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THE THEORY OF COMPOSITIONS (I): THE ORDERED 
FACTORIZATIONS OF n AND A CONJECTURE 

OF C. LONG 
BY 

GEORGE E. ANDREWS(1) 

1. Introduction. Several years ago, C. Long wrote two papers ([3], [4]) that 
related to F{n) the number of ordered factorizations of n. The second of these 
papers [4] was devoted entirely to a discussion of conjectured formula for F(ri). 
In this paper, Long's conjecture will be proved as 

THEOREM 3 (LONG'S CONJECTURE). If Kn=pl1pl*... pa
r
r is the prime fac­

torization ofn, then F(ri) is the number obtained if the polynomial 

\*i 
2 a i _ 1 IT {*i*2 • • • *<-i+(l+*1)(l+x2) * * * (l+*<-i)}a 

is fully expanded and then each x* is replaced by I * ,1 for l < / < 

r - l , 0 < f c ^ 

In Section 2 we shall prove analytically the following result which will be the 
essential key to the proof of Long's conjecture. 

THEOREM 1. Ifl<n=pl1pt2.. ,pa
r
r is the prime factorization ofn, then 

att ™-Uuft)fe)-fe) 
I h+--+hr ) \ hz+--+hr J \ K J 

In Section 3 we shall prove Theorem 1 combinatorially. Section 4 considers a 
refinement of Theorem 1 to F(n; p), the number of ordered factorizations of n 
with p factors. In Section 5, we prove Long's conjecture. 

2. Analytic proof of Theorem 1. Let g(a l 5 . . . , ar) denote the right hand side 
of (1.1). Then by the binomial series 

G(tl9 t 2 9 . . . , t r ) 2 > g(*i> • • • > KrYi1 ' ' ' Kr 

(2.1) = 1 ^ 2 *"/&! + • ' - + ftr\ M2 + - ' ' + K\ . . . /Vl +V| tH . . . £, 
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= 1 rf \ 
3—1 

we derive 

I claim now that for each y with 1 <j<r+1 

G(h, ...9tr) 

™ - uc,+"»:"-)• - t e w • • • - * - • > " • 
hr>0 

x(i-tj+1)-
h^--h^ • • • (i-tx^h- n a - ^ - i p " ~hr~\ 

We note that (2.2) is true fory= 1 since in this case it is just (2.1) (the expression 
inside the curly brackets is equal to 1). Assuming (2.2) true for a fixedy; and noting 
that 

2 (hi+'i , + M ^ ( i - ^ ( 2 n ( i . f o - i ^ 
hj>0\ "j J { h=l 

(i-éiï(i-(»)-i 

<*• «-i4.Cw+*;^)-(^)(t)'!»-* 
hr>0 

xa-^r^--^-1- • • (i_Q-v-ih ^(i_^)-ij 
which is just (2.5) withy replaced byj+1. Since the above process may be iterated 
as long asy<r , we see that the final application wheny=r produces 

G(t1,...,tr) = H2ua-th)-i\
1 

K } = I F(P?---ip)l?---t? [5; p. 156]. 
ai>0---ai>0 

3. Combinatorial proof of Theorem 1. Let SPj denote the y-dimensional plane 
in jRr given by Xj+1=Xj+2=- • -=Xr=0. We let Fr(hl9 . . . , hr; ocx,. . . , ar) denote 
the number of (monotone) lattice paths starting at the origin and ending somewhere 
in the parallelepiped 0 < ^ < a ^ ( 1 < / < O C J wherein exactly hj edges are parallel 
to SPj but not to SP^x- Such paths have two kinds of edges, (i) the hx edges parallel 
to the j^-axis, and (ii) the other h2+- • -+hr edges. Suppose for a path P the 
type (i) edges terminate on the hyperplanes x x = ^ ( 1 < J < / * I ) and the type (ii) 
edges terminate on the hyperplanes xx=bj ( l<j</z 2+* ' '+hr)> Then P is uniquely 
determined by its projection on the hyperplane x ^ O , together with the numbers 
ax and bj. Since the a{ are chosen from {1, 2, . . . , a j without repeats, while the èy 

are chosen from {0, 1, . . . , ocj with repeats, we see that 

Fr(hl9 . . . , hr; al9 . . . , ar) 

(3.1) _(*i\K+h*+-- + hr\ (h fc.a a x 
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Iteration of (3.1) yields 

Fr(hl9 . . . , fcr, ox,. . . , ar) 

(3.2) _ (<xA /aA / a i+* a + - • - + hr\ /aa+fc8+- • - + * r \ / V i + / * A 

" W I v l *i+---+*r A h+'-+K ) \ hr y 
Thus we see that 

= i y / a A / a r \ / a 1 + / i 2 + , # '+hr\(cx.2+h+' * ' + K\ (<x>r-i+K\ 
2M>o^ r >o\V \K)\ h2+--+hr ) \ V t — + f c r / \ fcr / ' 

by the correspondence of the two lattice paths {(al9.. . , ar), (bl9... , 6 r ) , . . . , 
(zl9... 9 zr)} and { (a l 5 . . . , zr), (bl9... 9 br),. . . , (zl9 . . . , zr), (a1? . . . , ar)} with 
the ordered factorization of n: 

n = (PÏ1 • • • ̂ W " 1 ' * ' Pr^) ' ' ' (Pi1"*1 ' ' ' P*rr-Zr)-

4. Refinement of Theorem 1. 

THEOREM 2. Ifl<n=pl1 • • ' p*r
r is the prime factorization ofn, then 

Hpî'-'Pr'lp) 

y ( a i - 1 \(*2\.,,(xr\(xi + h + - ' ' + K\..(Xr-i+K\ 
M2 

Proof. The correspondence described at the end of Section 1 shows that 

2 Fr(hl9 ...9hr;xl9.. . ,<xr) 
7n>0---ftr>0 
7ii+—\-hr=p 

counts the number of ordered factorizations of « with either p or p + 1 factors. 
Hence 

p-i 

= 2 (-1)' 2 FXK • • • , K; al9..., ar) 
fti+* • '+hr—p—l—j 

==2(-iy 2 ( ai ) 

x \ / z 2 j ^ A *,+•••+*, ) [ h ) 
= y / a x - 1 W a 2 \ . / a r Wa 1 +/z 2 +-• - + /ir\ # /a r_!+/z r\ 

»«>3.T:..*r>0\p-l-*2 -K/Xh) \hrJ\ h2 + '-' + hr J \ K J 
by [2: p. 95, eq. (48)]. 

5. Proof of Long's conjecture. Here we begin by formalizing the substitutions 
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described in Theorem 3. We define r linear operators Lt on the polynomial ring 
R[xl9... , xr]: 

Li'.RiXi, . . . , xrJ —> xv[xl5 . . . , x$_i, xi+i9 . . . , xr\, 
where 

(5.1) LJtâ)=( , "', ,V 

Since x°, JX̂ , xf, x*,... form a basis for i?[x1?.. . , xr] over R[xl9.. . , x ^ , 
**+i>... , #r] we see that each Lt is well-defined on R[xl9.. . , xr]. 

Next we note that 

L, 

(5.2) 
= yiD)l «* W *i+D ) 

where the last line follows from Vandermonde's convolution [6; p. 9]. 
Now to prove Theorem 3, we are asked to evaluate 

LXU ' * • Lr-ik*1"1 I I (*x xa • • • Xi-i+(l+*i)(l+x2) • • • ( l+^-i)) a j 

=L,L2.•.LJ^-1 2 (?)• • -fr) n{^••^i+x ir''+ f t i) 
I ft2>0-/ir>0\W2/ \ " r / j=2 ) 

= 2ai_1
ft|0(^)' • •(£) n^-i{x^)+-+te^)(i+*i-i)*'+-+*'} 

7ir>0 

?ai_i v /a2\ /a r\ /a1+fc2 + - • - + ftr\ /a2 + /z3+- * ' + K\. (<*r-i + hr\ 
4o\fc«/ U / l 2̂ + - •• + /*, A *8+--' + fcr / \ K ) 
hr>0 

— 1 V /a l \ /a2\ /aA /a
1 + ̂ 2+* ' ' + K\ (^ + h + ' ' ' + K\ (<X-r-l + K\ 

24o\*i/W"""UA h2+-"+hr A M-••+/>, ) \ K ) 
hr>0 

= F(P*11--Pn 
and so Theorem 3 (Long's Conjecture) is established. 

6. Conclusion. In [4; p. 335], Long states that, "What may be of considerable 
importance is that the conjectured method of solution (i.e. Theorem 3) suggests 
the existence of a transform method of solution which may be applicable to a rea­
sonably large class of partial difference equations." 

We point out here that two areas of combinatorics have already been explored 
by G. C. Rota [7] and G. C. Rota and J. Goldman [1], in which such transform 
techniques play a substiantial role. 
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The first relates to Bn the number of partitions of a set of n elements [7]. Rota 
[7] considers a linear operator L on R[u] given by 

1(1) = 1, L(u(i*-1) • • • (ii-fc+1)) = 1. 

He then notes that L(un)=Bn, and he is thus able to derive in an elegant manner a 
number of well-known properties of Bn. For example, he derives the exponential 
generating function for Bn as follows: if v=ex— 1, then 

i?nx L(u )x ux v 

Z—r = Z ;— = L 0 ) = L((1+v) ) 
w>o nl n>o n\ 

M(M —1) • • - ( M - W + 1 ) W un
 v e«_! 

w>o n! n>on! 

The second area concerns the combinatorics of finite vector spaces. Here Rota 
and Goldman [1] consider Gn the number of subspaces of an «-dimensional 
vector space over the finite field GF(q). They consider a linear operator L defined by 

L(l) = 1, L((x-l)(x-q) " ' ' (x-q*-1)) = 1. 

In this case L(xn)=Gn. They then derive a number of results of combinatorial 
interest involving the Gaussian polynomials. 

We close by pointing out that the function Fipl1. . . pa
r
r) has arisen in a number 

of different contexts in number theory and combinatorics. Besides enumerating 
the compositions of the multipartite number (<x.l9 a 2 , . . . , a r) and the ordered 
factorizations of n, MacMahon [5] showed that F(ri) enumerates the number of 
perfect partitions of n—1. 

In [4], C. Long discusses the following problem: Let C be a set of integers. 
Two subsets A and B of C are said to be complementing subsets of C in case 
every c e C is uniquely represented in the sum 

C = A+B = {x | x = a + b, aeA,beB}. 

Long shows that the number of pairs of complementing subsets of {0, 1 , . . . , « — 1 } 
is just F(n). 

I t is hoped that the investigations undertaken in this paper provide some further 
insights concerning F{n). In a future paper I hope to investigate Simon Newcomb's 
problem [5; p . 187] utilizing the techniques developed here. 
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