ or $W^s(q_t) \setminus Q$ containing p_t or q_t respectively. It can also happen that N < n(z) if $\delta < C_1 - \sqrt{|t|}$. However the set of all possible N in these cases is bounded from above. In the latter case this is due to lemma 1 which implies

that for every $n: 0 < n \le N$,

$$H_t^n(z) \in \operatorname{cl} P(-C_1, -\sqrt{|t|} - \delta)$$

or for every $n: 0 < n \le N$,

$$H_t^n(z) \in \operatorname{cl} P(\sqrt{|t|} + \delta, C_1).$$

The above observations also apply to the point $H^{i_k+1}(z)$ where k is the largest integer such that $i_k < N$.

Thus, the proof of the lemma reduces to estimating

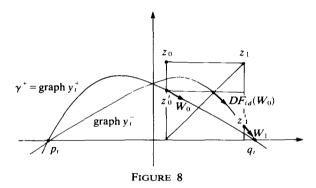
$$\|DH_t^{n(z)}(v)\|/\|v\| \quad \text{for } n(z) \text{ large.}$$

Let $z = (x, y)$ and for example $y > 0$. Consider the case when $z, H_t(z) \in \operatorname{cl} P(0, \sqrt{|t|}).$

Put

$$z = z_0 = (x_0, y_0), \quad z_1 = F_{id}(z) = (x_1, y_0)$$

and consider the points $z'_i = (x'_i, y'_i)$ lying on the same vertical as z_i belonging to γ_t^+ , for i = 0 and to graph y_t^- for i = 1, see figure 8.



Denote by W_0 the vector tangent to γ_t^+ at z'_0 such that $(W_0)_x = 1$ and by W_1 the vector tangent to graph y_t^- at z'_1 such that

$$(W_1)_x = (DF_{\mathrm{id}}(W_0))_x.$$

Denote the vectors W_i at z_i instead of at z'_i by $W_i(z_i)$, for i = 0, 1. Instead of v it is enough to consider $W_0(z_0)$.

Put $u = DF_{id}(W_0(z_0)) - W_1(z_1))$. Since

$$DF_{id}(W_0(z_0)) = DF_{id}(W_0)$$

if we identify the respective tangent spaces, we have

$$(u)_{y} = \left(\frac{dy_{t}}{dx}((F_{id}(z'_{0}))_{x}) - \frac{dy_{t}}{dx}(x_{1})\right) \cdot (W_{1})_{x}$$

$$\geq \left(\sup\left\{\frac{d^{2}y_{t}}{dx^{2}}(x): x \in [-\sqrt{|t|}, \sqrt{|t|}]\right\}\right) \cdot (y'_{0} - y_{0}) \cdot (W_{1})_{x}$$

$$> \frac{3}{2} \cdot (y_{0} - y'_{0}) \cdot (1 - \sqrt{|t|}) / (1 + \sqrt{|t|}) > y_{0} - y'_{1}.$$

Of course $(u)_x = 0$.

F. Przytycki

Let $I:[0, 1] \rightarrow T^2$ be the interval, joining z'_1 with z_1 . Using the convexity of the function g_t in the domain $[0, \frac{1}{4}]$ one can prove by induction that for every $s \in [0, 1]$ and $n: 0 \le n \le n(z) - 1$:

$$(D(H_t^n \circ G_{g_t})(u))_x \ge (D(H_t^n \circ G_{g_t} \circ I)((\partial/\partial s)(s)))_x$$

Since

$$D(H_t^n \circ G_{g_t})(W_1(z_1)), D(H_t^n \circ G_{g_t})(u) \in \mathcal{D} \quad \text{for } n \ge 1,$$

we have

$$(D(H_t^n \circ G_{g_t})(W_1(z_1)))_x, (D(H_t^n \circ G_{g_t})(u))_x > 0.$$

So

$$(DH_{\iota}^{n(z)}(W_{0}(z_{0}))_{x} \geq \int_{0}^{1} (D(H_{\iota}^{n(z)-1} \circ G_{g_{\iota}} \circ I)((\partial/\partial s)(s)))_{x} ds$$
$$+ (D(H_{\iota}^{n(z)-1} \circ G_{g_{\iota}})(W_{1}(z_{1})))_{x} > \delta,$$

since $(H_t^{n(z)-1}G_{g_t})(z_1')$ stays in γ_t^+ , hence in $P(-\sqrt{|t|}, \sqrt{|t|})$ and

$$(H_t^{n(z)-1}G_{g_t})(z_1) \in P(\sqrt{|t|} + \delta, 1 - \sqrt{|t|} - \delta).$$

We have considered the case $z, H_t(z) \in \operatorname{cl} P(0, \sqrt{|t|})$.

The case $z \in P(-C_1, 0)$ reduces to the previous one since

$$(DH_t^{n+1}(v))_x/(DH_t^n(v))_x \ge 1$$
 for every $n = 0, 1, ..., n_1(z) - 2$

where $n = n_1(z)$ is the first time when

$$H^n_t(z) \in \operatorname{cl} P(0, \sqrt{|t|}).$$

Then also

$$H_t^{n_1(z)+1}(z) \in \operatorname{cl} P(0, \sqrt{|t|})$$

due to the assumption that n(z) is large.

Also for $z \in \mathcal{T}_t(C_1 - \sqrt{|t|}) \cup \mathcal{T}'_t(C_1 - \sqrt{|t|})$ we have

$$(DH_t^{n+1}(v))_x/(DH_t^n(v))_x > 1$$
 for every $n = 0, 1, ..., n(z) - 1$.

The less trivial case is when $z \in P(\sqrt{|t|}, \sqrt{|t|} + \delta)$. We still assume that y > 0: Let n = n'(z) > 0 be the first time that

$$H_t^{-n}(z) \in \operatorname{cl} P(0, \sqrt{|t|} - \delta).$$

Notice that it is enough to prove the lemma only for $\delta \ll \sqrt{|t|}$. Now we shall use lemma 4 for the saddle q_t , its neighbourhood: the square with the sides $x = \sqrt{|t|} \pm \delta$ and $y = \pm \delta$ and for the curve $\{x = \sqrt{|t|}, y \ge 0\}$. For that we need to change coordinates. Its assumptions, for the vector $DH_t^{-n'(z)}(v)$ tangent of $H_t^{-n'(z)}(z)$ are satisfied due to the proved case of lemma 5.

So, by lemma 4(c)

$$\|DH_{t}^{n+1}(v)\|'/\|DH_{t}^{n}(v)\|' \ge 1$$
(12)

for every n such that

$$(n(z)+n'(z))/2+m-n'(z) \le n \le n(z).$$

Here we use the Euclidean norm $\| \|'$ connected with the coordinates of lemma 4. By lemma 4(*a*), since $z \in P(\sqrt{|t|}, \sqrt{|t|} + \delta)$

$$n'(z) \ge \frac{n(z) + n'(z)}{2} - m$$

Hence (12) holds for every $n = 2m, \ldots, n(z) - 1$. So

$$||DH_t^{n(z)}(v)||/||v|| \ge CL^{-2m}$$

where L is the Lipschitz constant for H_i^{-1} and C is a coefficient connected with the change of the norms. This ends the proof of lemma 5.

We still need to prove $(9^{u(s)})-(11^{u(s)})$ in proposition 1. Let us start with (9^{u}) . This is obvious for

$$z \in W^s(p_t) \cup W^s(q_t).$$

To prove the other case it is enough to find $\mu_t > 1$ such that for every $z \in Q$, if the first positive integer n(z) such that $H_t^{n(z)} \in Q$ is larger than a constant integer N,

$$(DH_t^n(v))_x/(v)_x \ge \mu_t^n$$
 for $n = 0, 1, ..., n(z)$.

Then we would obtain in (9^{μ}) the estimate by

$$\min(N^{-1}\log\lambda_t,\log\mu_t).$$

Let $z = (x, y) \in Q$, n(z) be as above with y > 0. Let $n = n_1(z)$ be the first positive integer such that

$$H^n_t(z) \in P(0, C_1).$$

We extend the notation from the proof of lemma 3, § 4: For every n = 0, 1, ..., n(z) put

$$R(n) = (DH_t^n(v))_x / (v)_x = \prod_{k=0}^{n-1} l_k$$

where $l_n = (DH_t^{n+1}(v)_x/(DH_t^n(v))_x)$. Put as usual $H_t^n(z) = (x_n, y_n)$ and, furthermore: $r_n = 1 - 2\sqrt{|t|}/(1 - \sqrt{|t|}) + \alpha(C_1)$ for n = 0;

 $r_n = (1 + \sqrt{|t|})/(1 - \sqrt{|t|})$ for $n \ge 0$ and such that $x_n < -\sqrt{|t|}$;

 $r_n = 1 + dy_t^+/dx(x_n)$ if $-\sqrt{|t|} \le x_n$ and $n \le n_1(z) - 2$ and also for $n = n_1(z) - 1$ we assume that $|x_{n_1(z)-1}| > |x_{n_1(z)}|$;

 $r_n = (1 - dy_t^-/dx(x_{n+1}))^{-1}$ if $x_{n+1} \le \sqrt{|t|}$ and $n \ge n_1(z)$ and also for $n = n_1(z) - 1$ we assume that $|x_{n_1(z)-1}| \le |x_{n_1(z)}|$;

 $r_n = (1 - \sqrt{|t|})/(1 + \sqrt{|t|})$ if $x_{n+1} > \sqrt{|t|}$ and n < n(z).

Recall that $l_n \ge r_n$. Due to lemma 5 we can use lemma 4(b) and (c), so there exists m > 0 such that for every n satisfying:

$$n_4(z) = n_1(z) + (n(z) - n_1(z))/2 + m \le n \le n(z)$$

we have

$$x_n > \sqrt{|t|}$$
 and $l_n > ((1 + \sqrt{|t|})/(1 - \sqrt{|t|}))^{\frac{1}{2}}$. (13)

So

$$R_{n_{4}(z)} = \prod_{i=0}^{n_{4}(z)-1} l_{i} \ge \left(\prod_{i=0}^{n(z)-1} r_{i}\right) \cdot \left(\prod_{i=n_{4}(z)}^{n(z)-1} r_{i}\right)^{-1} \\ \ge \lambda_{t} \cdot \left(\frac{1-\sqrt{|t|}}{1+\sqrt{|t|}}\right)^{-n(z)/5} \ge \left(\left(\frac{1+\sqrt{|t|}}{1-\sqrt{|t|}}\right)^{\frac{1}{5}}\right)^{n_{4}(z)}.$$
(14)

We have used the fact that for large n(z), $n_4(z) < \frac{4}{5}n(z)$. This is true due to the definition of $n_4(z)$ and due to lemma 2, § 4 which gives $|n_1(z) - n(z)/2| \le 1$.

For $n \ge n_4(z)$, we have due to (13):

$$R(n) = R(n_4(z)) \cdot \left(\prod_{i=n_4(z)}^{n-1} l_i\right)$$

$$\geq \left(\left(\frac{1+\sqrt{|t|}}{1-\sqrt{|t|}}\right)^{\frac{1}{5}}\right)^{n_4(z)} \left(\left(\frac{1+\sqrt{|t|}}{1-\sqrt{|t|}}\right)^{\frac{1}{2}}\right)^{n-n_4(z)} > \left(\left(\frac{1+\sqrt{|t|}}{1-\sqrt{|t|}}\right)^{\frac{1}{5}}\right)^n.$$

For $n \le n_4(z)$ similar estimates follow from

$$R(n) \ge \prod_{i=0}^{n-1} r_i, \quad \prod_{i=0}^{n_4(z)-1} r_i \ge \left(\left(\frac{1+\sqrt{|t|}}{1-\sqrt{|t|}} \right)^{\frac{1}{2}} \right)^{n_4(z)}$$

and from the fact that the sequence r_i , $i = 0, ..., n_4(z)$ is decreasing.

Concluding, we can take

$$\mu_t = ((1 + \sqrt{|t|})/(1 - \sqrt{|t|}))^{\frac{1}{5}}.$$

A more careful estimate in (14) would show that we could take

$$\mu_t = ((1 + \sqrt{|t|}) / (1 - \sqrt{|t|}))^{\frac{1}{3} - \delta}$$

for arbitrarily small $\delta > 0$.

Now let us prove (10^{u}) . Let U_1 , U_2 contain respectively some balls $B(p_i, \delta)$, $B(q_i, \delta)$. For

$$z \in \operatorname{cl} P(\sqrt{|t|} + \delta/2, 1 - \sqrt{|t|} - \delta/2)$$

 (10^{u}) follows from lemma 5. If

$$z \in \operatorname{cl} P(-\sqrt{|t|} - \delta/2, \sqrt{|t|} + \delta/2),$$

then z is within the distance of at least $\delta/2$ from the components W^p and W^q of $W^u(p_t) \cap \operatorname{cl} P(-\sqrt{|t|} - \delta/2, -\sqrt{|t|})$

or

$$W^{u}(q_{t}) \cap \operatorname{cl} P(\sqrt{|t|}, \sqrt{|t|} + \delta/2)$$

containing p_t or q_t , respectively, since W^p and W^q are almost horizontal if |t| is sufficiently small. So after bounded time n > 0 and some time $m \ge 0$ during which DH_t^{-1} contracts on E^u ,

$$H_t^{-n}(z) \in \operatorname{cl} P(\sqrt{|t|} + \delta/2, 1 - \sqrt{|t|} - \delta/2)$$

and we have the previous case.

 (11^{u}) is obvious in the case $z \in W^{u}(p_{t}) \cup W^{u}(q_{t})$. In the other case it follows from (10^{u}) and from the fact that

$$(DH_t^{-i_{k+1}}(v))_x/(DH_t^{-i_k}(v))_x \leq \lambda_t^{-1}$$

for every two consecutive times i_k , i_{k+1} when the backward trajectory $H_i^{-n}(z)$ of z hits Q. The proof of proposition 1 is finished.

COROLLARY 1. For every H_i -invariant probability measure on $T^2 \setminus U_i$, the Lyapunov characteristic exponents are almost everywhere non-zero and of opposite signs.

Proof. This corollary follows from
$$(9^{\mu})$$
 and (9^{s}) .

COROLLARY 2. For every $\delta > 0$ there exists $C_0(\delta) > 0$ such that for every $\gamma^{\mu} : [0, 1] \rightarrow T^2 \setminus cl U_t$ an integral curve for E^{μ} , if

dist
$$(\gamma^{u}, \{p_{t}\} \cup \{q_{t}\}) \geq \delta$$

then

$$\sup_{n\geq 0} (\operatorname{length} H_t^{-n}(\gamma^u)/\operatorname{length} \gamma^u) \leq C_0(\delta)$$
(15)

and

$$\lim_{n\to\infty} \operatorname{length} H_t^{-n}(\gamma^u) = 0.$$

The analogous facts hold for integral curves for E^s . *Proof.*

$$\lim_{n \to \infty} \operatorname{length} H_{\iota}^{-n}(\gamma^{u}) = \lim_{n \to \infty} \int_{0}^{1} \|D(H_{\iota}^{-n} \circ \gamma^{u})(\partial/\partial s)(s)\| ds$$
$$= \int_{0}^{1} (\lim_{n \to \infty} \|D(H_{\iota}^{-n} \circ \gamma^{u})(\partial/\partial s)(s))\| ds = 0.$$

We used the fact that the integrands are uniformly bounded by (10^{μ}) and converge to 0 pointwise by (11^{μ}) . (10^{μ}) gives (15) with

$$C_0(\delta) = C(B(p_b, \delta), B(q_b, \delta)).$$

Let $z = (x_0, y_0) \in T^2 \setminus cl U_t$. Consider the rectangle

$$S = \{(x, y): x_0 - \delta \le x \le x_0 + \delta, y_0 - K\delta \le y \le y_0 + K\delta\},\$$

where $K = 1 + \sup dg_t/dx$ and δ such that $S \cap \operatorname{cl} U_t = \emptyset$ and

$$(K+1) \cdot \delta \cdot C_0(\text{dist}(S, \{p_t\} \cup \{q_t\})) \ll 1.$$

Let $\gamma^{\mu} \ni z$ be a maximal integral curve for E^{μ} in S. By the definition of K it joins the left and right hand sides of S. Then γ^{μ} , the candidate for a local unstable manifold has the following characterization:

$$\gamma^{u} = \{ z' \in S : \text{dist} (H_{t}^{-n}(z'), H_{t}^{-n}(z)) \le \text{dist} (z', z) \cdot (K+1) \\ \times C_{0}(\text{dist} (S, \{p_{t}\} \cup \{q_{t}\})) \text{ for every } n \ge 0 \}.$$

The inclusion ' \subset ' follows from (15) in corollary 2. To prove ' \supset ' take

$$u = (x_1, y_1) \in S \setminus \gamma^{\mu}$$

and put $u' = (x_1, y'_1)$ the point on the same vertical as u, in γ^{u} . Take the interval I joining u with u'. For every $n \ge 2$ the vectors tangent to $H_t^{-n}(I)$ belong to the stable cones \mathcal{D}^s . Hence

 $\sup_{n \ge 0} \operatorname{dist} \left(H_t^{-n}(u), H_t^{-n}(z) \right) \ge \sup_{n \ge 0} \operatorname{dist} \left(H_t^{-n}(u), H_t^{-n}(u') \right)$

$$= \sup_{n \ge 0} \operatorname{dist} (H_t (u), H_t (z))$$

$$\geq \frac{1}{2}L^{-1} - (K+1) \cdot \delta \cdot C_0(\operatorname{dist} (S, \{p_t\} \cup \{q_t\})) \ge \operatorname{const} > 0.$$

L is the Lipschitz constant for H_t^{-1} .

The above characterization of γ^{μ} and an analogous characterization of γ^{s} prove:

COROLLARY 3. The line bundles E^{u} and E^{s} are uniquely integrable.

Remark. The bundles E^{u} and E^{s} extend to the continuous bundles \overline{E}^{u} and \overline{E}^{s} over $T^{2}\setminus(U_{t}\cup\{p_{t}\}\cup\{q_{t}\})$ which are tangent to γ_{t}^{\pm} over γ_{t}^{\pm} . It is easy to see that $(10^{u(s)})$, $(11^{u(s)})$, corollary 2 and corollary 3 hold if $E^{u(s)}$ is replaced by $\overline{E}^{u(s)}$.

PROPOSITION 2. There exists a continuous semiconjugacy $\varphi: T^2 \to {}^{\text{onto}} T^2$ from H_t to the Anosov automorphism A (i.e. $\varphi \circ H_t = A \circ \varphi$) such that $\varphi^{-1}(0) = \operatorname{cl} U_t$ and $\varphi|_{T^2 \setminus \operatorname{cl} U_t}$ is 1–1. This means that $H_t|_{T^2 \setminus \operatorname{cl} U_t}$ is topologically conjugated with $A|_{T^2 \setminus \{0\}}$.

Compare this proposition with property (1) of H_t , $t \ge 0$, from the introduction.

Proof. The existence of a semiconjugacy follows from [3, proposition 2.1]. Denote by $\tilde{\varphi}$, \tilde{H} , \tilde{A} lifts of φ , H_t , A to \mathbb{R}^2 keeping $0 \in \mathbb{R}^2$ invariant, such that

 $\tilde{\varphi}\circ\tilde{H}=\tilde{A}\circ\tilde{\varphi}.$

 $\tilde{\varphi}$ - id is a bounded function and \tilde{A} is expansive in the following sense:

$$\sup_{n\in\mathbb{Z}}\operatorname{dist}\left(\tilde{A}^{n}(z),\tilde{A}^{n}(z')\right)=\infty$$

for every $z, z' \in \mathbb{R}^2, z \neq z'$.

Hence $\tilde{\varphi}(z) \neq \tilde{\varphi}(z')$ is equivalent to

$$\sup_{n \in \mathbb{Z}} \operatorname{dist} \left(\tilde{H}^{n}(z), \tilde{H}^{n}(z') \right) = \infty.$$
(16)

Denote by Π the projection $\Pi: \mathbb{R}^2 \to \mathbb{R}^2/Z^2 = T^2$. Then

 $\varphi(\Pi(z)) \neq \varphi(\Pi(z'))$

is equivalent to (16) for every pair z + w, z' where $w \in \mathbb{Z}^2$.

Due to this criterion we immediately have $\varphi(\operatorname{cl} U_t) = 0$. To finish the proof it is enough to check that for every pair $z \in \Pi^{-1}(T^2 \setminus \operatorname{cl} U_t)$, $z' \in \Pi^{-1}(T^2 \setminus U_t)$, we have

$$\sup_{n\in\mathbb{Z}}\operatorname{dist}\left(\tilde{H}^{n}(z),\tilde{H}^{n}(z')\right)=\infty.$$

We shall only check the case when $z = z_0 = (x_0, y_0)$ and z' = (x', y') are close to 0 and $y_0, y' > 0$ and leave the other cases to the reader.

Consider the new coordinates $x, \beta(x, y) = y - y_t^+(x, y)$ in a neighbourhood W of 0. Put

$$V_1 = \{ z = (x, y) \in W : (x - x_0) \cdot (\beta(z) - \beta(z_0)) \ge 0 \}$$
$$V_2 = W \setminus V_1.$$

and

See figure 9.

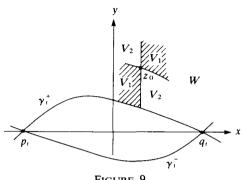


FIGURE 9

Join $z = z_0$ with z' by the interval $I:[0, 1] \rightarrow \mathbb{R}^2$ in the coordinates (x, β) . We lift our DH_t (DH_t^{-1}) -invariant cones and bundles $E^{u(s)}$ to $T(\mathbb{R}^2)$ and use the same notation for them as in $T(T^2)$. Now if $z' \in V_1$

$$D(\tilde{H}^n \circ I)(\partial/\partial s)(s) \in \mathcal{D}$$
(17)

for every n = 1, 2, ... and $s \in [0, 1]$ except maybe $s = s_0$ such that $I(s_0) \in \gamma_t^+$ where \mathcal{D} has not been defined. There exists at most one such s_0 since z and z' do not both belong to γ_t^+ . Hence

$$D(\tilde{H}^n \circ I)(\partial/\partial s)(s) \notin \tilde{E}^s$$
.

This is true for $s \neq s_0$ since

 $\mathscr{D} \cap \operatorname{int} \mathscr{D}^s = \mathscr{O}$

and in fact $E^s \subset \operatorname{int} \mathfrak{D}^s$.

For every $s \neq s_0$ decompose

$$D(\tilde{H} \circ I)(\partial/\partial s)(s) = v_1(s) + v_2(s)$$

according to the decomposition $E^s \oplus E^{\mu}$. We have the function $||v_1(s)||$ bounded from above on $[0, 1] \setminus J$ where J is a neighbourhood of s_0 and also $||v_2(s)|| > 0$ for every $s \in [0, 1] \setminus J$.

Then by $(9^{u}) - (11^{u})$

length
$$(\tilde{H}^n \circ I|_{[0,1]\setminus J}) \xrightarrow[n \to \infty]{} \infty$$

so length $(\tilde{H}^n \circ I) \rightarrow_{n \to \infty} \infty$.

Since by (17) the functions $(D\tilde{H}^n(\partial/\partial s)(s))_x$ have constant signs and $(D\tilde{H}^{n}(\partial/\partial s)(s))_{v}/(D\tilde{H}^{n}(\partial/\partial s)(s))_{x} \leq 1 + \sup dg_{i}/dx$

is uniformly bounded,

dist
$$(\tilde{H}^n(z), \tilde{H}^n(z')) \xrightarrow[n \to \infty]{} \infty$$
.

The proof for $z' \in V_2$ is similar. In that case expansiveness occurs under backward iterates. The proof of proposition 2 is finished.

It occurs that $\varphi|_{T^2\setminus cl U_t}$ cannot be C^1 . Moreover, we shall prove the following proposition.

PROPOSITION 3. There exist no
$$C^1$$
-diffeomorphisms
 $B: T^2 \to T^2$ and $\varphi: (T^2 \setminus \operatorname{cl} U_t) \to T^2 \setminus \{0\}$

such that $\varphi \circ H_t = B \circ \varphi$.

Proof. We use the method used by Gerber and Katok [4] to prove the analogous fact for pseudo-Anosov homeomorphisms. Due to proposition 2 we can find a Markov partition for $H_t|_{T^2\setminus cl U_t}$ containing the cells M_i , i = 1, 2 being closures of a neighbourhood of cl U_t intersected with \mathcal{T}_t and $\{y > 0\} \setminus (\mathcal{T}_t \cup \mathcal{T}'_t)$ respectively. So there exist sequences of H_t -periodic points z_n , w_n with periods α_n , $\beta_n \to \infty$ such that

$$z_n \in \operatorname{int} M_1$$
, $w_n \in \operatorname{int} M_2$, z_n , $w_n \xrightarrow[n \to \infty]{} D$,

which is a fundamental domain in $W^s(p_i)$, and there exists a constant integer N > 0 such that for every $i, n: 0 \le i \le \alpha_n - N$,

$$H^i(z_n) \in M_1$$

and for every $i, n: 0 \le i \le \beta_n - N$,

$$H^i(w_n) \in M_2$$

(see figure 10).

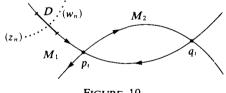


FIGURE 10

Clearly the Lyapunov exponents $\lambda_{\pm}(z_n)$ converge to the logarithms of the eigenvalues at p_i , i.e. to

$$\lambda_{\pm}^{(z)} = \pm \log \left(1 + \sqrt{|t|}\right) / (1 - \sqrt{|t|}).$$

For $v \in E^{u}(w_n)$ we have clearly

$$\frac{1}{n_1(w_n)} \log \|DH_t^{n_1(w_n)}(v_n)\| \approx \log \left(\frac{1+\sqrt{|t|}}{1-\sqrt{|t|}}\right)$$

for *n* large, where $n_1(w_n)$ is the first time when

$$(H_t^{n_1(w_n)}(w_n))_x > 0.$$

The bundle \overline{E}^{μ} is Lipschitz continuous at γ^{\pm} . This is a property of dynamics around the saddle p_{t} , compare with [5, theorem 6.3.b].

Hence we can use lemma 4(e) for a neighbourhood of q_t and conclude by use of lemma 4(c) that

$$\log (\|DH_t^{\beta_n - N}(v_n)\| / \|DH_t^{n_1(w_n)}(v_n)\| \approx 0$$

for n large.

By lemma 2 $|n_1(w_n) - \beta_n/2|$ is uniformly bounded for all *n*. So, the Lyapunov exponents $\lambda_{\pm}(w_n)$ converge to

$$\lambda_{\pm}^{(w)} = \pm \frac{1}{2} \log \left((1 + \sqrt{|t|}) / (1 - \sqrt{|t|}) \right).$$

If φ and B existed, the Lyapunov exponents over $\varphi(z_n)$ and $\varphi(w_n)$ would also converge to $\lambda_{\pm}^{(2)}$, $\lambda_{\pm}^{(w)}$ respectively.

Meanwhile, if one of the eigenvalues of DB(0) were 0, then

$$\lim_{n\to\infty}\frac{1}{n}\log\|DB_{\varphi(z_n)}^{\alpha_n}\|=0 \quad \text{or} \quad \lim_{n\to\infty}\frac{1}{n}\log\|DB_{\varphi(z_n)}^{-\alpha_n}\|=0,$$

so log $\lambda_{+}^{(z)}$ and log $\lambda_{-}^{(z)}$ could not have different signs. This is a contradiction.

If 0 were a saddle for *B* then $\varphi(z_n), \varphi(w_n) \rightarrow_{n \rightarrow \infty} \varphi(D)$ – a fundamental domain in a local stable manifold for *B* at 0. But the set of limit spaces of the sequences $D\varphi(E^u(z_n))$ and $D(E^u(w_n))$ is disjoint with the bundle tangent to $\varphi(D)$. Hence one of the Lyapunov exponents at $\varphi(z_n)$ and at $\varphi(w_n)$ converge to the same number, to the logarithm of an eigenvalue of DB(0). So $\lambda_+^{(z)} = \lambda_+^{(w)}$. This is a contradiction.

7. Final remarks

Remark 1. We do not know whether there exists a family g_t satisfying property (1) § 1, with separatrices joining p_t with q_t for the corresponding H_t , such that g_t on \mathbb{R} , and hence, H_t on T^2 , is real-analytic.

The problem is to solve the system of functional equations:

$$y_t^-(x+y_t^+(x)) = y_t^+(x)$$
 $g_t = y_t^+ - y_t^-$

close to t = 0, x = 0, in real-analytic functions satisfying property (1) (its part, at t = x = 0), so that g_t - id is *periodic* with period 1.

The periodicity condition does not hold for g_t defined by (*) in the theorem in § 2. There, the functions g_t have real poles.

We can attempt to solve the problem by starting with the family of the Hamiltonian functions:

$$h_t(x, y) = (\frac{4}{5}x^2 - (y + \sqrt{C} - t)^2 + C) \cdot (\frac{4}{5}x^2 - (y - \sqrt{C} + t)^2 + C),$$

for a constant C > 0.

Then we obtain g_t – id bounded (not periodic unfortunately).

We have chosen the above h_t so that the set of their zeros consists of branches of hyperboles. The choice is motivated by the fact that if we want g_t to be real-analytic, then graph y_t^+ must coincide with the unstable manifold of q_t for H_t (when $x \to +\infty$). So, when $x \to +\infty$, graph y_t^+ must be within the finite distance from the unstable manifold of 0 for the Anosov diffeomorphism A, which is the straight line $(2x/\sqrt{5}) - y = 0$. This is so because of the existence of a semiconjugacy from H_t to A, see proposition 3, § 6. *Remark* 2. We could consider directly the time-one diffeomorphism $\bar{H}_{i,1}$ for the Hamiltonian vector field corresponding to the function

$$h_t(x, y) = y^2 - x^2(x^2 + 2t),$$

see § 2. The trouble then is with a simple extension of this diffeomorphism from a neighbourhood of cl U_t to the whole T^2 . Such $\tilde{H}_{t,1}$ on U_t would be integrable (i.e. $U_t \setminus \{0\}$ would consist of closed invariant curves).

Our H_t 's, close to 0, are perturbations of such $\overline{H}_{t,1}$. The intuition to treat H_t as a time-one solution for a differential equation has been basic to the existence of invariant cones (such a cone cannot pass to the other side of the trajectory of the flow, figure 11) and in lemma 2.

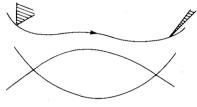


FIGURE 11

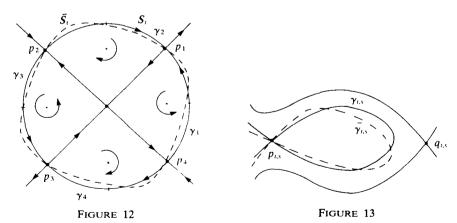
Remark 3. In the proof of proposition 3 § 6 we used the fact that in the construction of H_t , t < 0 only two out of four sectors between stable and unstable manifolds of a saddle of an Anosov diffeomorphism were 'blown up'.

We can however use the Hamiltonian function:

462

$$y^{2}(y^{2}+2t) - x^{2}(x^{2}+2t) = (y^{2}-x^{2})(x^{2}+y^{2}+2t).$$

For t < 0, the separatrices γ_i , i = 1, ..., 4, joining the saddles $p_i = (\pm \sqrt{|t|}, \pm \sqrt{|t|})$, i = 1, ..., 4, form a circle S_i , see figure 12.



Now we should either somehow extend the time-one diffeomorphism for the resulting Hamiltonian vector field or find functions $f = f_t$, $g = g_t$, $\mathbb{R} \to \mathbb{R}$ with property (1) § 1 such that the toral linked twist mapping $H_{f,g}$ still preserves the saddles p_i and a closed curve \bar{S}_t , built from separatrices $\bar{\gamma}_i$, i = 1, ..., 4 (close to S_t).

For each individual t it is easy to find such f, g of class C^{∞} as follows: Define any reasonable f = g in a small neighbourhood of $\pm \sqrt{2|t|}$, then extend four small arcs $F_{-\frac{1}{2}f}(\gamma_{2(4)})$, $G_{\frac{1}{2}g}(\gamma_{1(3)})$ to a curve \bar{S}'_t (invariant under rotation by $\pi/2$) and, using also \bar{S}'_t symmetric to \bar{S}_t with respect to the x- or y-axis, find f and g.

Is it possible to find such f_t , g_t real-analytic, at least in a neighbourhood of t = x = y = 0?

The whole theory from this paper holds for the resulting $H_t = H_{f,g}$ except for proposition 3. Can the resulting H_t on $T^2 \setminus Cl U_t$ (U_t is the domain bounded by \bar{S}_t) be C^1 -conjugate with $A|_{T^2 \setminus \{0\}}$? The obstruction used in the proof of proposition 3 disappears in this case.

Remark 4. We can consider a secondary bifurcation $H_{t,s}$ of H_t . Let us start with the Hamiltonian function:

$$h_{t,s}(x, y) = y^2 - x^2(x^2 + sx + 2t).$$

See the phase portrait of figure 13.

Now as in remark 3 we can look for functions $f_{t,s}$, $g_{t,s}$, t < 0 such that $H_{f_{t,g_t}}$ preserves the saddles $p_{t,s}$, $q_{t,s}$ and a separatrix $\bar{\gamma}_{t,s}$ close to $\gamma_{t,s}$ from $p_{t,s}$ (or $q_{t,s}$) to itself.

Observe that we dropped the assumption from property (1) § 1 that $g_{t,s}$ is an odd function, since for $s \neq 0$ $h_{t,s}$ is not an even function with respect to x.

As in remark 3 it is easy to find $f_{t,s}$, $g_{t,s} C^{\infty}$ for each individual t, s.

Is it possible to find $f_{t,s}$, $g_{t,s}$ real-analytic at least in a neighbourhood of t = s = x = y = 0?

Are the Lyapunov exponents outside the separatrix $\gamma_{t,s}$ different from zero for $H_{t,s}$, $s \neq 0$, t < 0?

The author gratefully acknowledges the financial support of the Stiflung Volkswagenwerk for a visit to the Institut des Hautes Études Scientifique during which this paper was partially written.

REFERENCES

- [1] R. Burton & R. Easton. Ergodicity of linked twist mappings. Global Theory of Dynamical Systems: Lectures Notes in Math. No. 819. Springer: Berlin, 1980, pp. 35–49.
- [2] R. E. Edwards. Functional Analysis. Holt, Rinehart and Winston: New York, 1965.
- [3] J. Franks. Anosov diffeomorphisms. Global Analysis. Proc. Symp. Pure Math. 14 (1970), 61-93.
- [4] M. Gerber & A. Katok. Smooth models of Thurston's pseudo-Anosov maps. Ann. Sci. de l'Ecole Normale Superieure, 4^e serie, 15 (1982), 173-204.
- [5] M. Hirsch & Ch. Pugh. Stable manifolds and hyperbolic sets. Global Analysis, Proc. Symp. Pure Math. 14 (1970), 133-163.
- [6] A Katok. Bernoulli diffeomorphisms on surfaces. Ann. Math. 110 (1979), 529-547.
- [7] R. Mañé. The Lyapunov exponents of generic area preserving diffeomorphisms. Preprint.
- [8] Ya. B. Pesin. Lyapunov characteristic exponents and smooth ergodic theory. Uspekhi Math. Nauk. 32 No. 4 (1977), 55-112. English translation: Russ. Math. Surveys 32 No. 4 (1977), 55-114.
- [9] F. Przytycki. Linked twist mappings: Ergodicity. Preprint I.H.E.S., February 1981. (To appear in part in Ann. Scientifiques de l'Ecole Norm. Sup.)