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THE THEORY OF COMPOSITIONS (I): THE ORDERED
FACTORIZATIONS OF n AND A CONJECTURE
OF C. LONG

BY
GEORGE E. ANDREWS®

1. Introduction. Several years ago, C. Long wrote two papers ([3], [4]) that
related to F(n) the number of ordered factorizations of n. The second of these
papers [4] was devoted entirely to a discussion of conjectured formula for F(n).
In this paper, Long’s conjecture will be proved as

THEOREM 3 (LONG’S CONJECTURE). If 1<n=pi*p3... p; is the prime fac-
torization of n, then F(n) is the number obtained if the polynomial

2 1:! {x1%2* X+ +x)A+x5) - - - (1 4x,)}%

is fully expanded and then each xi is replaced by ( ) for 1<i<L

r—1, 0Sk$0€i+1+ai+2+. . '+O€,.

In Section 2 we shall prove analytically the following result which will be the
essential key to the proof of Long’s conjecture.

&%
%t o —k

TueoReM 1. If 1<n=p7* p3* ... p;" is the prime factorization of n, then

ro=3, 3 () () ()

1
(1 ) % (a1+h2+-.‘+h,.) (a2+h3+...+hr L ar—1+hr
h2+"'+h, h3+"'+hr hr

In Section 3 we shall prove Theorem 1 combinatorially. Section 4 considers a
refinement of Theorem 1 to F(n; p), the number of ordered factorizations of »
with p factors. In Section 5, we prove Long’s conjecture.

2. Analytic proof of Theorem 1. Let g(x,, ..., «,) denote the right hand side
of (1.1). Then by the binomial series

Gty tyy ... st) D 8oy, )3t

@3>0 2,>0

— l (h1+' : +hr) (h2+ ' +h7‘) e (h7—1+h"') th1 . thr
2h120"‘h120 hl h2 hr—]_ 1 4
x(l__tl)—hl—hz---—h,~1(1__tz)—hz—-c-—h,—l e (1—'tr)‘h'_1.
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I claim now that for each j with 1<j<r+1
G(ty, ..., 1)

1 ]’l + +h . hr—1+hr n. . Rj S PR Y |
@2 2 § (7)) G- e
(

j—1 }_h,_~ c—hy—1

R (A £ 1 (EEARS

We note that (2.2) is true for j=1 since in this case it is just (2.1) (the expression
inside the curly brackets is equal to 1). Assuming (2.2) true for a fixed j; and noting

that
oo j—1
5 (" s T a-w-r)
1;>0 i =1
—Rjgq—— hy—1
=[1— 2
ji—1
0211 <1—th)—1})
h=1
we derive

1 h, +---+h) (h_+h)(h)h. \
Gt,‘--,t = - J+1 ry. .. [ 'r—1 T tha+1...trr
s " 27‘?;:20( h 3 h,_ hr +

R0

i T !
X (L=t 0™l (1= tr)—h'_l{z (I—ty)— 1}
n=t

which is just (2.5) with j replaced by j+1. Since the above process may be iterated
as long as j<r, we see that the final application when j=r produces

r 1
Glty, ... 1) = 1(2 11 (l—th)—l)
2\ W=l
= >  FQppe-p-c-tr o [5;p. 156].

@3>0 a1 >0

2.3)

3. Combinatorial proof of Theorem 1. Let &; denote the j-dimensional plane
in R" given by X; =X, ,=--=X,=0. We let F,(h;, ..., h,; &, ..., ) denote
the number of (monotone) lattice paths starting at the origin and ending somewhere
in the parallelepiped 0<x;<a; (1<i<«;) wherein exactly /; edges are parallel
to Z; but not to &;_;. Such paths have two kinds of edges, (i) the £, edges parallel
to the x;-axis, and (ii) the other /,4-- - -4 A, edges. Suppose for a path P the
type (i) edges terminate on the hyperplanes x;=a; (1<i<h;) and the type (ii)
edges terminate on the hyperplanes x;=b; (1<j<h;+- - -+4,). Then P is uniquely
determined by its projection on the hyperplane x; =0, together with the numbers
a, and b,. Since the g, are chosen from {1, 2, . . . , «;} without repeats, while the b;
are chosen from {0, 1, . .., «;} with repeats, we see that

F(hy, ..., h0q,...,%)

(3.1 I AV 7% SRR AN .
={n hyt- -+, Frq(hgy ooy B0ty o ooy 0t).
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Iteration of (3.1) yields
F(hy ooy hpyoyy ..., 0,)

(3.2) —_ (™).. _(oc,) (a1+h2+' . '+h,) (a2+h3+' “o+h\ . [eath,
hl hr h2+' : '+hr h3+ ) '+hr hr )
Thus we see that

F(pi*- - - p7)

= _1 z (“1 .. ,(“r (O(1+h2+‘ : '+hr (“2+h3+' : +hr .. ,(ar—1+hr)
2};120...}1'20 h1 hr h2+' * '+hr h3+' * '+hr hr ’
by the correspondence of the two lattice paths {(ay,...,a,), (by,...5b,), ...,

(z3s.-.5z)and {(ay, ... ,2), (bys - 5B)s ..y (215 ..., 2), (g, . . . , 0,)} With
the ordered factorization of n:

n= (pllzx e p?f)(pi’l_al. . p:r—af) cee(pTELe . p:r"zr).
4. Refinement of Theorem 1.

THEOREM 2. If 1 <n=pi* - - - p; is the prime factorization of n, then

F(pi* -~ b5 p)
— s o —1 a\, . (%) (tathat - +h\ | (a_ +h,
h220,...,r>0 P_l_hZ_' : '_hr h2 hr h2+ ' '+hr hr '
Proof. The correspondence described at the end of Section 1 shows that

F(hy, ... h0q,...,0)
>0 k>0
e thr=p

counts the number of ordered factorizations of n with either p or p+1 factors.

Hence
FQi - o3 p)
p—1 .
=Z(_1)’ z Fr(hb-'-’hr;als---aar)
=0 h120:+-hr>0

h1te o hr=p—1—j

S 1y o
=55 (i)

X %y e “r 0‘1+h2+' . ‘+hr e ar—1+hr
h, h,J\ hy+---+h, hy

= z ( %l )(0(2) .. .(“T) (a1+h2+' : +hr) . .(ar—l'l'hr)
>3 m=o\p—1—hy—" - —h, ) \ hy h, Byt - 4h, h,
by [2: p. 95, eq. (48)].

5. Proof of Long’s conjecture. Here we begin by formalizing the substitutions

https://doi.org/10.4153/CMB-1975-087-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1975-087-0

482 G. E. ANDREWS [October

described in Theorem 3. We define r linear operators L; on the polynomial ring

R[xy,...,x]:
L :R[Xy o3 X, ] > R[Xq, - o oy Xigy Xip1s o+« 5 %,
where
5.1 Lx%) = % )
5.1) W=
Since xg, X x?, xf-', ... form a basis for R[x{,...,x,] over R[xy,...,X;_s,
Xi415 - -+ » X,] We see that each L, is well-defined on R[x,, ..., x,].

Next we note that

L(xC(1+x)P) = L,.( s (’? ) x?+f)

j=o\J

- 2 - o) = ot )
=o\J ) \%at+ - Fo,—C—j %t +o,—C)’

where the last line follows from Vandermonde’s convolution [6; p. 9].
Now to prove Theorem 3, we are asked to evaluate

Ll L,_l{zal-l TT G %a -+ xea ()L bxg) - - - <1+xi_1))“"}
=2

=L,L,- .-Lr—l{zal—l > (Z:) . .(Z‘r) HQ {xg_az;h;)+--~+(af—hf)(1+x]__1)hj+~--+hr}}
=

hy>=0-h,>0 T
= Ju-1 E Xz % ﬁL { ((Zj—hj)+"‘+(ar—hr)(1+x )h,-+---+h,}
= h h i=11%j-1 i-1

ny>0\"t2 r] =2

70

— 211——1 Z (“2), . _(‘xr) (“1+h2+‘ : +hr) (O(2+h3+' : +hr) . _(‘xr——l+hr>
hy>0 h2 hr h2+. : '+hr h3+' . .+hr hr
h,_>i0
Ao . O(,. d’l+h2+' * '+h7. O(2+h3+‘ * .+h'1‘ . Ocr_l-l-h,.
) \nJ\ hateoth, hyt- - -4+h, h,

= F(pi*- - - i),
and so Theorem 3 (Long’s Conjecture) is established.

6. Conclusion. In [4; p. 335], Long states that, ‘““What may be of considerable
importance is that the conjectured method of solution (i.e. Theorem 3) suggests
the existence of a transform method of solution which may be applicable to a rea-
sonably large class of partial difference equations.”

We point out here that two areas of combinatorics have already been explored
by G. C. Rota [7] and G. C. Rota and J. Goldman [1], in which such transform
techniques play a substiantial role.
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The first relates to B,, the number of partitions of a set of n elements [7]. Rota
[7] considers a linear operator L on R[u] given by
L) =1, Lu—1)---(u—k+1) = 1.

He then notes that L(x")=2B,,, and he is thus able to derive in an elegant manner a
number of well-known properties of B,. For example, he derives the exponential
generating function for B, as follows: if v=e"—1, then

B, x" Lu™x"
T 2 !
n=>0 NI n=0 H!
u(u—1)- - (u—n+1) ,
n! v

= L(e") = L(1+v)")

o"—1

vn
= L 2 = z — = = e
n=0 n=>0n!
The second area concerns the combinatorics of finite vector spaces. Here Rota
and Goldman [1] consider G, the number of subspaces of an n-dimensional

vector space over the finite field GF(g). They consider a linear operator L defined by

L =1  L(—Dx—g)- - (x—q") =1
In this case L(x")=G,. They then derive a number of results of combinatorial
interest involving the Gaussian polynomials.

We close by pointing out that the function F(pi*. . . p;) has arisen in a number
of different contexts in number theory and combinatorics. Besides enumerating
the compositions of the multipartite number («y, @y, ..., ) and the ordered
factorizations of n, MacMahon [5] showed that F(n) enumerates the number of
perfect partitions of n—1.

In [4], C. Long discusses the following problem: Let C be a set of integers.
Two subsets 4 and B of C are said to be complementing subsets of C in case
every ¢ € C is uniquely represented in the sum

C=A+B={x|x=a+b,ac A, beB}.

Long shows that the number of pairs of complementing subsets of {0, 1, ... ,n—1}
is just F(n).

It is hoped that the investigations undertaken in this paper provide some further
insights concerning F(n). In a future paper I hope to investigate Simon Newcomb’s
problem [5; p. 187] utilizing the techniques developed here.
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