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On the Notion of Conductor in the Local
Geometric Langlands Correspondence
To Brian Forrest, for inspiring us to do math.

Masoud Kamgarpour

Abstract. Under the local Langlands correspondence, the conductor of an irreducible representa-
tion of Gln(F) is greater than the Swan conductor of the corresponding Galois representation. In
this paper, we establish the geometric analogue of this statement by showing that the conductor of
a categorical representation of the loop group is greater than the irregularity of the corresponding
meromorphic connection.

1 Introduction

1.1 Arithmetic Local Langlands Correspondence

Let F be a local non-Archimedean ûeld such as Qp or Fq((t)). _e local Langlands
correspondence for GLn relates two diòerent types of data:

Representations of GLn(F) ←→ Representations of Gal(F/F) .

A�er appropriate modiûcations, the above relationship can be formulated as a bijec-
tion and is now a theorem (cf. [27] for a review). _is bijection preserves important
numerical invariants associated with objects on the two sides. _e invariant we con-
sider in this paper is a positive integer known as the conductor.

1.1.1 Preservation of Conductor

E. Artin deûned the notion of the conductor of a Galois representation. _is is a
positive integer which, roughly speaking, measures how ramiûed the representation
is. _e notion of conductor for irreducible representations of GLn(F) was deûned in
[3, 17]. We recall their deûnition in Subsection 2.4.

It is known that under the local Langlands bijection

conductor of a GLn(F)-module = Artin conductor of the corresponding Galois module .
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In fact, preservation of conductors played an important role in one of the proofs of the
local Langlands correspondence (cf. [27, §4.2.5]). Our goal is to examine the analogue
of this statement in the geometric Langlands program. An immediate problem is that
we do not know what the geometric analogue of the Artin conductor should be. _is
prevents us from discussing the geometric analogue of the above equality. Instead, we
content ourselves with establishing a related inequality.

1.1.2 Swan Conductor

_e Artin conductor has a variant called the Swan conductor. Roughly speaking, the
Swan conductor measures how wildly ramiûed the Galois representation is (see [16]
for a review of Artin and Swan conductors). For our purposes, it is suõcient to know
that the Artin conductor is greater than or equal to the Swan conductor.

We can, therefore, summarise the above discussion as follows. Under the local
Langlands correspondence,

Conductor of a GLn(F)-module ≥ Swan conductor of the corresponding Galois module .

In this paper, we establish the geometric analogue of this inequality.

1.2 Dictionary for Geometrisation

To formulate the appropriate geometric statement, we use the following table of analo-
gies:

Number theory Geometry
Galois representations Meromorphic connections

Swan conductor Irregularity
Representations of GLn(F) Categorical representations of the loop group GLn((t))

Conductor of a GLn(F)-module Conductor of a categorical representation

Meromorphic connections and their irregularities are classical topics (see, e.g., [7, 21,
22]). We shall discuss categorical representations in Section 2 where we also recall
Frenkel and Gaitsgory’s formulation of the local geometric Langlands as a correspon-
dence between the following two types of data:

Categorical representations of the loop group ←→ Meromorphic connections on the disk

1.3 Rough Version of our Main Result

In Subsection 2.4, we deûne the conductor of a categorical representation by a straight-
forward adaption of the deûnitions in [3, 17]. Here is a rough statement of our main
theorem. For the precise statement, see Subsection 2.5.

_eorem 1.1 Under the local geometric Langlands correspondence

conductor of a categorical
representation of GLn((t))

≥ irregularity of the corresponding
rank n-meromorphic connection .
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As we shall see, the main ingredient of the proof is controlling the action of a spe-
ciûc set of Segal–Sugawara operators, deûned by Chervov, Molev, and Talalaev [5] on
certain critical level representations of the aõne Kac–Moody algebra ĝln .

1.4 Further Remarks

One can ask if there is a version of the above theorem for groups other than GLn .
_is is a question that already makes sense in the arithmetical setting; i.e., one may
wonder if there is an analogue of conductor for smooth representations of a reductive
p-adic group. We are unaware of such a notion in general; however, in [26] a notion of
new forms for odd special orthogonal groups has been deûned. _us, it appears one
can deûne conductors for representations of such groups over local ûelds. However,
as far as we know, this has not been pursued further in the literature. In general, we
cannot expect the equality to hold in the above theorem. _e best one can hope for is
that the conductor of a categorical representation of GLn((t)) is less than or equal to
the irregularity of the corresponding connection plus n. For some applications of the
conductor in local geometric Langlands correspondence, we refer the reader to [24].
As mentioned above, the local Langlands correspondence is a theorem. How-

ever, we do not know of a straightforward construction that takes as input a Galois
representation of Gal(F/F) and produces a (smooth irreducible) representation of
GLn(F). _e situation in the geometric setting is, in some sense, reversed. _ere is a
construction of (what should be) the local Langlands correspondence (see §2.3), but
the fact that this construction satisûes the correct properties remains highly conjec-
tural.
Frenkel and Gaitsgory have extensively analysed the local geometric Langlands

correspondence when the underlying connection is regular singular (i.e., its irregu-
larity equals zero). Previously, we examined some of the features of the irregular case
[19, 4, 20]. _is paper is an attempt to understand yet another aspect of the local geo-
metric Langlands correspondence in the presence of irregular connections.

1.5 Organisation of the Text

In Section 2 we recall the deûnitions of meromorphic connections, categorical rep-
resentations, and the local geometric Langlands correspondence. We then deûne the
notion of conductor of categorical representations, give a precise version of our main
theorem, and outline the proof.

In Section 3 we study smooth representations of an arbitrary aõne Kac–Moody
algebra. We will recall the deûnition of the completed enveloping algebra and its re-
lationship to the aõne vertex algebra. In addition, we introduce a class of modules,
called root modules, and investigate the action of centre on these modules. _e main
result of this section is a vanishing result regarding the action of Fourier coeõcient of
Segal–Sugawara operators on root modules.

In Section 4, we specialise to the case of ĝln . We recall Chervov andMolev’s explicit
description of a complete set of Segal–Sugawara operators and identify them as the
ones arising from functions on opers. We then use the above-mentioned vanishing
result to establish the main theorem.
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2 Formulation of the Main Result

In Section 2.1, we recall a few facts we need about meromorphic connections, includ-
ing the cyclic vector theorem and theKomatsu–Malgrange formula for irregularity. In
Subsection 2.2, we will discuss the main class of categorical representations which we
consider in this article. In Subsection 2.3, we recall the Feigin–Frenkel theorem and
Frenkel and Gaitsgory’s version of the local geometric Langlands [13]. In Subsection
2.4, we deûne the notion of conductor for a categorical representation of GLn((t)).
Armed with this information, we give a precise version of our result in Subsection 2.5
and give a sketch of the proof in Subsection 2.6.

2.1 Meromorphic Connections

LetK = C((t)) and letD× = Spec (K) be the punctured disk. LetV be a ûnite dimen-
sional vector space over K. A diòerential operator on V is a C-linear map D∶V → V
satisfying

D(av) = (∂ta)v + aD(v), a = a(t) ∈K, v ∈ V .
A connection on D× is a pair (V ,D) consisting of a vector space V over K together
with a diòerential operatorD∶V → V . We say that∇ = (V ,D)has rank n if dim(V) =
n. We denote by Connn(D×) the set of all rank n connections on D×.

2.1.1 Cyclic Vector Theorem

Let ∇ = (V ,D) be a connection on D×. A cyclic vector for ∇ is a vector v ∈ V such
that

{v ,D.v , . . . ,Dn−1v}
is a basis for V . In this case, the diòerential operator D is completely determined by
the n-tuple (a1 , . . . , an) ∈Kn deûned by the equation

Dnv = a1Dn−1v + ⋅ ⋅ ⋅ + an−1Dv + anv .

Note, however, that such n-tuple is not unique; it depends on the choice of the cyclic
vector.
According to a theorem of Deligne (cf. [7, p. 42] and [22, §5.6]), every connection

in Connn(D×) has a cyclic vector.

2.1.2 Opers

An oper on D× is a triple (V ,D, v) where v is a cyclic vector for the connection
(V ,D) ∈ Connn(D×). We note that opers for general reductive groups G were de-
ûned by Beilinson andDrinfeld [2] following earlier work ofDrinfeld and Sokolov [8].
In the case of G = GLn , a�er a slight modiûcation (cf. [15]), their deûnition becomes
equivalent to the one given above (cf. [12, §16.1]).

Let Opn(D×) denote the set of all opers (V ,D, v) with dim(V) = n. By the above
discussion, specifying an oper amounts to specifying an n-tuple (a1 , . . . , an) ∈ Kn ;
thus, we have an isomorphism Opn(D×) ≃Kn . _erefore, we see that Opn(D×) has
a very simple description, whereas Connn(D×) is complicated. _e two spaces are,
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however, intimately related. Namely, we have a canonical forgetful map

p∶ Opn(D×) Ð→ Connn(D×)
(V ,D, v) z→ (V ,D).

_e cyclic vector theorem states that this map is surjective. Note that the map p is by
no means injective. It is known that the geometry of the ûbres is related to the aõne
Springer ûbres [14].

2.1.3 Irregularity

To a connection ∇ ∈ Connn(D×), one can associate a non-negative integer Irr(∇)
called the irregularity. _is integer measures, in some sense, how singular the con-
nection ∇ is.

_ere are several ways for deûning Irr(∇). For instance, one can deûne it as the
sum of slopes of the connection∇ (cf. [21, §2.3]). For us, it will be convenient to deûne
this invariant using cyclic vectors, or equivalently, using opers.

Deûnition 2.1 _e irregularity of an oper χ = (a1 , . . . , an) ∈ Opn(D×) ≃ Kn is
deûned by

(2.1) Irr(χ) ∶= max{i − ν(an−i)}i=0,.. . ,n−1 − n.

Here, −ν(an−i) denotes the order of pole of the Laurent series an−i ∈K.

One can show that the irregularity of an oper depends only on the underlying con-
nection. In other words, Irr(χ) = Irr(∇), where∇ = p(χ); see, e.g., [22, §7]. We note
that (2.1) is sometimes known as the Komatsu–Malgrange formula (cf. [23, 25]).1

2.1.4 Relationship to Galois Representations

It has been known for a long time that connections on the punctured disk behave very
similarly to ûnite dimensional representations of Gal(Qp) andGal(Fq((t))) (cf. [21]).
As far as I know, there is no formal mathematical theory embodying both worlds. In
addition, there is no analogue of opers in the arithmetic world. _e existence of opers
is one of the key simplifying ingredients in the geometric Langlands program.

2.2 Categorical Representations

Having discussed the geometric analogue of Galois representations, we now turn our
attention to the geometric analogue of representations of GLn(F). According to [13],
these should be certain categorical representations of the loop group G((t)). As a toy
model, let G be an algebraic group and g denote its Lie algebra. _en G acts on the
category g-mod by auto-equivalences: g ∈ G sends a representation g → End(V) to
a new representation, the one deûned by the composition

g
Ad(g)Ð→ gÐ→ End(V).

1I thank Claude Sabbah for bringing this equality to my attention.
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_is is an example of a categorical action. It is also possible to “decompose” this cat-
egorical representation using the centre of the universal enveloping algebra. Namely,
for every character χ of the centre, let g-modχ denote the full subcategory of g-mod
consisting of those modules on which Z(g) acts by the character χ. _en g-modχ is
preserved under the action of G; thus, it is a sub-representation of g-mod. We will be
interested in the analogous categorical representations for the loop group.

So let g((t))∶= g⊗C((t)) denote the loop algebra. _e corresponding groupG((t))
is the loop group associated with G. It is known that G((t)) has a structure of an
ind-scheme, though this is used only implicitly in this article. _e categorical repre-
sentations we study arise from the action G((t)) on the category of g((t))-modules.
Actually, in the case g is reductive, it is fruitful to consider not the loop algebra itself,
but its universal central extension known as the aõne Kac–Moody algebra ĝ.

Recall that representations of ĝ have a complex parameter k, called the level [18].
We let ĝk-mod denote the category of (smooth) representations of ĝ at level k. _e
adjoint action of the loop group G((t)) on ĝ preserves the central line; thus, G((t))
acts on the category ĝk-mod. _e centre of the (completed) universal enveloping
algebra is nontrivial only when k is a speciûc complex number called the critical level.2

_us, the procedure of decomposing a categorical representation according to central
characters can only be carried out at the critical level.

LetZc denote the centre of the completed universal enveloping algebra of the aõne
Kac–Moody algebra ĝ at the critical level. Now every point χ ∈ Spec (Zc) deûnes a
character of the centre. Let ĝc denote the category of (smooth) representations at the
critical level, and let ĝc-modχ ⊂ ĝc-mod denote the full subcategory consisting of
those representations on which the centre acts according to the character χ. It is easy
to see that the action of G((t)) on ĝc-mod preserves ĝc-modχ .
Frenkel and Gaitsgory propose that the categorical representations ĝc-modχ

should be the geometric analogue of representations of GLn(F). We refer the reader
to the introduction of [13] for a discussion about themotivations for this proposal. _e
relationship between these categorical representations andmeromorphic connections
emerges through the Feigin–Frenkel _eorem.

2.3 Feigin and Frenkel’s Theorem and Geometric Langlands

Henceforth, we consider the case g = gln . According to a fundamental theorem of
Feigin and Frenkel [9, 11], we have an isomorphism of commutative (topological) al-
gebras

Zc ≃ C[Opn(D×)] .

2In the normalisation of [18], the critical level for ŝln is k = −n.
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Frenkel and Gaitsgory [13] formulate the local geometric Langlands program as a
correspondence:

Connn(D
×

) ←→ Categorical representations of GLn((t))

∇ = p(χ) ←→ (ĝln)c-modχ .

In more details, given an oper χ ∈ Opn(D×), one has a character of the centreZc and,
therefore, a categorical representation (ĝln)c-modχ . Frenkel and Gaitsgory propose
that this is the categorical representation corresponding to the connection p(χ) (the
underlying connection of the oper χ).
For this correspondence to be well-deûned, one must have that ĝc-modχ depends

only on the connection ∇; i.e., it is independent of the chosen cyclic vector. Frenkel
and Gaitsgory conjecture that this is indeed the case.

2.4 Conductor of Categorical Representations

We now discuss how to deûne the conductor of categorical representations of the
loop group G((t)). To this end, we ûrst recall the deûnition of the conductor of an
irreducible smooth representation of GLn(F) (cf. [27, §2.5.4]). Let O denote the ring
of integer of the non-Archimedean local ûeld F and let P denote its maximal ideal.
For every nonnegative integer m, let km denote the Lie subalgebra of gln(O) deûned
by

(2.2) km ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

O ⋅ ⋅ ⋅ O

⋮ ⋱ ⋮
O ⋅ ⋅ ⋅ O

Pm ⋅ ⋅ ⋅ Pm

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Let Km denote the corresponding subgroup of GLn(F). Let V be a (smooth irre-
ducible) GLn(F)-module. _en

Conductor of V ∶= smallest nonnegative integer m
such that V has a Km-invariant vector.

We now move to the geometric theory, so we replace F by K = C((t)) and use O
(resp. P) to denote the ring of integers of K (resp. its maximal ideal). Let km be the
subalgebra of the loop algebra g((t)) deûned as in (2.2). Let Km denote the corre-
sponding subgroup of the loop group G((t)). It is known that Km has a structure of a
pro-algebraic group over C.

In categorical representation theory, the notion of “equivariant objects” replaces
the concept of “invariant vectors” ([13, §20], [11, §10]). _us, to deûne the notion
of conductor for categorical representations, we should consider Km-equivariant ob-
jects.
Before giving the deûnition, let us recall a general fact. Let k be a subalgebra of

g(O) and let K denote the corresponding subgroup of the loop group. Suppose K has
a structure of a pro-algebraic group over C. It turns out that for the categorical rep-
resentations ĝc-modχ , an object V is K-equivariant if and only if V can be endowed
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with the structure of a (ĝc , k)Harish–Chandra module (cf. [11, §10]). _is means that
V is a ĝc-module such that the k-module obtained by restriction is integrable. _us,
we can deûne the notion of conductor as follows.

Deûnition 2.2 _e conductor of a categorical representation ĝc-modχ , denoted by
Cond(ĝc-modχ), is the smallest nonnegative integer m such that ĝc-modχ contains
a (ĝc , km) Harish–Chandra module.

We note that it is not obvious that such an integer m exists. In the arithmetical set-
ting (i.e., over a non-Archimedean ûeld), this follows from the fact that every smooth
irreducible representation of GLn(F) is admissible. It would be interesting to under-
stand the geometric analogue of this statement.

2.5 Main Theorem

Recall that associated with an oper χ ∈ Opn(D×), we have the corresponding con-
nection ∇ = p(χ) ∈ Connn(D×) and the corresponding categorical representation
ĝc-modχ .

_eorem 2.3 For all χ ∈ Opn(D×), we have
Cond(ĝc-modχ) ≥ Irr(∇).

_e inequality in the theorem can be strict.3 For instance, one can show (cf. [11,
§10.3.2]) that

conductor of ĝc-modχ is zero ⇐⇒ ∇ is trivial.

In particular, if ∇ is a regular singular but nontrivial connection on D×, then irregu-
larity of ∇ is zero, while the conductor of ĝc-modχ is greater than zero.

2.6 Outline of the Proof

We now give an outline of the proof and the structure of what comes next. As we shall
see in Subsection 4.4, it is easy to reduce the problem to a representation-theoretic
statement. Namely, let k0m denote the pro-nilpotent radical of km . Let V ∈ ĝc-modχ .
_en _eorem 2.3 reduces to the following statement:

(2.3) If V contains a vector v with k0m .v = 0, then Irr(χ) ≤ m.

Now we know that the oper χ can be represented by an n-tuple

(a1 , . . . , an), a i = ∑
k∈Z
a i ,k t−k−1 ∈K.

To prove the above statement, we need to control the singularities of each a i .
To be more precise, for i ∈ {1, 2, . . . , n} and k ∈ Z deûne functions

v i ,k ∶ Opn(D×) Ð→ C,
χ = (a1 , . . . , an) z→ a i ,k .

3From the arithmetic perspective, this is not a surprise, since the irregularity is the geometric ana-
logue of the Swan conductor, which is, in general, smaller than the Artin conductor.
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Let S i ,k ∈ Zc denote the corresponding elements of Zc . Using the Komatsu–Mal-
grange Formula, statement (2.3) reduces to the following:

(2.4) S i ,r .v = 0, r ≥ m + i − 1, ∀ i ∈ {1, 2, . . . , n}.
_e following observation will play a key role in proving this vanishing statement:

(2.5) _e S i ,r ’s are essentially the Segal–Sugawara operators deûned in [5].

In other words, the central elements S i ,r which are deûned, rather abstractly, via coef-
ûcients of opers, have, in fact, a very explicit description provided by Chervov, Molev,
and Talalaev. _is key property of these operators is a consequence of the description
of their image under the aõneHarish-Chandra homomorphism. Section 4 is devoted
to proving statements (2.5) and (2.4).

With the explicit description of S i ,r ’s at hand, proving equation (2.4) then follows
from the properties of the Fourier coeõcients of the vertex operators in the aõne
vertex algebras and their action on smooth modules. _e relevant properties of these
vertex operators are established in Section 3.

3 Recollections on Smooth Representations

In this section, we study the action of the centre of the (completed) universal envelop-
ing algebra of an (arbitrary) aõne Kac–Moody algebra on certain smooth modules,
which we call root modules. To this end, we recall the deûnition of the aõne vertex
algebra and Segal–Sugawara operators. We then prove a vanishing result about the
action of Segal–Sugawara operators on critical level root modules. _is result, which
also appeared in [4], will be further reûned in Section 4 in the case of ĝ = ĝln .

3.1 Smooth Modules for Affine Kac–Moody Algebras

3.1.1 Loop Space and Arc Space

For a vector space V , we write

V[[t]] for the (formal) arc space V ⊗C[[t]],
V((t)) for the (formal) loop space V ⊗C((t)).

If V = g is a Lie algebra, then g[[t]] and g((t)) are also Lie algebras with bracket

[x ⊗ tm , y ⊗ tn] = [x , y] ⊗ tm+n , x , y ∈ g.

3.1.2 Affine Kac–Moody Algebras

Let g be a simple ûnite dimensional Lie algebra. Let κ be an invariant non-degenerate
bilinear form on g. _e aõne Kac–Moody algebra ĝκ is deûned to be the central
extension

(3.1) 0→ C.1→ ĝκ → g((t))→ 0,

with the two-cocycle deûned by the formula

(x ⊗ f (t), y ⊗ g(t)) ↦ −κ(x , y).Rest=0( f (t)
d
dt

g(t)) .
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Here, ddt g(t) denotes the derivative g(t) ∈ g((t)) and Rest=0 denotes the coeõcient
of t−1.
A ĝκ-module is a vector space equipped with an action of ĝκ such that the central

element 1 ∈ C.1 ⊂ ĝκ acts as identity. Let

Uκ(ĝ) ∶= U(ĝκ)/(1 − 1)

be the quotient of the universal enveloping algebra by the ideal generated by 1 − 1.
_en Uκ(ĝ) is the universal enveloping algebra at level κ and there is an equivalence
of categories

Uκ(ĝ)-mod ≃ ĝκ −modules

3.1.3 Smooth Modules

Amodule V over ĝκ is smooth if for every v ∈ V there exits a positive integer Nv such
that tNvg[[t]].v = 0. In [18], these are called restrictedmodules.

Henceforth, we slightly change notation and let ĝκ-mod denote the category of
smooth ĝκ modules. Let Ũκ(ĝ) denote the completed universal enveloping algebra at
level κ. By deûnition,

Ũκ(ĝ) = lim←ÐUκ(ĝ)/IN ,

where IN is the le� ideal generated by tNg[[t]]. _en there is an equivalence of cate-
gories

Ũκ(ĝ)-mod ≃ ĝκ-mod.

Let Zκ(ĝ) denote the centre of Ũκ(ĝ). One can show that Zκ is trivial for all but
one value of κ. When κ is the critical level, that is, κ equals − 1

2 times the Killing form,
then the centre Zc(ĝ) is very interesting. In what follows, we deûne certain smooth
modules and study the action of Zc(ĝ) on them.

3.2 Root Subalgebras and Modules

3.2.1 Root Space Decomposition

Let h be a Cartan subalgebra of g and let Φ be the corresponding root system. For ease
of notation, we setΦ∗ ∶= Φ⊔{0}.We then have the root decomposition g = ⊕α∈Φ∗ gα ,
where gα is the eigenspace for root α ∈ Φ and g0 = h.

In what follows, we write xα for an element of gα and xαn for the element xα ⊗ tn ∈
gα((t)). Following the usual abuse of notation, we also write xαn for the corresponding
element of Ũκ(ĝ).

3.2.2 Root Functions

Now let r∶Φ∗ → Z be a function. Deûne a subspace

k = kr ∶= ⊕
α∈Φ∗

tr(α)gα[[t]] ⊂ g((t)).
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We assume that r satisûes the following properties

r(α) ≥ 0 ∀α,(3.2)
r(α) + r(β) ≥ r(α + β) ∀α, β.

_is ensures that kr is a subalgebra of ĝ (in fact a subalgebra of g[[t]]) and the central
extension is split over kr . For technical reasons, we also assume that r(0) > 0. (_ese
assumptions are satisûed in the case of interest to us).

3.2.3 Root Modules

Deûne Vk ∶= Indĝκ
k⊕C.1(C). We call Vk the root module associated with the root subal-

gebra k. It is clear that this module is smooth; i.e., Vk ∈ ĝκ-mod. One way to deûne
this module is to say that Vk is generated by a vector v0 subject to the relations

1.v0 = v0
xαn .v0 = 0 ∀α ∈ Φ∗ , ∀ n ≥ r(α).

(3.3)

Lemma 3.1 Let x = xα1
n1
xα2n2

⋅ ⋅ ⋅ xαknk ∈ Ũκ(ĝ). Suppose ∑k
i=1 n i ≥ ∑k

i=1 r(α i). _en
x .v0 = 0.

Proof _is is established by induction using commutation relations in ĝκ . We refer
the reader to [4, §3.3] for the proof.

Our aim is to study the action of Zc(ĝ) on root modules. To obtain a description
of Zc(ĝ), we need to take a detour through the theory of vertex algebras. We shall see
that the above lemma allows us to obtain estimates on the action of the centre on root
modules.

3.3 Affine Vertex Algebras

3.3.1 Recollections on Vertex Algebras

A vertex algebra is a vector space equipped with a triple (Y , T , v) where v ∈ V is a
ûxed vector, called the vacuum, T ∶V → V is a linear operator, called the translation,
and Y is a map

Y ∶V → EndV[[z, z−1]].

_ese data must satisfy some axioms (cf. [12]). Elements of V are called states, and
those of EndV[[z, z−1]] are called ûelds. _us, Y is known as the states-ûelds corre-
spondence:

Y(A) = ∑
n∈Z
A(n)z−n−1 .

_e operators A(n) ∈ EndV are known as the Fourier coeõcients of A. We mention
someproperties of the Fourier coeõcients. Depending on the approach, someof these
are taken as a part of the deûning axioms.
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First of all, for A, B ∈ V , we must have A(n)B = 0 for n ≫ 0. Furthermore, we
must have the following equalities in EndV :

[An , Bm] = ∑
n≥0

(m
n
)(A(n)B)m+n−k ,(3.4)

(TA)(n) = −nA(n−1) .(3.5)

3.3.2 Lie Algebra of Fourier Coefficients

Identity (3.4) implies that the span in EndV of all the Fourier coeõcient is a Lie sub-
algebra. In fact, more is true (cf. [12, §4]). Namely, one has a Lie algebra structure
on the “abstract vector space” U ′(V) spanned by the Fourier coeõcients A(n), n ∈ Z,
subject to the relation (3.5). We let A[n] denote the image of A(n) in U ′(V). By an
abuse of notation, we also call A[n] the n-th Fourier coeõcient of A. We will also con-
sider the Lie algebra U(V) spanned by inûnite linear combinations of A[n]’s subject
to the relation (3.5). _us, U(V) is a certain completion U ′(V).

3.3.3 Affine Vertex Algebra

In this paper, we will be concerned with the vertex algebra associated with the aõne
Kac–Moody algebra ĝκ . Let

Vκ(ĝ) ∶= Indĝκ
g[[t]]⊕C.1(C).

_enVκ(ĝ) carries the structure of a vertex algebra, known as the aõne vertex algebra
at level κ. Note that Vκ(ĝ) is generated by a vector v0 subject to the relation

g[[t]].v0 = 0.

_e operator T is speciûed by the following requirements:

T(v0) = 0, [T , xn] = −nxn−1 , x ∈ g.

Note that the vector space Vκ(ĝ) is spanned by elements of the form xα1
n1
⋅ ⋅ ⋅ xαknk where

n i < 0. _e Fourier coeõcients of xα
−1 are easy to describe; namely,

(xα
−1)(s) ∶= xαs , ∀s ∈ Z.

In fact, the Reconstruction _eorem (cf. [12]) guarantees that the above formula de-
termines the ûelds associated with every state in our vector space. For our purposes, it
suõces to know that for every n < 0, the Fourier coeõcient (xαn )(s) is a constant mul-
tiple of xαs+n+1. More generally, let X = xα1

n1
⋅ ⋅ ⋅ xαknk . _en X(s) is a linear combination

of elements of the form

(3.6) (xασ(1)nσ(1) )(s1) ⋅ ⋅ ⋅ (x
ασ(k)
nσ(k) )(sk) = xασ(1)nσ(1)+s1+1 ⋅ ⋅ ⋅ x

ασ(k)
nσ(k)+sk+1 ,

where σ ranges over automorphisms of {1, 2, . . . , k} and s i ’s are integers satisfying
∑k

i=1 s i = s. _us, we also have a similar description of X[s] in terms of the Fourier
coeõcients (xαn )[r].
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3.3.4 Action of Fourier Coefficients

One can show that the map (xα
−1)[r] → xαr extends to an injective Lie algebra homo-

morphism

(3.7) U(Vκ(ĝ)) ↪ Ũκ(ĝ).
In particular, we have an action of Fourier coeõcients X[n] ∈ U(Vκ(ĝ)) on smooth
ĝκ-modules. _e key fact we need is the following vanishing result.

Proposition 3.2 Let r be a function r∶Φ∗ → Z satisfying (3.2) and r(0) > 0. Let v0
be a vector satisfying (3.3). _en

(xα1
n1
⋅ ⋅ ⋅ xαknk

)[s] .v0 = 0, s ≥
k

∑
i=1

r(α i) −
k

∑
i=1

n i − k.

Proof _e proof is an easy application of Lemma 3.1. Suppose s i ’s are integers satis-
fying∑k

i=1 s i = s. _en the assumption on s implies that
k

∑
i=1

(n i + s i + 1) ≥
k

∑
i=1

r(α i).

By Lemma 3.1, every element of the form (3.6) annihilates v0. Now the image of
(xα1

n1
⋅ ⋅ ⋅ xαknk )[s] under the morphism (3.7) equals (xα1

n1
⋅ ⋅ ⋅ xαknk )(s), which, in turn, is

a linear combination of elements of the form (3.6). As each of these terms annihilate
v0, so does (xα1

n1
⋅ ⋅ ⋅ xαknk )[s].

3.4 Centre of the Affine Vertex Algebra

3.4.1 Centre of Vertex Algebras

Having discussed the basic structure of the aõne vertex algebra, we are ready to study
its centre. _e centre of a vertex algebra V is the commutative vertex subalgebra
spanned by B ∈ V such that A(n) .B = 0 for all n ≥ 0 and all A ∈ V . _e follow-
ing simple observation will play an important role: if B is in the centre of V , then
identity (3.4) implies that B[n] is in the centre of U ′(V) and the centre of U(V).

Let zκ denote the centre of the vertex algebra Vκ(ĝ). Our goal is to describe zκ
and use this to shed light on the centre Zκ of the completed universal enveloping.
As mentioned above, the centre is only interesting when κ is critical. Henceforth, we
denote the centre of the aõne vertex algebra at the critical level by zc = zc(ĝ).

3.4.2 Segal–Sugawara Operators

Note that as a vector space, Vκ(ĝ) is isomorphic to the universal enveloping algebra
U(g−), where

g− ∶= g⊗ t−1C[[t−1]].
Given S ∈ U(g−), we write S̄ for its image in the associated graded algebra

gr(U(g−)) ≃ S(g−).
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Note that we have an embedding g ↪ g− given by x ↦ x−1 = x ⊗ t−1, which induces
an embedding S(g) ↪ S(g−). _e following deûnition is due to Chervov and Molev
[5], following [6].

Deûnition 3.3 A complete set of Segal–Sugawara vectors is a set of elements

S1 , S2 , . . . , Sn ∈ U(g−), n = rkg,

where S i ∈ zc and S̄1 , . . . , S̄n coincide with the images of some algebraically inde-
pendent generators of the algebra of invariants S(g)g under the imbedding S(g) ↪
S(g−).

Note that the elements S i are by no means unique. _is is related to the fact that
there are many choices for generators of the polynomials algebra S(g)g.

3.4.3 The Feigin–Frenkel Theorem

According to the Feigin–Frenkel _eorem [11], zc is a polynomial algebra in inûn-
itely many variables; more precisely, if S1 , . . . , Sn is a complete set of Segal-Sugawara
operators, then

(3.8) zc ≃ C[T rS i ∣ i = 1, . . . , n, r ≥ 0].

3.5 Harish–Chandra Homomorphism

Let g be a simple ûnite dimensional Lie algebra. Consider the natural projection
U(g) → U(h). _is is merely a morphism of vector spaces. Taking h-invariants,
however, gives rise to a commutative diagram of algebra homomorphisms

U(g)h // U(h) = Sym(h)

Z(g)
?�

OO

≅ // Sym(h)W
?�

OO

Here, Sym(h)W denotes the space of elements of Sym(h) invariant under the dotted
action ofW .

We have a similar picture for aõne vertex algebras.4 Recall the notation

g− ∶= t−1g[t−1], h− ∶= t−1h[t−1].

_en the canonical projection U(g−) → U(h−) gives rise to a commutative diagram

U(g−)h // U(h−) = Sym(h−)

zc
?�

OO

≅ // W(ǧ)
?�

OO

4I thank Alex Molev for explaining this to me.
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Here,W(ǧ) denotes the classicalW-algebra associated with the Langlands dual alge-
bra ǧ. It is deûned as the kernel of certain operators known as screening operators and
can be considered as the aõne analogue of Sym(h)W ; see [11, §8] for more details.

We refer to the algebra homomorphism

F∶ zc → Sym(h−)
as the Harish-Chandra homomorphism for the aõne vertex algebra V(ĝ). By the
above discussion, it is an injective morphismwhose image identiûes with the classical
W-algebra associated with ǧ. In the language of connections (cf. the next section), the
analogue of this homomorphism is also known as theMiura transformation.

3.6 Centre of the Completed Enveloping Algebra

Next, we turn our attention to the centre Zc of the completed enveloping algebra
Ũc(ĝ) at the critical level. Equivalently, Zc is the (Bernstein) centre of the category of
smooth critical level ĝc-modules.

3.6.1 Segal–Sugawara Operators

Let S1 , . . . , Sn ∈ zc be a complete set of Segal–Sugawara vectors (Deûnition 3.3). _e
Fourier coeõcients S i ,[n] are known as Segal–Sugawara operators. It follows from the
deûnition that they belong to the centre of U(Vc(ĝ)) ⊂ Ũc(ĝ). Using the Lie algebra
homomorphism (3.7), one can show that they are also central in Ũc(ĝ) [11]. A variant
of the above-mentioned theoremof Feigin and Frenkel states thatZc is the completion
of a polynomial algebra on inûnitely many variables; more precisely, we have

(3.9) Zc ≃
̃

C[S i ,[n]]n∈Zi=1,. . . ,ℓ .

_is completion is deûned to be the inverse limit

lim←Ð
N

(C[S i ,[n]]n∈Zi=1,. . . ,ℓ/IN) ,

where IN is the ideal generated by S i ,[m] , n ≥ mN . We can think of elements of this
completion as inûnite linear combinations of S i ,[n]’s.

3.6.2 Action on Smooth Modules

We now consider the action of Zc on some smooth modules. Let V be a smooth
ĝ-module at the critical level. _en we have a natural homomorphism

̃
C[S i ,[n]]n∈Zi=1,. . . ,ℓ Ð→ Endĝ(V)

deûned as the composition
̃

C[S i ,[n]]n∈Zi=1,. . . ,ℓ ≃ Zc ↪ Ũc(ĝ) → Endĝ(V).
_us, the Segal-Sugawara operators S i ,[n] act on smooth critical level modules. Us-
ing Proposition 3.2, one can infer some information about this action for some well-
known root modules V .
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3.6.3 Example: Congruence Subalgebras

Letm be a positive integer and suppose r is the constant function deûned by r(α) = m,
for all α ∈ Φ∗. _en kr = tmg[[t]] is a known as a congruence subalgebra. In this case,
Proposition 3.2 implies that

(3.10) S i ,[n] acts trivially on Vk for all n ≥ d i .m.

Here d1 , . . . , dn are the degrees of the fundamental invariants of g. Statement (3.10) is
a theorem of Beilinson and Drinfeld [1, §3.8].

3.6.4 Example: Moy–Prasad Subalgebras

_eabove example can be generalised as follows. Let x be a point in the aõne building
of G, and let r ∈ R≥0. Set

r(α) = 1 − ⌈α(x) − r⌉.
_en kr identiûeswith theMoy–Prasad subalgebra kr = gx ,r+ . In this case, Proposition
3.2 implies that

S i ,[n] act trivially on Vk for all n ≥ (r + 1)d i .

_is result is proved in [4]. One recovers the previous example by choosing

x = 0 and r = (m − 1).

4 Centre at the Critical Level for ĝln

In Subsection 4.1, we recall Chervov, Molev, and Talalaev construction of a complete
set of Segal–Sugawara vectors for ĝln [6, 5]. In Subsection 4.2, we study the action of
the corresponding Segal–Sugawara operators on root modules. In Subsection 4.3, we
give an alternative deûnition of these operators using opers. We will then combine
these with the vanishing results obtained above to give a proof of the main theorem
in Subsection 4.4.

4.1 Segal–Sugawara Vectors for ĝln

4.1.1 Affine Kac–Moody Algebra Associated with ĝln

In the previous section, we considered the aõne Kac–Moody algebra associated with
a ûnite dimensional simple Lie algebra. It is easy to adapt all the deûnitions and con-
structions to the case of gln .

Recall that the Killing form for gln is deûned by

(X ,Y) = 2n tr(XY) − 2 trX trY .

Given a bilinear form κ that is a multiple of the Killing form, we can deûne the aõne
Kac–Moody algebra (ĝln)κ as in (3.1). _e critical level will again be when κ equals
− 1

2 of the Killing form. _e aõne vertex algebras Vκ(ĝln) and the completed univer-
sal enveloping algebras Ũκ(ĝln) are deûned in analogous manner; see [5] for more
details.
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4.1.2 Chervov–Molev–Talalaev Construction

Following [5], we give an explicit construction of a complete set of Segal–Sugawara
vectors

S1 , S2 , . . . , Sn ∈ zc(ĝln) ⊂ Vc(ĝln).

For an arbitrary n × n matrix A = [a i j] with entries in a ring, its column determinant
cdet is deûned by

(4.1) cdetA ∶= ∑
σ

sgn σ .aσ(1)1 ⋅ ⋅ ⋅ aσ(n)n ,

where the sum is over all permutations σ of the set {1, 2, . . . , n}.
Let e i j be the standard basis elements of gln . Let e i j[r] denote the element e i j ⊗ tr

of the loop algebra gln((t)). We will also need the extended aõne algebra ĝln ⊕C.τ,
where

(4.2) [τ, e i j[r]] = −re i j[r − 1], [τ, 1] = 0.

Let E[−1] denote the matrix with e i j[−1] at i j entry.

Deûnition 4.1 Deûne S1 , . . . , Sn ∈ U(g−) by

cdet(τ + E[−1]) = τn + τn−1S1 + ⋅ ⋅ ⋅ + τSn−1 + Sn .

_e main theorem of [5] is that S1 , . . . , Sn is a complete set of Segal–Sugawara
vectors for ĝln (Deûnition 3.3).

4.1.3 Affine Harish–Chandra Homomorphism and Chervov–Molev–Talalaev
Operators

We need to record a result of Chervov and Molev that describes the image of the S i ’s
under the Harish–Chandra homomorphism

F∶ zc(ĝln) ↪ Sym(h−).

Deûne ω i ∈ Sym(h−) by the equation

(4.3) (τ + E11[−1]) ⋅ ⋅ ⋅ (τ + Enn[−1]) = τn + τn−1ω1 + ⋅ ⋅ ⋅ + ωn ,

_en, according to [5, §6], we have F(S i) = ω i , i ∈ {1, . . . , n}.

Example 4.2 Suppose n = 2. _en we have

cdet( τ + E[−1])
= ( τ + e11[−1])( τ + e22[−1]) − e12[−1]e21[−1]
= τ2 + τe22[−1] + e11[−1]τ + e11[−1]e22[−1] − e12[−1]e21[−1]
= τ2 + (E22[−1] + E11[−1]) τ − e11[−2] + e11[−1]e22[−1] − e12[−1]e21[−1],

https://doi.org/10.4153/CJM-2016-016-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-016-1


124 M. Kamgarpour

where the last equality is obtained by using the equality E11[−1]τ = τE11[−1]− e11[−2].
_us, we have

S1 = E11[−1] + E22[−1],
S2 = −e11[−2] + e11[−1]e22[−1] − e12[−1]e21[−1].

Furthermore, in this case,

ω1 = E11[−1] + E22[−1], ω2 = −e11[−2] + e11[−1]e22[−1].

4.2 Action of Chervov–Molev–Talalaev Operators on Root Modules

Our goal is to study the action of the Segal–Sugawara operators deûned by Chervov
and Molev and Talalaev on certain root modules for ĝln . We begin by recording a
property of Chervov–Molev–Talalaev operators.

4.2.1 A Property of Chervov–Molev–Talalaev Operators

Let ℓ ∈ {1, . . . , n} and write the vector Sℓ ∈ U(g−) as a linear combination of elements
of the form

e i1 j1[u1] ⋅ ⋅ ⋅ e ik jk [uk],
where u i ’s are negative integers whose sum equals −ℓ.

Lemma 4.3 At most one element of the set {i1 , . . . , ik} equals n.

Proof According to (4.1), we have

cdet( τ + E[−1]) = ∑
σ

sgn σ .Aσ , Aσ = aσ(1)1 ⋅ ⋅ ⋅ aσ(n)n

where a i j = δ i , jτ + e i i[−1]. Obviously, for every σ , there is only one i with σ(i) =
n. _us, Aσ has exactly one term a i j with i = n. According to (4.2), gathering all
the τs in Aσ to the le� preserve elements of the form e i j . _e lemma is, therefore,
established.

4.2.2 Root Subalgebra

Recall deûnition (2.2) of the subalgebra km ⊂ gln(O) from Section 2.4. Let k○m denote
the root subalgebra of ĝ deûned by the function

(4.4) r(α i j) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m i = n,
0 j = n, i /= n,
1 otherwise.

Explicitly, we have

k0m ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

P ⋅ ⋅ ⋅ P O

⋮ ⋱ ⋮ ⋮
P ⋅ ⋅ ⋅ P O

Pm ⋅ ⋅ ⋅ Pm Pm

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.
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Note that k0m is a pro-nilpotent subalgebra of km , and we have km/k0m ≃ gln−1(O);
hence, k0m is the pro-nilpotent radical of km . (We shall not need the last fact).

4.2.3 Action on the Corresponding Root Module

Proposition 4.4 Let v be a vector in a ĝκ-module annihilated by k○m . Let S1 , . . . , Sn
be the Segal–Sugawara vectors deûned above. _en we have

Sℓ ,[N] .v = 0, ∀N ≥ m + ℓ − 1.

Proof We know that Sℓ ,N is a linear combination of elements of the form

(4.5) ( e i1 j1[u1] ⋅ ⋅ ⋅ e ik jk [uk])
[N]

,

where k ≤ ℓ and u i ’s are negative integers whose sum equals −ℓ. It is suõcient to show
that every such element annihilates v.

In view of the deûnition of r in (4.4) and Lemma 4.3, we have that

r(α i1 j1) + ⋅ ⋅ ⋅ + r(α ik jk) ≤ m + k − 1

Now if N ≥ m + ℓ − 1, then we have

N ≥ m + ℓ − 1 ≥ m + k − 1 + ℓ − k ≥ (r(α i1 j1) + ⋅ ⋅ ⋅ + r(α ik jk)) − (u1 + ⋅ ⋅ ⋅ + uk) − k.

_us, according to Proposition 3.2, elements of the form (4.5) annihilated v for all
such N .

Remark 4.5 Lemma 4.3 (and consequently Proposition 4.4) may be false for other
sets of Segal–Sugawara vectors. Indeed, if n ≥ 4, then the above lemma is false for the
Segal–Sugawara vectors denoted by Ti in [5].

4.3 Geometric Description of the Chervov–Molev–Talalaev Operators

Isomorphisms (3.8) and (3.9) are algebraic versions of the results of Feigin andFrenkel.
We now discuss the geometric version of these results.

4.3.1 The Centre in Terms of Opers

In Section 2, we deûned the space of opers Opn(D×) on the punctured disk. We
can easily deûne a holomorphic analogue of this space; i.e., the space of opers on the
diskD, denoted by Opn(D). _e elements of Opn(D) are determined by an n-tuple
(a1 , . . . , an) ∈ On , where O = C[[t]].
As mentioned in the introduction, the geometric version of the Feigin–Frenkel

Isomorphisms can be formulated as follows:

zc(ĝln) ≃ C[Opn(D)] , Zc(ĝln) ≃ C[Opn(D×)] .

4.3.2 The Harish–Chandra Homomorphism

Next, we discuss the geometric reformulation of theHarish–Chandra homomorphism
F∶ zc → Sym(h−) . We identify zc with C[Opn(O)] and Sym(h−) = C[h[[t]]], using
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Residue pairing. _us, we wish to deûne a map F∶C[Opn(D)] → C[h[[t]]], or alter-
natively, a morphism

µ∶h[[t]] Ð→ Opn(D)
whose pullback at the level of algebra of functions equals F. For

h = (E11(t), . . . , Enn(t)) ∈ h[[t]], E i i(t) ∈ C[[t]],

we deûne µ(h) ∶= (a1 , . . . , an), where a i = a i(t) ∈ C[[t]] is speciûed by the equation

(4.6) (∂t + E11(t)) ⋅ ⋅ ⋅ (∂t + Enn(t)) = ∂n
t + a1(t)∂n−1

t + ⋅ ⋅ ⋅ + an(t).

Here, we use the usual commutation relation in the Weyl algebra

(4.7) [∂t , tn] = −ntn−1

to move powers of ∂t to the right. We now show that the pullback of µ satisûed the
required property.

Write a i(t) = ∑k<0 a i ,k t−k−1. _en for i = 1, . . . , n and negative integers k, we
have functions

v i ,k ∶Opn(D) Ð→ C v i ,k(a1 , . . . , an) = a i ,k .

Lemma 4.6 µ∗(v i ,−1) = ω i for i = 1, . . . , n.

Proof By deûnition, µ∗(v i ,−1) is the function on h[[t]] deûned by

(E11[t], . . . , Enn(t)) z→ a i ,−1 ,

where a i(t) = ∑k<0 a i ,k t−k−1 is deûned by (4.6). (Here, we are using the usual nota-
tion E i i[t] = ∑k<0 E i i[−k− 1].) Since we are only interested in a i ,−1, it is clear that we
can restrict ourselves to considering

(∂ + E11[−1]) ⋅ ⋅ ⋅ (∂ + Enn[−1]) .

Indeed, the commutation relation (4.7) ensures that the order of poles can only de-
crease when we convert the product on the light-hand side of (4.6) to the sum on the
right-hand side. _e result now follows from the deûnition of ω i ’s given in (4.3).

Example 4.7 Suppose n = 2. Let h = (E11(t), E22(t)) ∈ h[[t]]. _e morphism
µ∶h[[t]] → Opn(O) sends h to the oper

(∂t + E11(t))(∂t + E22(t)) = ∂2
t + (E11(t) + E22(t) − E11(t)′)∂t + E11(t)E22(t).

_us, µ∗∶C[Opn(O)] → C[h[[t]]] satisûes

( µ∗(v1,−1))(h) = E11[−1] + E22[−1] − E11[−2], ( µ∗(v2,−1))(h) = E11[−1]E22[−1].

In view of Example 4.2, if we identify C[h[[t]]] with Sym(h−), we obtain

µ∗(v1,−1) = ω1 , µ∗(v2,−1) = ω2 .
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4.3.3 Chervov–Molev–Talalaev Operators

_e above discussion allows us to give an alternative description of Chervov and
Molev’s Segal–Sugawara vectors and the corresponding operators.

Lemma 4.8 Under the isomorphism zc ≃ C[Opn(O)], the Chervov–Molev–Talalaev
vector S i maps to v i ,−1.

Proof Indeed, the images of both S i and v i ,−1 under the map F∶ zc ≃ C[Opn(O)] ↪
Sym(h−) equals ω i .

Now let us revisit the isomorphism Zc ≃ C[Opn(D×)]. Let v i ,k denote elements
ofC[Opn(D×)] deûned as above. Since we are working withmeromorphic (as oppose
to holomorphic) diòerential equations, k is allowed to be an arbitrary integer.

Corollary 4.9 Under the isomorphism Zc ≃ C[Opn(D×)], S i ,[k] maps to a scalar
multiple of v i ,k .

Proof _is follows from the fact that the isomorphism Zc ≃ C[Opn(D×)] inter-
twines the action of the operator T (the translation operator of the aõne vertex alge-
bra Vc(ĝ)) with the operator −∂t . We refer the reader to [11, Proof of_eorem 4.3.2]
for the details.

Remark 4.10 In [11, §8.2.2], the Miura transformation is deûned to be the map
h[[t]] → Opn(D×) speciûed by the formula

∂t + h ↦ ∂t + p−1 + h,

where p−1 = E2,1 + E3,2 + ⋅ ⋅ ⋅ + En ,n−1. _e equivalence of this deûnition with the one
given above is proved in [8, §3.24]. See also [10, §4].

4.4 Proof of the Main Theorem

As mentioned a�er the statement of the theorem, the casem = 0 is well known. So let
us assume that m > 0. Suppose ĝc-modχ has a Km-equivariant object. To prove the
theorem, it suõces to show that χ has irregularity less than m.

4.4.1 Reduction to a Statement in Classical Representation Theory

It is more convenient to work with K0
m , since this is a prounipotent group. By assump-

tion, V is a (ĝ, k0m) Harish–Chandra module. As k0m is pro-nilpotent, this happens if
and only if we have a non-trivial homomorphism of ĝ-modules

Vm = Vk0m
→ V .

Hence to prove the theorem, it suõces to show that if an oper χ acts nontrivially on
Vm , then Irr(χ) < m.
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4.4.2 Action of Chervov–Molev–Talalaev Operators

Let S1 , . . . , Sn ∈ zc(ĝln) denote the Segal–Sugawara operators deûned by Chervov–
Molev–Talalaev. _en we have an isomorphism

Zc(ĝln) ≃ C[Sℓ ,[N]]N∈Zℓ=1,. . . ,n .

According to Proposition 4.4, we have

Sℓ ,[N] .v = 0, ∀N ≥ m + ℓ − 1.

4.4.3 Reformulation in Terms of Opers

Let vℓ ,N denote the function on Opn(D×) corresponding to Sℓ ,[N] under the Feigin-
Frenkel Isomorphism. _en, by Corollary 4.9, we have

vℓ ,[N] .v = 0, N ≥ m + ℓ − 1

We can translate this result as follows. Let χ = (a1 , . . . , an) denote an oper acting
nontrivially on Vm . _en, we must have

−ν(aℓ) ≤ m + ℓ − 1

where −ν(aℓ) denotes the order of the pole of aℓ ∈K = C((t)).

4.4.4 Using Komatsu–Malgrange Formula to Estimate the Irregularity

_e previous inequality implies that

ℓ − ν(an−ℓ) ≤ ℓ + (m + n − ℓ − 1) ≤ m + n − 1.

According to the Komatsu–Malgrange formula (2.1), this implies that Irr(χ) ≤ m − 1.
_e theorem is, therefore, established.
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