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Cross-sectional C*-algebras associated with
subgroups
Damián Ferraro
Abstract. Given a Fell bundle B = {Bt}t∈G over a locally compact group G and a closed subgroup
H ⊂ G, we construct quotients C∗H↑B(B) and C∗H↑G(B) of the full cross-sectional C*-algebra
C∗(B) analogous to Exel–Ng’s reduced algebras C∗r (B) ≡ C∗

{e}↑B(B) and C∗R(B) ≡ C∗
{e}↑G(B).

An absorption principle, similar to Fell’s one, is used to give conditions on B and H (e.g., G
discrete and B saturated, or H normal) ensuring C∗H↑B(B) = C∗H↑G(B). The tools developed here
enable us to show that if the normalizer of H is open in G and BH ∶= {Bt}t∈H is the reduction of
B to H, then C∗(BH) = C∗r (BH) if and only if C∗H↑B(B) = C∗r (B); the last identification being
implied by C∗(B) = C∗r (B). We also prove that if G is inner amenable and C∗r (B) ⊗max C∗r (G) =
C∗r (B) ⊗ C∗r (G), then C∗(B) = C∗r (B).

1 Introduction

In the 1950s and early 1960s, Mackey and Blattner [4, 13] described an induction
process V ↝ IndG

H(V) that creates a unitary representation IndG
H(V) of a locally

compact group G out of a unitary representation V of a closed subgroup H ⊂ G (we
write H ⩽ G).

When translated into the language of C*-algebras, V ↝ IndG
H(V) becomes an

induction process π ↝ IndC∗(G)
C∗(H)(π) for representations of (full) group C*-algebras.

Rieffel noticed this in [17], where he presented an (abstract) induction process for
representations of C*-algebras he used to describe π ↝ IndC∗(G)

C∗(H)(π). Later, in [9], Fell
presented two induction theories: one for Banach *-algebraic bundles and one for *-
algebras; generalizing the works of Mackey–Blattner and Rieffel (respectively). Most
of what we need is contained in Fell’s original notes, but we prefer to use the standard
references [10, 11].

Fell had a problem the other authors did not: not all the representations can be
induced. This led him to the concept of inducible representation of a *-algebra and a
notion of positivity for representations of Banach *-algebraic bundles. The respective
definitions themselves [11, Chapter XI Sections 4.9 and 8.6] reveal that Fell’s theories
are related in the same way Mackey, Blattner, and Rieffel’s are. This is made explicit in
[11, Chapter XI Section 9.26 and Chapter XI Section 10].

We make use of all definitions and results of [10, 11] (e.g., integration, weak
equivalence, and weak containment of *-representations). All the groups considered
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2 D. Ferraro

in this work are locally compact (this includes Hausdorff) and we abbreviate “*-
representation” and “unitary representation” to representation. The integrated form
of a representation S is indicated by adding˜somewhere inside or over the expression
S . Whenever X = {Xt}t∈P is a Banach bundle, P stands for the base space and Xt for
the fiber over t ∈ P. The set of continuous cross-sections of X with compact support
will be denoted by Cc(X), and not by L(X) as in [11].

Fell’s absorption principle states that given a saturated Banach *-algebraic bundle
B = {Bt}t∈G ; H ⩽ G; a nondegenerate representation S of B and a unitary representa-
tion U of H, the representation S∣BH ⊗U of the reductionBH ∶= {Bt}t∈H isB-positive
and the respective induced representation of B is unitary equivalent to S ⊗ IndG

H(U),
which we write as

S ⊗ IndG
H(U) ≅ IndB

H (S∣BH ⊗U).(1.1)

For H = {e} (e being the unit of G) and U ∶H → C trivial, IndG
H(U) is the left regular

representation λ∶G → B(L2(G)) and we get S ⊗ λ ≅ IndB
{e}(S∣Be ).

The representations of the form S ⊗ λ are explicitly considered by Exel and Ng in
[8] and, as we shall see later, those of the form IndB

{e}(ϕ) appear as λB ⊗ϕ 1, with
λB∶C∗(B) → B(L2

e(B)) being the reduced representation of [8, Definition 2.7]. Exel
and Ng used those two families of representations to give natural definitions of the
reduced cross-sectional C*-algebra of a Fell bundle, C∗r (B) and C∗R(B), which turn
out to be isomorphic [8, Theorem 2.14]. Exel–Ng’s ideas go back to Raeburn’s work on
coactions [15], as pointed out in [8, p. 515].

The construction of C∗R(B) can be extended considerably by using the ideas of
[12] of producing exotic crossed products for C*-dynamical systems out of quotients
Q of the full group C*-algebra C∗(G). Say we have a locally compact group G
and a quotient map q∶C∗(G) → Q . Let B = {Bt}t∈G be a Fell bundle and take
faithful nondegenerate representations π∶C∗(B) → B(X) and ρ∶Q → B(Y), so π ⊗
ρ∶C∗(B) ⊗ Q → B(X ⊗ Y) is faithful and nondegenerate (we are considering min-
imal tensor products). Both π and ρ ○ q are the integrated forms (or disintegrate
to) representations S∶B→ B(X) and U ∶G → B(Y). For the canonical representation
ιq ∶G → M(Q) we have [S ⊗U]b(π( f ) ⊗ ρ(z)) = π(b f ) ⊗ ρ(ιq(t)z), for all b ∈ Bt ,
f ∈ Cc(B) and z ∈ Q . Hence, the image of the integrated form S⊗̃U ∶C∗(B) →
B(X ⊗ Y) (of S ⊗U) is contained in M(C∗(B) ⊗ Q) and δBq ∶= S⊗̃U ∶C∗(B) →
M(C∗(B) ⊗ Q) is independent of (π, ρ). We define the q-cross-sectional C*-algebra
C∗q(B) ∶= δBq(C∗(B)). If B is the semidirect product bundle of a C*-dynamical
system (A, G , α), C∗q(B) ≡ A⋊qα G is a quotient of the full crossed product C∗(B) =
A⋊α G .

Take, for example, the integrated form λ̃∶C∗(G) → C∗r (G) of the left regular
representation λ∶G → B(L2(G)). By definition, C∗λ̃(B) = C∗R(B). Since λ is induced
by the trivial representation of {e}, it is natural to replace {e}with any other subgroup
H ⩽ G and consider q∶C∗(G) → C∗(G)/I, with I the intersection of the kernels of
all integrated forms of representations induced from H. This associates an H-cross-
sectional C*-algebra C∗H↑G(B) ∶= C∗q(B) to every Fell bundle B over G .

There is still another natural quotient C∗H↑B(B) ∶= C∗(B)/J one may associate to
H. Take for J the intersection of all the kernels of integrated forms of representations
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Cross-sectional C*-algebras associated with subgroups 3

of B induced from B-positive representations of BH . In case B is saturated, all
representations of BH count [11, p. 1159]. This is also the case if H = {e}.

We claim that C∗{e}↑B(B) = C∗r (B). Indeed, given a representation ϕ of Be ≡ BH ,
the abstractly induced representation Indp

Be↑Cc(B)
(ϕ) of [11] is (λB ⊗ϕ 1)∣Cc(B) . By

[11, Chapter XI Section 9.26], λB ⊗ϕ 1 is the integrated form ˜IndB

{e}(ϕ). Hence, for
all f ∈ C∗(B), we have ∥λB( f )∥ ≥ ∥λB( f ) ⊗ϕ 1∥ = ∥ ˜IndB

{e}(ϕ) f ∥with equality if ϕ is
faithful. It is then clear that J = ker(λB) and C∗{e}↑B(B) = λB(C∗(B)) ≡ C∗r (B).

Fell’s absorption principle comes into play when we want to compare C∗H↑B(B)
and C∗H↑G(B), for a general H ⩽ G . To start with, we have canonical quotient maps

C∗(B)
qH↑B

�� C∗H↑B(B) C∗(B)
qH↑G
B �� C∗H↑G(B).(1.2)

Assume B is saturated and take faithful representations S̃ and Ũ of C∗(B) and
C∗(H), respectively. By [11, Chapter XI Section 12.4], ˜IndG

H(U) factors through
a faithful representation of C∗(G)/IH and our construction of C∗H↑G(B) implies
∥qH↑G

B
( f )∥ = ∥[S⊗̃U] f ∥ for all f ∈ C∗(B). By Fell’s absorption principle, ∥[S⊗̃U] f ∥ =

∥ ˜IndB

H (S∣BH ⊗U) f ∥ ≤ ∥qH↑B( f )∥. This implies ∥qH↑G
B

( f )∥ ≤ ∥qH↑B( f )∥. In other
words, there exists a unique quotient map πB

H making of

C∗(B)
qH↑B

�����
���

���
� qH↑G

B

����
���

���
��

C∗H↑B(B) πB
H

�� C∗H↑G(B)

(1.3)

a commutative diagram.
One of the main results of [8] is that πB

{e}∶C∗r (B) → C∗R(B) is an isomorphism,
even if B is not saturated (in which case the mere existence of πB

{e} is in question).
When B is saturated and H is normal, we can get the same conclusion out of
(1.1). Indeed, let T be a representation of BH with faithful integrated form. By [11,
Chapter XI Section 12.8], T ⪯ IndB

H (T)∣BH ⪯ S∣BH and this implies ˜S∣BH is faithful.
The continuity of the induction process with respect to the regional topology [11,
Chapter XI Section 12.4] implies ∥qH↑B( f )∥ = ∥IndB

H (S∣BH) f ∥ for all f ∈ C∗(B). For
the trivial representation κ∶H → C, Fell’s absorption principle gives

∥qH↑B( f )∥ = ∥IndB
H (S∣BH)∥ = ∥[S⊗̃IndG

H(κ)] f ∥ ≤ ∥[S⊗̃IndG
H(U)] f ∥

= ∥qH↑G
B

( f )∥;(1.4)

which clearly implies πB
H is isometric. These arguments can not be extended to non-

normal subgroups. Consider, for example,B as the trivial bundle over G with constant
fiber C and H ⩽ G such that the canonical *-homomorphism C∗(H) → M(C∗(G))
is not faithful.

How was that Exel and Ng manage to define πB
{e} and prove it is faithful even for

non saturated B? The short answer is that they developed a version of (1.1) where ≅
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4 D. Ferraro

is replaced by a weak equivalence ≈ of representations. Exel–Ng’s absorption principle
states that for any given nondegenerate representation S of B,

S ⊗ λ ≈ IndB
{e}(S∣Be ).(1.5)

The statement and proof of this claim is implicit in that of [8, Theorem 2.14] when the
authors show λB(a) ⊗S∣Be

1 = 0 ⇔ [S⊗̃λ]a = 0. Notice (1.5) suffices to define πB
{e} and

make (1.4) work.
All the facts presented before led us to the following questions concerning a general

Fell bundle B = {Bt}t∈G (saturated or not) and H ⩽ G .
(1) Are all representations of BH inducible to B (i.e. B-positive)?
(2) Can one imitate Exel–Ng’s construction of λB∶C∗(B) → B(L2

e(B)) using H
instead of {e}? More specifically, we ask for the possibility of constructing a right
C∗(BH)-Hilbert module L2

H(B) and *-homomorphism

ΛHB∶C∗(B) → B(L2
H(B))

such that, for every representation T ofBH , one has ΛHB ⊗T̃ 1 = ˜IndB

H (T). In case
this can be done, it would follow immediately that C∗H↑B(B) = ΛHB(C∗(B)).

(3) Is there any general weak form of (1.1)? We mean something similar to (1.5) which
one may use to define πB

H .
(4) Assuming questions (2) and (3) admit affirmative answers, under which circum-

stances is πB
H an isomorphism? In other words, when is ΛHB(C∗(B)) universal

for the representations of B of the form S⊗̃IndG
H(U)? We know this is true if H is

normal and B saturated, is saturation really necessary?
The outline of this article is as follows. After this introduction, the first main

Theorem gives an affirmative answer to question (1) and right after that we construct
the *-homomorphism ΛHB of question (2). We then prove C∗H↑B(B) and C∗H↑G(B)
have certain universal properties for different families of representations of B. Those
characterizations are used to compute C∗H↑B(B) and C∗H↑G(B) in a concrete example
revealing that many of our theorems fail if some hypotheses are removed. As an appli-
cation we construct certain “exotic coactions” δ∶C∗H↑G(B) → M(C∗H↑G(B) ⊗ QG

H) for
specific quotients QG

H of C∗(G). In the last part of Section 3, we show that if G is inner
amenable and C∗r (B) ⊗max C∗r (G) = C∗r (B) ⊗ C∗r (G), then C∗(B) = C∗r (B).

Our answer to question (3) occupies most of Section 4, which ends with a series of
corollaries. In one of them we construct a *-homomorphism that, in some situations,
happens to be the inverse of the πB

H of (1.3). Another of the corollaries is an extension
of Exel–Ng’s absorption principles to normal subgroups other than {e}.

In the fifth and final section, we study the dependence of C∗H↑B(B) and C∗H↑G(B)
with respect to H. The main result states that if the normalizer of H is open in G , then
C∗(BH) = C∗r (BH) if and only if C∗H↑B(B) = C∗r (B). As a corollary of this we get
that C∗(B) = C∗r (B) implies C∗(BH) = C∗r (BH).

2 Positivity and induction

We take from [10, 11] all the definitions, constructions and results concerning rep-
resentations, C*-algebras, Banach and C*-algebraic bundles (the latter are called Fell
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Cross-sectional C*-algebras associated with subgroups 5

bundles). Any notation different from that of [10, 11] will be introduced along with its
corresponding explanation.

Given a (right or left) Hilbert module X , we denote B(X) the C*-algebra of
adjointable maps from X to X . Whenever A is a C*-algebra and π∶A → B(X) a
nondegenerate *-homomorphism, π∶M(A) → B(X) stands for the unique extension
of π. We use the symbol ⟨ , ⟩ to denote inner products (except when we recall the
definition of Banach *-algebraic bundle). The modular function of a locally compact
group G will be denoted by ΔG and integration with respect to a left invariant Haar
measure will be indicated by dt.

Whenever A and B are C*-algebras and there exists a canonical *-homomorphism
π∶A → B, the expression A = B means π is an isomorphism and we think a = π(a)
for all a ∈ A. This is the case when we write C∗(G) = C∗r (G) (i.e. G is amenable) or
A⊗ B = A⊗max B.

When we say B = {Bt}t∈G is a Banach *-algebraic bundle we are implicitly assum-
ing the existence of a structure ⟨B, π, ⋅⟩ making B ≡ ⟨B, π, ⋅⟩ a Banach *-algebraic
bundle in the sense of [11, Chapter VIII Section 3.1]. When we write b ∈ B we mean
b ∈ B. Notice that the fibre Be over the unit e ∈ G is a Banach *-algebra. By definition,
B = {Bt}t∈G is a Fell bundle (i.e. C*-algebraic bundle) if ∥b∗b∥ = ∥b∥2 and b∗b is
positive in the C*-algebra Be , for all b ∈ B. Given a Banach *-algebraic (Fell) bundle
B = {Bt}t∈G and H ⩽ G , the reduction BH ∶= {Bt}t∈H is a Banach *-algebraic (Fell,
respectively) bundle with the structure inherited from B.

The concrete and abstract induction processes of [11] can be applied to any B-
positive representation S∶BH → B(X) and give two unitary equivalent representa-
tions of B [11, Chapter XI Section 9.26], any of which we denote by IndB

H (S) and
call the representation of B induced by S. The definition of B-positivity we adopt is
that of [11, Chapter XI Section 8.6]. By [11, Chapter XI Section 8.9], a representation
S∶BH → B(X) is B-positive if for every coset rH ∈ G/H ≡ {tH∶ t ∈ G}, every integer
n > 0, all b1 , . . . , bn ∈ BrH , and all ξ1 , . . . , ξn ∈ X ,

n
∑

i , j=1
⟨Sb∗j b i ξ i , ξ j⟩ ≥ 0.(2.1)

We give an alternative formulation in Corollary 2.2.
In [11, pp. 1159] Fell proves the theorem below for saturated bundles and asks

if saturation can be removed from the hypotheses. It indeed can and, as pointed
out by Fell in the same page, this leads to a simpler formulation of positivity for
representations of Banach *-algebraic bundles (Corollary 2.2).

Theorem 2.1 If B = {Bt}t∈G is a Fell bundle and H ⩽ G , then all the representations
of BH are B-positive.

Proof Let T ∶BH → B(X) be a representation. Fix t ∈ G and elements b1 , . . . , bn ∈
BtH . Take s1 , . . . , sn ∈ H such that b j ∈ Bts j ( j = 1, . . . , n). Set s ∶= (s1 , . . . , sn) and
ts ∶= (ts1 , . . . , tsn) and define the matrix space

Mts(B) ∶= {(M i , j)n
i , j=1∶M i , j ∈ B(ts i)−1(ts j) , ∀ i , j = 1, . . . , n}.

It is of key importance to notice that Mts(B) ≡Ms(BH).
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6 D. Ferraro

By [2, Lemma 2.8], Mts(B) is a C*-algebra with usual matrix multiplication as
product and ∗-transpose as involution. A quick way of proving this is by taking
a representation R∶B→ B(Y) with all the restrictions R∣B t being isometric (which
exists by [11, Chapter VIII Section 16.10]) and to identify Mts(B) with the concrete
C*-algebra

{(RM i , j)n
i , j=1∶M i , j ∈ Bs−1

i s j
, ∀ i , j = 1, . . . , n} ⊂ B(Y n).

The matrix M ∶= (b∗i b j)n
i , j=1 belongs to Mts(B) and, regarding B as a B −B-

equivalence bundle, we can easily adapt the proof of [2, Lemma 2.8] to show that M is
positive in Mts(B) ≡Ms(BH). An alternative (direct) proof is as follows.

Notice that for all M = (M i , j)n
i , j=1 ∈Mts(B) and all i = 1, . . . , n we have M i , i ∈

Be . So we may define a trace function tr∶Mts(B) → Be by tr(M) ∶= ∑n
i=1 M i , i . The

operations
Mts(B)×Be → Be (M , b) ↦ (M i , jb)n

i , j=1

⟨ , ⟩Be ∶Mts(B)×Mts(B) → Be (M , N) ↦ ⟨M , N⟩Be ∶= tr(M∗N)

make of Mts(B) a full right Be -Hilbert module which we denote by Mts(B)Be .
For every M ∈Mts(B), the operator ϕM ∶Mts(B)Be →Mts(B)Be , N ↦ MN , is

adjointable because for all N , P ∈Mts(B)Be ,

⟨ϕM N , P⟩Be = tr((MN)∗P) = tr(N∗(M∗P)) = ⟨N , ϕM∗P⟩Be .

Moreover, the natural representation ϕ∶Mts(B) → B(Mts(B)Be ), M ↦ ϕM , is a *-
homomorphism.

To prove that ϕ is faithful, we take an approximate unit {e i}i∈I of Mts(B).
For all M ∈Mts(B), we have ∑n

i , j=1(M i , j)∗M i , j = tr(M∗M) = limi tr((Me i)∗M) =
limi⟨ϕM e i , M⟩Be . Thus, ϕM = 0 implies ∑n

i , j=1(M i , j)∗M i , j = 0 and this yields M = 0.
Now that we know ϕ is faithful, to prove that M ∶= (b∗i b j)n

i , j=1 ≥ 0 (in Mts(B) ≡
Ms(BH)) it suffices to show that ϕM ≥ 0. This is the case because for all N ∈Mts(B)Be

we have

⟨ϕM N , N⟩Be = tr((ϕM N)∗N) = tr(N∗M∗N) =
n
∑
i=1

⎛
⎝

n
∑
j=1

b j N j, i
⎞
⎠

∗

(
n
∑
k=1

bk Nk , i) ≥ 0;

where the last inequality follows from the fact that the definition of Fell bundle
requires c∗c to be positive in Be for all c ∈ B.

If N ∶= M1/2 ∈Mts(B) ≡Ms(BH), then all the entries N i , j of N belong to BH and
for all ξ1 , . . . , ξn ∈ X we have

n
∑

i , j=1
⟨Tb∗j b i ξ i , ξ j⟩ =

n
∑

i , j,k=1
⟨TNk , j

∗Nk , i ξ i , ξ j⟩ =
n
∑
k=1
⟨

n
∑
i=1

TNk , i ξ i ,
n
∑
j=1

TNk , j ξ j⟩ ≥ 0;

proving that T is B-positive. ∎

Corollary 2.2 (c.f. [11, Chapter XI Section 11.11]) Let B = {Bt}t∈G be a Banach *-
algebraic bundle and H a closed subgroup of G . For any representation S∶BH → B(X)
the following conditions are equivalent:
(1) S is B-positive.
(2) ⟨Sb∗b ξ, ξ⟩ ≥ 0 for all b ∈ B and ξ ∈ X .
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Cross-sectional C*-algebras associated with subgroups 7

2.1 Fell’s abstract induction process for Fell fundles

Take a Fell bundle B = {Bt}t∈G . The convolution product f ∗ g , the adjoint f ∗ and
norm ∥ f ∥1 of f , g ∈ Cc(B) are given by

f ∗ g(t) = ∫
G

f (s)g(s−1 t) ds f ∗(t) = ΔG(t)−1 f (t−1)∗ ∥ f ∥1 ∶= ∫
G
∥ f (s)∥ ds.

The L1-cross-sectional algebra L1(B) of B is the ∥ ∥1-completion of Cc(B).
The cross-sectional C*-algebra of B, C∗(B), is the enveloping C*-algebra of L1(B)

and we know from [11, Chapter VIII Section 16.4] that L1(B) is reduced, meaning
that we may think of L1(B) as a dense *-subalgebra of C∗(B). The integrated form of
a representation T ∶B→ B(X) is the unique representation T̃ ∶C∗(B) → B(X) such
that T̃f ξ = ∫G Tf (t)ξ dt for all f ∈ Cc(B) and ξ ∈ X . All representations of C∗(B) arise
this way (so they can be “disintegrated”) and T̃ determines T .

The definition of weak containment (and equivalence) of representations we adopt
are those of [10, Chapter VII Section 1] and [11, Chapter VIII Section 21]. Given two
sets of representations, S and T, the expressions S ⪯ T and S ≈ T mean that S is weakly
contained in T and that S is weakly equivalent to T, respectively.

The basic ingredients we need to perform Fell’s abstract induction process (see
[11, Chapter XI Sections 8.7 and 9.25]) are a closed subgroup H ⊂ G; a representation
T ∶BH → B(X); the “normalized restriction”

p∶Cc(B) → Cc(BH) p( f )(t) = (ΔG(t)
ΔH(t))

1/2

f (t)(2.2)

and the action Cc(B) × Cc(BH) → Cc(B), ( f , u) ↦ f u, given by

f u(t) = ∫
H

f (ts)u(s−1)(ΔG(s)
ΔH(s))

1/2

ds.(2.3)

It is shown in [11, Chapter XI Section 8.4] that for all f , g ∈ Cc(B) and u, v ∈ Cc(BH),

p( f )∗ = p( f ∗) ( f u)v = f (u ∗ v) p( f u) = p( f )u ( f ∗ g)u = f ∗ (gu).

We abbreviate ΔG(t)
ΔH(t) to ΔG

H(t) and write pH instead of p only when not doing so
may cause any confusion.

Any representation T ∶BH → B(X) is B-positive and this implies that there is a
unique pre-inner product [ , ]T on the algebraic tensor product Cc(B) ⊙ X such that,
for all f , g ∈ Cc(B) and ξ, η ∈ X, [ f ⊙ ξ, g ⊙ η]T = ⟨T̃p(g∗∗ f )ξ, η⟩. We denote by X p

T
the Hilbert space obtained as the completion of the quotient

Cc(B) ⊙ X/{u ∈ Cc(B) ⊙ X∶ [u, u]T = 0}

with respect to the natural (quotient) inner product, which we denote by ⟨ , ⟩.
The image of an elementary tensor f ⊙ ξ ∈ Cc(B) ⊙ X (via the quotient map and

the inclusion into the completion) will be denoted f ⊗T ξ. By construction,

⟨ f ⊗T ξ, g ⊗T η⟩ = ⟨T̃p(g∗∗ f )ξ, η⟩ = ⟨ξ, T̃p( f ∗∗g)η⟩.(2.4)
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By [11, Chapter XI Section 9.26] the (abstractly) induced representation
IndB

H (T)∶B→ B(X p
T), and its integrated form ˜IndB

H (T)∶C∗(B) → B(X p
T) can be

characterized by saying that

IndB
H (T)b( f ⊗T ξ) = (b f ) ⊗T ξ ˜IndB

H (T)g( f ⊗T ξ) = (g ∗ f ) ⊗T ξ

for all b ∈ B, f , g ∈ Cc(B) and ξ ∈ X , where the action of B on Cc(B) used in the first
identity is

B × Cc(B) → Cc(B) (b ∈ Bs , f ) ↦ b f (b f )(t) = b f (s−1 t).

Remark 2.3 The trivial one-dimensional complex Banach bundle over G, TG =
{Cδt}t∈G , is a saturated Fell bundle with the operations (zδr)(wδs) = zwδrs and
(zδr)∗ = zδr . We can easily identify Cc(TG), L1(TG) and C∗(TG)with Cc(G), L1(G)
and C∗(G), respectively. The unitary representations of G are in one to one corre-
spondence with the nondegenerate representations of TG . Up to this identification,
the induction process U ↦ IndG

H(U) is the same as U ↦ IndTG
H (U).

2.1.1 The induction module

With ⟨ , ⟩BH ∶Cc(B) × Cc(B) → Cc(BH) defined by ⟨ f , g⟩BH ∶= p( f ∗ ∗ g), Cc(B)
becomes a right Cc(BH)-rigged left Cc(B)-module (in the sense of [11]) with the
action (2.3) on the right and the natural action by convolution on the left. If we
consider Cc(BH) as a dense *-subalgebra of C∗(BH), then ⟨ , ⟩BH is positive in the
sense that ⟨ f , f ⟩BH ≥ 0 for all f ∈ Cc(B). Indeed, take a nondegenerate representation
T ∶BH → B(X) with faithful integrated form. Then T̃⟨ f , f ⟩BH

≡ T̃p( f ∗∗ f ) ≥ 0 because T
is B-positive [11, Chapter XI Sections 8.6–8.9].

We are now in the situation of [16, Lemma 2.16], so there exists a right C∗(BH)-
Hilbert module L2

H(B) (with inner product ⟨ , ⟩C∗(BH)) and a linear map q∶Cc(B) →
L2

H(B) with dense image and ⟨q( f ), q(g)⟩C∗(BH) = p( f ∗ ∗ g) for all f , g ∈ Cc(B).
To prove q is faithful, we start by noticing that q( f ) = 0 implies p( f ∗ ∗ f )(e) = 0,
which translates to ∫G f (t)∗ f (t) dt = 0. This last condition implies f = 0 because t ↦
f (t)∗ f (t) is a continuous function with compact support from G to the positive cone
of Be .

Now that we know that q is injective, we omit any reference to it and think of
Cc(B) as a dense subspace of L2

H(B). For example, we make no distinction between
⟨ f , g⟩C∗(BH), ⟨ f , g⟩BH , and p( f ∗ ∗ g).

The following remark will be used repeatedly (and even without mention) in the
rest of the article.

Remark 2.4 Given a non empty set A, Hilbert spaces X and Y and functions x∶A →
X and y∶A → Y such that ⟨x(a), x(b)⟩ = ⟨y(a), y(b)⟩ for all a, b ∈ A, there exists a
unique linear isometry I∶ span{x(a)∶ a ∈ A} → span{y(a)∶ a ∈ A} such that I ○ x = y.

The proposition we are about to state is a reinterpretation of [11, Chapter XI Section
9.26]. It reveals that when working with Fell bundles, the induction process can be
carried out using Hilbert modules and not just left rigged modules.
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Proposition 2.5 There exists a unique *-homomorphism ΛHB∶C∗(B) → B(L2
H(B))

such that ΛHB
f g = f ∗ g for all f , g ∈ Cc(B). Moreover, for any representation T ∶BH →

B(X) it follows that

ΛHB ⊗T̃ 1 ≅ ˜IndB

H (T).

Proof Take any representation T ∶BH → B(X). By [11, Chapter XI Section 9.26] the
representation T̃ ∣Cc(B) is inducible to Cc(B) via the conditional expectation p of (2.2)
and the resulting induced representation is ˜IndB

H (T)∣Cc(B). Then, for all f , g ∈ Cc(B)
and ξ ∈ X we have

⟨T̃⟨ f∗g , f∗g⟩BH
ξ, ξ⟩ = ∥IndB

H (T) f (g ⊗T ξ)∥2 ≤ ∥ f ∥2
1 ∥g ⊗T ξ∥2 = ∥ f ∥2

1 ⟨T̃⟨g ,g⟩TH
ξ, ξ⟩.

Since we can choose T so that T̃ is faithful, we have ⟨ f ∗ g , f ∗ g⟩BH ≤ ∥ f ∥2
1 ⟨g , g⟩BH and

⟨ f ∗ g , h⟩BH = p(( f ∗ g)∗ ∗ h) = p(g∗ ∗ ( f ∗ ∗ g)) = ⟨g , f ∗ ∗ h⟩BH
for all f , g , h ∈ Cc(B). This implies the existence of a map Λ0∶Cc(B) → B(L2

H(B))
such that Λ0

f g = f ∗ g, ∥Λ0
f ∥ ≤ ∥ f ∥1 and (Λ0

f )∗ = Λ0
f ∗ .

Note that Λ0 is a *-homomorphism which is contractive with respect to ∥ ∥1 , so it
admits a unique extension to a *-homomorphism Λ1∶ L1(B) → B(L2

H(B)); which we
can extend in a unique way to a *-homomorphism ΛHB∶C∗(B) → B(L2

H(B)).
The tensor product L2

H(B) ⊗T̃ X is the closed linear span of elementary tensors
f ⊗T̃ ξ ( f ∈ Cc(B) and ξ ∈ X) with ⟨ f ⊗T̃ ξ, g ⊗T̃ η⟩ = ⟨T̃⟨g , f ⟩BH

ξ, η⟩ = ⟨ f ⊗T ξ, g ⊗T

η⟩. So there exists a unique unitary U ∶ L2
H(B) ⊗T̃ X → X p

T sending f ⊗T̃ ξ to f ⊗T ξ.
This operator intertwines ΛHB ⊗T̃ 1 and ˜IndB

H (T) because for all f , g ∈ Cc(B) and
ξ ∈ X we have

U∗ ˜IndB

H (T) f U(g ⊗T̃ η) = U∗(( f ∗ g) ⊗T η) = ( f ∗ g) ⊗T̃ η
= [ΛHB ⊗T̃ 1] f (g ⊗T̃ η);

which implies U∗ ˜IndB

H (T) f U = [ΛHB ⊗T̃ 1] f for all f ∈ C∗(B). ∎

Remark 2.6 One may use [11, Chapter VIII Section 12.7] to disintegrate ΛHB into a
Fréchet representation ΛHB′ which happens to be given by ΛHB′

b f = b f , for all b ∈ B
and f ∈ Cc(B) ⊂ L2

H(B). This ultimately follows from the fact that for all b ∈ B and
f , g ∈ Cc(B), ΛHB′

b( f ∗ g) = ΛHB′

b ΛHB
f g = ΛHB

b f g = (b f ) ∗ g = b( f ∗ g).

Remark 2.7 (Systems of Imprimitivity) As pointed out in [11, Chapter XI Section
14.4], there is a natural action C0(G/H) × Cc(B) → Cc(B), ( f , g) ↦ f g , where
f g(r) = f (rH)g(r). Moreover, Fell shows that given a representation T ∶BH → B(X),
the action of C0(G/H) induces a representation

ψT ∶C0(G/H) → B(L2
H(B) ⊗T̃ X) ψT

f (g ⊗T ξ) = f g ⊗T ξ.

In particular, ⟨ξ, T̃⟨ f g , f g⟩ξ⟩ = ∥ψT
f (g ⊗T ξ)∥2 ≤ ∥ f ∥2∥g ⊗T ξ∥2 = ∥ f ∥2⟨ξ, ⟨g , g⟩ξ⟩ and

this yields ⟨ f g , f g⟩ ≤ ∥ f ∥2⟨g , g⟩. This is the key fact one needs to prove the existence
of a unique *-homomorphism ψ∶C0(G/H) → B(L2

H(B)) such that ψ f g = f g for all

https://doi.org/10.4153/S0008414X2400083X Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X2400083X


10 D. Ferraro

( f , g) ∈ C0(G/H) × Cc(B). It turns out that ψ is nondegenerate and ψT
f = ψ f ⊗T̃ 1.

The pair (ΛHB , ψ) is a kind of universal system of imprimitivity because, accord-
ing to [11, Chapter XI 14.3–14.4], by disintegrating ΛHB ⊗T̃ 1 and ψ ⊗T̃ 1 one gets
IndB

H (T) and the projection-valued measure induced by T . It then should come
as no surprise that, denoting τ the natural action of G on C0(G/H), one obtains
ΛHB′

bψ f = ψτ t( f )ΛHB′

b for all b ∈ Bt and f ∈ C0(G/H).

Remark 2.8 If H = {e}, then L2
H(B) = L2

e(B) and ΛHB = λB . Indeed, in this
situation Be ≡ Cc(BH) and the inner product of f , g ∈ Cc(B) in L2

e(B) is
∫G f (t)∗g(t) dt = f ∗ ∗ g(e) ≡ p( f ∗ ∗ g) = ⟨ f , g⟩BH . The action of (2.3) reduces to
( f b)(t) = f (t)b and this is the action used by Exel and Ng to construct L2

e(B). Hence,
L2

H(B) = L2
e(B). The rest is an immediate consequence of the last proposition above

and [8, Proposition 2.6].
Remark 2.9 If H = G then L2

H(B) is the C*-algebra C∗(B) considered as a right
C∗(B)-Hilbert module and ΛGB∶C∗(B) → B(C∗(B)) is the natural inclusion. This
is the case because ⟨ f , g⟩BG = p( f ∗ ∗ g) = f ∗ ∗ g and the action (2.3) is given by the
convolution product.

3 Universal properties of cross-sectional C*-algebras

Let B be a Fell bundle and F a non empty family of representations of B. We say
that a C*-algebra A is universal for F if there exists a surjective *-homomorphism
π∶C∗(B) → A such that (i) for every (S∶B→ B(X)) ∈ F, there exists a representation
ρS ∶A → B(X) with ρS ○ π = S̃ and (ii) for some S ∈ F, ρS is faithful. Notice ρS is
unique because π is surjective.

Say S ∈ F is such that ρS is faithful. Then ker(π) = ker(S̃) = ∩{ker(T̃)∶T ∈ F} and
this implies the existence of an isomorphism π̂∶A → C∗(B)/ ∩ {ker(T̃)∶T ∈ F} such
that π̂ ○ π is the natural quotient map. Given another surjective *-homomorphism
κ∶C∗(B) → C satisfying (i) and (ii), μ ∶= (κ̂)−1 ○ π̂∶A → C is the unique isomorphism
such that μ ○ π = κ.

The next propositions imply C∗H↑B(B) is universal for the representations of B
induced from representations of BH ; while C∗H↑B(B) is for those of the form T ⊗
IndG

H(U), T being a representation of B and U one of H.
Proposition 3.1 Let B = {Bt}t∈G be a Fell bundle, H ⩽ G and T ∶BH → B(X) a
representation. Then there exists a unique representation ρ∶C∗H↑B(B) → B(X p

T) such
that ρ ○ qH↑B = ˜IndB

H (T). Moreover, if T̃ is faithful then so is ρ.
Proof Let J ⊂ C∗(B) be the intersection of all the kernels of integrated forms of
representations of B induced from representations of BH . We obviously have J ⊂
ker( ˜IndB

H (T)), so there exists a unique function ρ∶C∗(B)/J → B(X p
T) such that

ρ ○ qH↑B = ˜IndB

H (T) (implying ρ is a representation).
Assume T̃ is faithful and let S be any other representation of BH . Both S and its

nondegenerate part induce the same representation of B, so we may assume both
S and T are nondegenerate. We have S̃ ⪯ T̃ because T̃ is faithful. By the defini-
tion of weak containment for bundles, S ⪯ T and the continuity of the induction
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process with respect the regional topology [11, Chapter XI Section 12.4] implies
˜IndB

H (S) ⪯ ˜IndB

H (T). Hence, ker( ˜IndB

H (T)) ⊂ ker( ˜IndB

H (S)) and it follows that J =
ker( ˜IndB

H (T)) or, in other words, that ρ is faithful. ∎
Proposition 3.2 Let B = {Bt}t∈G be a Fell bundle and H ⩽ G . Given nondegenerate
representations T ∶B→ B(X) and U ∶H → B(Y) there exists a (unique) representation
ρ∶C∗H↑G(B) → B(X ⊗ Y) such that ρ ○ qH↑G

B
= T⊗̃IndG

H(U). Moreover, ρ is faithful if
T̃ and Ũ are.
Proof By definition, we may think of C∗H↑G(B) as the image of the *-
homomorphism δ∶C∗(B) → M(C∗(B) ⊗ Q) associated with the quotient map
q∶C∗(G) → Q ∶= C∗(G)/I; with I ⊂ C∗(G) the intersection of all the kernels of inte-
grated form of *-representations induced from H. Hence, ˜IndG

H(U) factors through a
representation π∶Q → B(Y) and we get a representation T̃ ⊗ π∶C∗(B) ⊗ Q → B(X ⊗
Y) we may extend to the multiplier algebra to get a representation T̃ ⊗ π.

When we described δ∶C∗(B) → M(C∗(B) ⊗ Q) in the introduction we made use
of canonical unitary representation ι∶G → M(Q) and the action of B on Cc(B) ⊂
C∗(B). In fact, δ f (g ⊗ z) = ∫G f (t)g ⊗ ι(t)z dt for all f , g ∈ Cc(B) and z ∈ Q . This
yields T̃ ⊗ π ○ δ = T⊗̃IndG

H(U). Since we are identifying C∗H↑G(B) = δ(C∗(B)), the
quotient qH↑G

B
∶C∗(B) → C∗H↑G(B) becomes f ↦ δ f and we may therefore define

ρ as the restriction of T̃ ⊗ π to C∗H↑G(B). Say we have some other representation
ρ′∶C∗H↑G(B) → B(X ⊗ Y) such that ρ′ ○ qH↑G

B
= T⊗̃IndG

H(U). Then ρ′ ○ qH↑G
B

= ρ ○
qH↑G
B

and this yields ρ = ρ′ because qH↑G
B

is surjective.
Assume the integrated forms of T and U are faithful. Then, π is faithful because

given any other representation V of H we have Ṽ ⪯ Ũ ⇒ V ⪯ U ⇒ IndG
H(V) ⪯

IndG
H(U) ⇒ ˜IndG

H(V) ⪯ ˜IndG
H(U) and this implies I is the kernel of ˜IndG

H(U) or, in
other words, π is faithful and so must be T̃ ⊗ π; which clearly implies ρ is faithful. ∎
Remark 3.3 Say B = {Bt}t∈G is a Fell bundle and we have conjugated subgroups
H ⩽ G and K = rHr−1 . By [11, Chapter XI Section 12.21], up to unitary equivalences,
the classes of representations of G induced from H and K agree. Then there exists an
isomorphism χ∶C∗H↑G(B) → C∗K↑G(B) such that χ ○ qH↑G

B
= qK↑G

B
.

In the introduction, we showed C∗{e}↑B(B) = λB(C∗(B)) and we know from
Remark 2.8 that λB = Λ{e}B . Thus C∗{e}↑B(B) = Λ{e}B(C∗(B)). This is a particular
case of a more general fact.
Corollary 3.4 For every Fell bundle B = {Bt}t∈G and H ⩽ G , the quotient map
C∗(B) → ΛHB(C∗(B)), f ↦ ΛHB( f ), makes of ΛHB(C∗(B)) a universal C*-
algebra for the representations of B induced from BH .
Proof Let T ∶BH → B(X) be a representation. By Proposition 2.5, there exists a
*-homomorphism θ∶B(L2

H(B)) → B(L2
H(B) ⊗T̃ X) such that θ(M) = M ⊗T̃ 1 and

θ ○ ΛHB = ˜IndB

H (T). The restriction θ∣ΛHB(C∗(B))∶ΛHB(C∗(B)) → B(X p
T) is then

the unique representation ρ of ΛHB(C∗(B)) such that ρ ○ ΛHB = ˜IndB

H (T). If T̃ is
faithful then θ is also, which clearly implies ρ is faithful. ∎
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3.1 An example

Here, we present an explicit example of a Fell bundle B = {Bt}t∈G and H ⩽ G such
that:
• The normalizer of H is open (because G is discrete).
• λB∶C∗(B) → C∗r (B) is not an isomorphism.
• For all r ∈ H, C∗rHr−1↑G(B) = C∗(B) (see Remark 3.3).
• C∗H↑B(B) = C∗(B) and if r ∈ G/H, then C∗rHr−1↑B(B) = C∗r (B).

The lemma below is of key importance in the rest of the article, in particular in
the example presented right after its proof. We state it in full generality and not only
for discrete groups. By considering trivial Fell bundles over groups with constant
fiber C, it is easy to use the Lemma to prove the analogous statement for unitary
representations of groups.

Lemma 3.5 If B = {Bt}t∈G is a Fell bundle and the normalizer of H ⩽ G is open, then

(1) For every nondegenerate representation T of BH we have T ⪯ IndB
H (T)∣BH .

(2) Given a nondegenerate representation T ∶B→ B(Y), ˜T ∣BH is faithful if T̃ is.

Proof By [11, Chapter XI Section 12.8] and [11, Chapter XI Section 14.21], the first
claim holds if H is either open or closed in H. To deal with the general case, we let N
be the normalizer of H in G . Using induction in stages [11, Chapter XI Section 12.15],
the continuity of the induction and restriction processes with respect to the regional
topology [11, Chapter XI Section 12.4 and Chapter VIII Section 21.20] we get

IndB
H (T)∣BH ≅ IndB

N (IndBN
H (T))∣BN ∣BH ⪰ IndBN

H (T)∣BH ⪰ T

and IndB
H (T)∣BH ⪰ T by transitivity.

To prove the second claim, we take nondegenerate representations S and T of
BH and B, respectively, with faithful integrated forms. We have IndB

H (S) ⪯ T , so
S ⪯ IndB

H (S)∣BH ⪯ T ∣BH and ˜T ∣BH must be faithful because S̃ is. ∎

Take for G the free group in three generators, F3 =< a, b, c >, and think of F2 =<
a, b > as a subgroup of F3 . Let T = {Cδt}t∈F3 be the trivial Fell bundle and define

B ∶= {0δt}t∈F3/F2 ∪ {Cδt}t∈F2 ⊂ T.

Then, B is a Fell bundle with the structure inherited from T.
Nondegenerate representations of B and unitary representations of F2 are in one

to one correspondence via an association

(T ∶B→ B(X)) ↭ (U T ∶F2 → B(X)),

where U T
t ∶= T1δ t . This identification preserves direct sums, weak containment, and

unitary equivalence.
Given a nondegenerate representation T ∶B→ B(X) and f ∈ Cc(B), let f ′ ∈

Cc(F2) be such that f (t) = f ′(t)δs for all t ∈ F2 . It is easy so show T̃f = Ũ T
f ′ and

this implies the existence of a unique isomorphism π∶C∗(B) → C∗(F2) extending
Cc(B) → Cc(F2), f ↦ f ′ . Hence, C∗(B) = C∗(F2).
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Fix t ∈ F3 and set H ∶= tF2 t−1 . We want to identify C∗H↑F3
(B) and C∗H↑B(B).

According to Remark 3.3, C∗H↑F3
(B) = C∗

F2↑F3
(B) and to compute this last algebra

we take nondegenerate faithful representations T̃ ∶C∗(B) → B(X) and Ṽ ∶C∗(F2) →
B(Y). We have

U T⊗IndF3
F2
(V) ≅ U T ⊗ IndF3

F2
(V)∣F2 .

Since V weakly contains the trivial representation of F2 and V ⪯ IndF3
F2
(V)∣F2

(Lemma 3.5), we have U T ⪯ U T ⊗ V ⪯ U T ⊗ IndF3
F2
(V)∣F2 . Thus the integrated form

of U T⊗IndF3
F2
(V) is faithful and, consequently, T⊗̃IndF3

F2
(V) is a faithful representation

of C∗(B) that factors through a representation of C∗
F2↑F3

(B) via qF2↑F3
B

∶C∗(B) →
C∗
F2↑F3

(B). It is then clear that qF2↑F3
B

is faithful and we may think C∗
F2↑F3

(B) =
C∗(F2).

To compute C∗H↑B(B), we must consider the representations of BH . The only non
zero fibers of BH are those over H ∩ F2 . We divide the discussion in two cases: t ∈
F2 and t ∉ F2 . In the first case, BH is the trivial bundle over the group H = F2 and
representations of B, BH and F2 are in one to one correspondence T ↭ T ∣BH ↭ U T .
Moreover, this association preserves weak containment and direct sums. By Lemma
3.5, for every representation S of BH we have S ⪯ IndB

H (S)∣BH so ˜IndB

H (S) is faithful
if S̃ is. By Proposition 3.1, qH↑B∶C∗(B) → C∗H↑B(B) is an isomorphism and thus we
get C∗H↑B(B) = C∗(F2).

Now assume t ∉ F2 , in which case the word t contains a letter c or c−1 and this
implies H ∩ F2 = {e}. The only non zero fiber of BH is then Be = Cδe and for every
representation T of BH we have T ≅ IndBH

{e}(T ∣Be ). By induction in stages [11, Chapter
XI Section 12.15] and Proposition 3.1, C∗H↑B(B) = C∗r (B). For the identity ϕ∶Be → C,
U IndB

{e}(ϕ) is the regular representation ofF2 and thus we may think of qH↑B∶C∗(B) →
C∗H↑B(B) as the regular representation ΛF2 ∶C∗(F2) → C∗r (F2).

3.2 Exotic coactions

Let G be a locally compact group and fix H ⩽ G . For the trivial Fell bundle
TG = {Cδt}t∈G , we have C∗(G) = C∗(TG). Since TG is saturated, we have a *-
homomorphism πTG

H as in (1.3). We know πTG
H is an isomorphism if H is normal. The

reason for this is, basically, that the trivial representation τH ∶H → C is weakly con-
tained in IndG

H(τH)∣H , which also happens if the normalizer of H is open in G (Lemma
3.5). In [6] Derighetti gives a number of conditions implying τH ⪯ IndG

H(τH)∣H .

Remark 3.6 If there exists a representation V of G such that τH ⪯ V ∣H , then
πTG

H is an isomorphism. Indeed, for every representation U of H with faith-
ful integrated form, IndG

H(U) ⪯ IndG
H(V ∣H ⊗U) ≅ V ⊗ IndG

H(U). Hence, the fact
that ∥qH↑TG ( f )∥ ≤ ∥[V ⊗ IndG

H(U)] f ∥ ≤ ∥qH↑G
TG

( f )∥ = ∥πTG
H (qH↑TG ( f ))∥ for all f ∈

C∗(G), implies the desired result.

Definition 3.1 We say, G satisfies Derighetti’s weak condition with respect to H ⩽ G
if for some representation U of H it follows that τH ⪯ IndG

H(U)∣H .
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We now focus our attention on the quotients QG
H ∶= C∗H↑G(TG) of C∗(G) and the

natural quotient maps qG
H ≡ qH↑G

TG
∶C∗(G) → QH

G .

Theorem 3.7 If B = {Bt}t∈G is a Fell bundle and δ∶C∗(B) → M(C∗(B) ⊗ QG
H) the

*-homomorphism corresponding to qG
H (see the introduction), then there exists a unique

*-homomorphism ρ∶C∗H↑G(B) → M(C∗H↑G(B) ⊗ QG
H) making

C∗(B) δ ��

qH↑G
B

��

M(C∗(B) ⊗ QG
H)

qH↑G
B
⊗1

��
C∗H↑G(B) ρ

�� M(C∗H↑G(B) ⊗ QG
H)

a commutative diagram. Moreover, ρ is faithful if G satisfies Derighetti’s weak condition
with respect to H.

Proof Let T̃ ∶C∗(B) → B(X), Ũ ∶C∗(H) → B(Y), and Ṽ ∶C∗(G) → B(Z) be non-
degenerate faithful representations. By Proposition 3.2, there are unique faithful rep-
resentations μ∶C∗H↑G(B) → B(X ⊗ Y) and ν∶QG

H → B(Z ⊗ Y) such that μ ○ qH↑G
B

=
T⊗̃IndG

H(U) and ν ○ qG
H = V⊗̃IndG

H(U). We make extensive use of the faithful nonde-
generate representation μ ⊗ ν∶C∗H↑G(B) ⊗ QG

H → B(X ⊗ Y ⊗ Z ⊗ Y) and of its exten-
sion μ ⊗ ν to the multiplier algebra.

We have (μ ⊗ ν) ○ (qH↑G
B

⊗ 1) = (T⊗̃IndG
H(U)) ⊗ μ and this implies (μ ⊗ ν) ○

(qH↑G
B

⊗ 1) ○ δ is the integrated form of

(T ⊗ IndG
H(U)) ⊗ (V ⊗ IndG

H(U)) ≅ T ⊗ V ⊗ IndG
H(IndG

H(U)∣H ⊗U)
≅ T ⊗ IndG

H(V ∣H ⊗ IndG
H(U)∣H ⊗U).

It then follows from Proposition 3.2 that for all f ∈ C∗(B), we have

∥(qH↑G
B

⊗ 1) ○ δ( f )∥ = ∥(μ ⊗ ν) ○ (qH↑G
B

⊗ 1) ○ δ( f )∥ ≤ ∥qH↑G
B

( f )∥,(3.1)

and the existence of ρ follows (uniqueness being immediate).
Assume G satisfies Derighetti’s weak condition with respect to H and let W

be a representation of H such that τH ⪯ IndG
H(W)∣H . Then, W ⪯ U ⇒ IndG

H(W) ⪯
IndG

H(U) ⇒ τH ⪯ IndG
H(W)∣H ⪯ IndG

H(U)∣H ⇒ τH ⪯ IndG
H(U)∣H . In addition, τH ⪯

V ∣H because IndG
H(U) ⪯ V . Hence, U ≅ τH ⊗ τH ⊗U ⪯ V ∣H ⊗ IndG

H(U)∣H ⊗U and
the inequality of (3.1) becomes an equality (implying ρ is isometric). ∎

Let ρB∶C∗H↑G(B) → M(C∗H↑G ⊗ QG
H) and ρHG ∶QG

H → M(QH
H ⊗ QG

H) be the *-
homomorphisms given by the theorem above. To prove the coaction identity
(ρB ⊗ ι) ○ ρB = (ι ⊗ ρHG) ○ ρB, one may take faithful nondegenerate representations
T̃ , Ũ and Ṽ of C∗(B), C∗(H) and C∗(G), respectively, and consider the (faithful)
representations μ and ν of C∗H↑G(B) and QG

H , respectively, such that μ ○ qH↑G
B

=
T⊗̃IndG

H(U) and ν ○ qG
H = V⊗̃IndG

H(U). The extension (μ ⊗ ν ⊗ ν) is a faithful
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representation of M(C∗H↑G(B) ⊗ QG
H ⊗ QG

H) and (μ ⊗ ν ⊗ ν) ○ (ρB ⊗ ι) ○ ρB ○ qH↑G
B

is the integrated form of

[T ⊗ IndG
H(U)] ⊗ [V ⊗ IndG

H(U)] ⊗ [V ⊗ IndG
H(U)],

as that of (μ ⊗ ν ⊗ ν) ○ (ι ⊗ ρHG) ○ ρB ○ qH↑G
B

is, implying

(μ ⊗ ν ⊗ ν) ○ (ρB ⊗ ι) ○ ρB ○ qH↑G
B

= (μ ⊗ ν ⊗ ν) ○ (ι ⊗ ρHG) ○ ρB ○ qH↑G
B

.

The identity above implies (ρB ⊗ ι) ○ ρB = (ι ⊗ ρHG) ○ ρB because (μ ⊗ ν ⊗ ν) is
faithful and qH↑G

B
surjective.

3.3 Inner amenable groups

Buss, Echterhoff, and Willett have asked [5, Question 8.8] for a class C of groups for
which the nuclearity of A⋊rα G implies the amenability of the action α. McKee and
Pourshashami [14] showed C contains all inner amenable groups.

We are not dealing with amenability here, but with weak containment. So, it
is natural to replace nuclearity of A⋊rα G with something weaker. We propose
(A⋊rα G) ⊗max C∗r (G) = (A⋊rα G) ⊗ C∗r (G) and ask for which classC of groups this
condition implies A⋊α G = A⋊rα G . In Corollary 3.9, we show C contains all inner
amenable groups.

Following the ideas presented in the introduction, given a Fell bundle B = {Bt}t∈G
one can construct a *-homomorphism

Φ∶C∗(B) → M(C∗(B) ⊗max C∗(G))

such that given a nondegenerate representations π∶C∗(B) ⊗max C∗(G) → B(X), π ○
Φ is the integrated form of TU ∶B→ B(X), (b ∈ Bt) ↦ TbUt , with the integrated
forms of T ∶B→ B(X) and U ∶G → B(X) being f ↦ π( f ⊗max 1) and g ↦ π(1⊗max
g), respectively. One may arrange π so that U ∶G → B(X) is trivial (t ↦ 1) and T̃ is
faithful, so π ○ Φ = T̃ and it follows that Φ is faithful.

It is shown in [7] that if G is discrete, then the diagonal arrow of the commutative
diagram

C∗(B) Φ ��

Φr
�����

����
����

����
���

M(C∗(B) ⊗max C∗(G))

λB⊗max λ̃
��

M(C∗r (B) ⊗max C∗r (G))

is faithful. This is not an exclusive property of discrete groups.

Proposition 3.8 If G is inner amenable, then Φr is faithful.
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Proof Let T̃ ∶C∗(B) → B(X) a nondegenerate faithful representation. The left and
right regular representations λ, ρ∶G → B(L2(G)) commute and are unitary equiva-
lent, so the ranges of T ⊗ ρ and 1⊗ λ commute and their integrated forms combine to
produce a representation

π∶C∗r (B) ⊗max C∗r (G) → B(X ⊗ L2(G)).

The composition π ○ λB ⊗max λ̃ ○ Φ = π ○ Φr is the integrated form of T ⊗ ω with
ω∶G → B(L2(G)) given by ωt = λt ρt . To say G is inner amenable is equivalent to say
ω weakly contains the trivial representation of G , so T ⪯ T ⊗ ω and it follows that
π ○ Φr = T⊗̃ω is faithful. Hence, Φr is faithful. ∎

Corollary 3.9 If G is inner amenable and C∗r (B) ⊗max C∗r (G) = C∗r (B) ⊗ C∗r (G),
then C∗(B) = C∗r (B).

Proof For H = {e} the *-homomorphism δ∶C∗(B) → B(C∗(B) ⊗ QG
H) we use to

define C∗H↑G(B) = δ(C∗(B)) is Φr and C∗H↑G(B) = C∗r (B). But Φr is faithful, so
C∗(B) = C∗r (B). ∎

4 An absorption principle

Fell’s absorption principle does not hold for non saturated Fell bundles. Indeed, the
example of Section 3.1 reveals T⊗̃IndB

rF2 r−1(V) may be a faithful representation of
C∗(B) while IndB

rF2 r−1(T ∣BrF2 r−1 ⊗ V) factors through a faithful representation of
C∗r (B) ≠ C∗(B). Therefore, IndB

rF2 r−1(T ∣BrF2 r−1 ⊗ V) can not be unitary equivalent
to T⊗̃IndB

rF2 r−1(V) (not even weakly equivalent).
The theorem we present below is our best answer to question (3) of the Introduction

on Fell’s principle. It emerged during our attempt to generalize Fell’s and Exel–Ng’s
absorption principles. The computations revealed that the “moving around” technique
of [8, pp. 515] is appropriate when the inducing subgroup H is stable by conjugation
(normal). In the general case, conjugation “moves H around” and this is the reason
why the conjugated subgroups tHt−1 appear bellow. The proof is quite technical, we
suggest to skip it on a first read.

Theorem 4.1 LetB = {Bt}t∈G be a Fell bundle, H ⩽ G, T ∶B→ B(X) a nondegenerate
representation and U ∶H → B(Y) a unitary representation. If for each t ∈ G we denote
by tU the conjugated representation tHt−1 → B(Y), r ↦ Ut−1 r t , then

T ⊗ IndG
H(U) ≈ {IndB

tHt−1(T ∣BtHt−1 ⊗ tU)}t∈G .

Proof For convenience, we introduce the following notation:

t H ≡ tHt−1
t∣T ≡ T ∣BtHt−1 V ≡ IndG

H(U) pt ∶= ptHt−1 .

The Hilbert space induced by U is Y p
U and we regard X ⊗G Y p

U ∶= �2(G) ⊗ X ⊗ Y p
U

as an �2-direct sum of #G copies of X ⊗ Y p
U . Similarly, the direct sum of #G copies of

T ⊗ V is

T ⊗G V ∶B→ B(X ⊗G Y p
U) b ↦ 1�2(G) ⊗ [T ⊗ V]b ,
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which is the composition of T ⊗ V with the faithful *-homomorphism

Θ∶B(X ⊗ Y p
U) → B(X ⊗G Y p

U), Θ(R) = 1�2(G) ⊗ R.

If we denote by T⊗̃V and T⊗̃G V the integrated forms of T ⊗ V and T ⊗G V ,
respectively, then Θ ○ (T⊗̃V) = T⊗̃G V . Indeed, for all f ∈ Cc(B) and every elemen-
tary tensor g ⊗ ξ ⊗ η ∈ �2(G) ⊗ X ⊗ Y p

U , we have

[T⊗̃G V] f (g ⊗ ξ ⊗ η) = ∫
G

g ⊗ [T ⊗ V] f (t)(ξ ⊗ η) dt = g ⊗ ([T⊗̃V] f (ξ ⊗ η))

= Θ ○ [T⊗̃V] f (g ⊗ ξ ⊗ η).

Since Θ is an isometry and both T ⊗ V and all the members of {IndB

t H(t∣T ⊗
tU)}t∈G are nondegenerate, we can use [11, Chapter XI Section 8.20] to the deduce
it suffices to show that

∥[T⊗̃G V] f ∥ = sup{∥ ˜IndB

t H(t∣T ⊗ tU) f ∥∶ t ∈ G} ∀ f ∈ Cc(B).(4.1)

The �2-direct sum

S ∶= ⊕
t∈G

IndB

t H(t∣T ⊗ tU)(4.2)

is a nondegenerate representation whose integrated form is S̃ = ⊕t∈G ˜IndB

t H(t∣T ⊗ tU)
and ∥S̃ f ∥ = sup{∥ ˜IndB

t H(t∣T ⊗ tU) f ∥∶ t ∈ G}. Thus, S is weakly equivalent to T ⊗G V
if and only if (4.1) holds.

To compare T ⊗G V and S , we will construct a linear isometry between their
domains,

I∶⊕
t∈G
(X ⊗ Y)p t

t∣T⊗t U → X ⊗G Y p
U ,(4.3)

that intertwines S and T ⊗G V . To state the properties defining I, we need to prove
the existence of a (unique) linear function

L∶Cc(G , X ⊗G Y) → X ⊗G Y p
U(4.4)

which is continuous in the inductive limit topology and satisfies

L( f ⊙ [δt ⊗ ξ ⊗ η]) = δt ⊗ (ξ ⊗ [ f ⊗U η])(4.5)

for all f ∈ Cc(G), ξ ∈ X, η ∈ Y and t ∈ G , where we regard the algebraic tensor product
Cc(G) ⊙ (X ⊗G Y) as a subspace of Cc(G , X ⊗G Y) in the usual way ( f ⊙ u is the
function t ↦ f (t)u).

Uniqueness of L follows from the fact that the functions of the form f ⊙ (δt ⊗ ξ ⊗
η) span a subset of Cc(G , X ⊗G Y)which is dense in the inductive limit topology [10,
Chapter II Section 14.6]. To prove the existence of L, we take u, v ∈ Cc(G , X ⊗G Y)
such that u = f ⊙ (δr ⊗ ξ ⊗ η) and v = g ⊙ (δs ⊗ ζ ⊗ κ) for some f , g ∈ Cc(G), r, s ∈
G, ξ, ζ ∈ X and η,κ ∈ Y . The inner product of the candidates for L(u) and L(v) is
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⟨δr ⊗ ξ ⊗ [ f ⊗U η], δs ⊗ ζ ⊗ [g ⊗U κ]⟩
= ⟨δr , δs⟩⟨ξ, ζ⟩⟨ f ⊗U η, g ⊗U κ⟩

= ⟨δr , δs⟩⟨ξ, ζ⟩∫
H
∫

G
ΔG

H(t)1/2 f (z)g(zt)⟨η, Utκ⟩ dzdt

= ∫
H
∫

G
ΔG

H(t)1/2 f (z)g(zt)⟨δr ⊗ ξ ⊗ η, (1⊗ 1⊗Ut)(δs ⊗ ζ ⊗ κ)⟩ dzdt

= ∫
H
∫

G
ΔG

H(t)1/2⟨u(z), (1⊗ 1⊗Ut)v(zt)⟩ dzdt.(4.6)

Fix a compact D ⊂ G and denote by CD(G , X ⊗G Y) the set formed by those f ∈
Cc(G , X ⊗G Y)with supp( f ) ⊂ D. This vector space is a Banach space with the norm
∥ ∥∞. Let C⊙D be the subspace of CD(G , X ⊗G Y) spanned by the functions of the form
f ⊙ (δt ⊗ ξ ⊗ η)with f ∈ CD(G), t ∈ G, ξ ∈ X and η ∈ Y . We clearly have Cc(G)C⊙D ⊂
C⊙D . If for each t ∈ G , we define C⊙D(t) as the closure of {u(t)∶u ∈ C⊙D}, then C⊙D(t) =
X ⊗G Y for every t in the interior of D and {0} otherwise. By [1, Lemma 5.1], the
closure of C⊙D in Cc(G , X ⊗G Y) with respect to the inductive limit topology is { f ∈
Cc(G , X ⊗G Y)∶ f (t) ∈ C⊙D(t)∀ t ∈ G} = CD(G , X ⊗G Y).

Take any u, v ∈ CD(G , X ⊗G Y). By the preceding paragraph, there are sequences
{un}n∈N and {vn}n∈N in C⊙D converging uniformly to u and v , respectively. Then
for all n ∈ N there exists, a positive integer mn and (for each j = 1, . . . , mn) elements
fn , j , gn , j ∈ CD(G), rn , j , sn , j ∈ G, ξn , j , ζn , j ∈ X and ζn , j ,κn , j ∈ Y such that

un =
mn

∑
j=1

fn , j ⊙ (δrn , j ⊗ ξn , j ⊗ ηn , j) vn =
mn

∑
j=1

gn , j ⊙ (δsn , j ⊗ ζn , j ⊗ κn , j).

By (4.6), for all a, b ∈ N we have

55555555555

ma

∑
j=1

δra , j ⊗ (ξa , j ⊗ [ fa , j ⊗U ηa , j]) −
mb

∑
k=1

δsb ,k ⊗ (ζb ,k ⊗ [gb ,k ⊗U κb ,k])
55555555555

2

= ∣∫
H
∫

G
ΔG

H(t)1/2⟨(ua − vb)(z), (1⊗ 1⊗Ut)(ua − vb)(zt)⟩ dzdt∣ .

For the inner product inside the integral above to be non zero, we must have z, tz ∈
D, which implies t = tzz−1 ∈ H ∩ (DD−1). If αD and βD are the measures of D and
H ∩ (D−1D) with respect to the Haar measures of G and H, respectively, and γD ∶=
sup{ΔG

H(t)1/2 ∶ t ∈ H ∩ (D−1D)}, then

55555555555

ma

∑
j=1

δra , j ⊗ (ξa , j ⊗ [ fa , j ⊗U ηa , j]) −
mb

∑
k=1

δsb ,k ⊗ (ζb ,k ⊗ [gb ,k ⊗U κb ,k])
55555555555

2

is not greater than ∥ua − vb∥2
∞αD βDγD .

Several conclusion arise from that bound:

(1) If we take u = v and vb = ub , it follows that {∑ma
j=1 δra , j ⊗ (ξa , j ⊗ [ fa , j ⊗U

ηa , j])}a∈N is a Cauchy sequence in X ⊗G Y p
U ; the limit of which we denote by

LD({un}n∈N).
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(2) If u = v and we take limit in a and b, we get LD({un}n∈N) = LD({vn}n∈N).
Thus, we may define a function LD ∶CD(G , X ⊗G Y) → X ⊗G Y p

U , u ↦ LD(u) ∶=
LD({un}n∈N).

(3) Taking limit in a and b we obtain ∥LD(u) − LD(v)∥ ≤ ∥u − v∥∞
√

αD βDγD , so LD
is continuous.

(4) LD( f ⊙ (δt ⊗ ξ ⊗ η)) = δt ⊗ ξ ⊗ ( f ⊗U η) and LD is linear when restricted to
C⊙D . Thus LD is linear.

(5) By (4.6) and the continuity of LD ,

⟨LD(u), LD(v)⟩ = ∫
G
∫

H
ΔG

H(t)1/2⟨u(s), (1⊗ 1⊗Ut)v(st)⟩ dtds.(4.7)

It follows immediately that LE is an extension of LD whenever E ⊂ G is a compact
set containing D. Then, there exists a unique function L∶Cc(G , X ⊗G Y) → X ⊗G Y p

U
extending all the LD ’s. This extension is linear and continuous in the inductive
limit topology by [10, Chapter II Section 14.3]. Note also that L satisfies (4.5) and,
consequently, it has dense range.

Now that we know L exists, we are one step closer of being able to specify the
properties defining the map I of (4.3). Given r ∈ G, f ∈ Cc(B), ξ ∈ X and η ∈ Y we
define [r, f , ξ, η] ∈ Cc(G , X ⊗G Y) by

[r, f , ξ, η](s) = ΔG(r)−1/2δr ⊗ Tf (sr−1)ξ ⊗ η.(4.8)

We claim there exists a unique linear and continuous map I with the domains and
ranges specified in (4.3) and such that for all t ∈ G, f ∈ Cc(B), ξ ∈ X and η ∈ Y ,

I( f ⊗t∣T⊗t U (ξ ⊗ η)) = L([t, f , ξ, η]).(4.9)

To prove this claim, we start by taking elementary tensors f ⊗r∣T⊗r U (ξ ⊗ η) and
g ⊗t∣T⊗t U (ζ ⊗ κ)on (possibly equal) direct summands of⊕s∈G(X ⊗ Y)ps

s∣T⊗s U . Notice
the r and the t in the subindexes indicate the direct summands the tensors belongs to.
By (4.7), we have

⟨L([r, f , ξ, η]), L([t, g , ζ ,κ])⟩ =

= ∫
G
∫

H
ΔG

H(w)1/2ΔG(rt)−1/2⟨δr ⊗ Tf (zr−1)ξ ⊗ η, δt ⊗ Tg(zw t−1)ζ ⊗Uwκ⟩ dwdz

= ∫
H
∫

G
ΔG

H(w)1/2 ΔG(rt)−1/2⟨δr , δt⟩
9::::::::::::::::::::::::::::::::::::::::::::::::;:::::::::::::::::::::::::::::::::::::::::::::::?
=ΔG(r−1)⟨δr ,δ t⟩

⟨Tf (zr−1)ξ ⊗ η, Tg(zwr−1)ζ ⊗Uwκ⟩ dzdw

= ∫
H
∫

G
ΔG

H(w)1/2⟨δr , δt⟩⟨Tf (z)ξ ⊗ η, Tg(zrwr−1)ζ ⊗Uwκ⟩ dzdw

= ∫
H
∫

G
ΔG

r H(rwr−1)1/2⟨δr , δt⟩⟨ξ ⊗ η, Tf (z)∗ g(zrwr−1)ζ ⊗ rUrwr−1κ⟩ dzdw

= ∫
r H
∫

G
ΔG

r H(w)1/2⟨δr , δt⟩⟨ξ ⊗ η, Tf (z)∗ g(zw)ζ ⊗ rUwκ⟩ dzdw

= ⟨δr , δt⟩⟨ξ ⊗ η, [r∣T⊗̃rU]pr( f ∗∗g)(ζ ⊗ κ)⟩
= ⟨ f ⊗r∣T⊗r U (ξ ⊗ η), g ⊗t∣T⊗t U (ζ ⊗ κ)⟩.
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The existence of I then follows immediately from Remark 4.1 if one considers the
functions

b∶G × Cc(B) × X × Y →⊕
t∈G
(X ⊗ Y)p t

t∣T⊗t U b(r, f , ξ, η) = f ⊗r∣T⊗r U (ξ ⊗ η)

c∶G × Cc(B) × X × Y → X ⊗G Y p
U c(r, f , ξ, η) = L([r, f , ξ, η]).

We are not sure if I is surjective, but we can use the ideas of [8] to “move” the image
of I to “fill” X ⊗G Y . The movement is via the map

ρ∶G → B(X ⊗G Y p
U) ρt ∶= ltt ⊗ 1X ⊗ 1Y p

U
,

where lt∶G → B(�2(G)) is the left regular representation of the discrete version of G
(ltt(δs) = δts). Note ρ and Θ have commuting ranges, so the range of ρ commutes
with that of T⊗̃G V = Θ ○ (T⊗̃G). We remark that the continuity of ρ (which may fail)
plays no rôle in the proof.

Let K be the image of I. We claim that G ⋅ K ∶= span{ρt K∶ t ∈ G} is dense in X ⊗G

Y p
U . To prove this we define, for each t ∈ G , the function

μt ∶Cc(G , X ⊗G Y) → Cc(G , X ⊗G Y) (μt f )(z) = (ltt ⊗ 1X ⊗ 1Y) f (z).

In particular, μt( f ⊙ (δr ⊗ ξ ⊗ η)) = f ⊙ (δtr ⊗ ξ ⊗ η). Hence,

L ○ μt( f ⊙ (δr ⊗ ξ ⊗ η)) = L( f ⊙ (δtr ⊗ ξ ⊗ η)) = δtr ⊗ ξ ⊗ [ f ⊗U η]
= ρt(δr ⊗ ξ ⊗ [ f ⊗U η]) = ρt L( f ⊙ (δr ⊗ ξ ⊗ η))

and we get L ○ μt = ρt ○ L because both L ○ μt and ρt ○ L are linear and continuous in
the inductive limit topology and agree on a dense set. Thus G ⋅ K contains the image
through L of

K0 ∶= span{μt[r, f , ξ, η]∶ r, t ∈ G , f ∈ Cc(B), ξ ∈ X , η ∈ Y} ⊂ Cc(G , X ⊗G Y).

Note C(G)K0 ⊂ K0 . Besides,

μr[t, f , ξ, η](z) = ΔG(t)−1/2δr t ⊗ Tf (zt−1)ξ ⊗ η.(4.10)

Fixing z ∈ G and varying r, t ∈ G, ξ ∈ X, η ∈ Y and f ∈ Cc(B), the elements we obtain
on the right-hand side of (4.10) are all those of the form δs ⊗ Tb ξ ⊗ η, for arbitrary
s ∈ G, b ∈ B, ξ ∈ X and η ∈ Y . The closed linear span of this vectors is X ⊗G Y because
T is nondegenerate, and we conclude (using [10, Chapter II Section 14.3]) that K0 is
dense in Cc(G , X ⊗G Y) in the inductive limit topology. Hence, G ⋅ K contains the
dense set L(K0) and it follows that G ⋅ K = X ⊗G Y p

U .
Our next goal is to show that I intertwines the S of (4.2) and T ⊗G V . To prove

this claim, we fix r, s, t ∈ G, b ∈ Br , f ∈ Cc(B), g ∈ Cc(G), ξ, ζ ∈ X and η,κ ∈ Y . For
convenience, we denote by u and v the tensors f ⊗s∣T⊗s U (ξ ⊗ η) and g ⊙ (δt ⊗ ζ ⊗ κ),
respectively. Recalling (4.7) we get

⟨[T ⊗G V]b ○ I(u), L(v)⟩ = ⟨L([s, f , ξ, η]), [T ⊗G V]b∗(δt ⊗ ζ ⊗ (g ⊗U κ))⟩
= ⟨L([s, f , ξ, η]), δt ⊗ Tb∗ ζ ⊗ (r−1 g ⊗U κ)⟩
= ⟨L([s, f , ξ, η]), L(r−1 g ⊙ (δt ⊗ Tb∗ ζ ⊗ κ))⟩
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= ∫
H
∫

G
ΔG

H(w)1/2⟨[s, f , ξ, η](z), δt ⊗ Tb∗ ζ ⊗Uwκ⟩g(rzw) dzdw

= ∫
H
∫

G
ΔG

H(w)1/2ΔG(s)−1/2⟨δs ⊗ Tf (zs−1)ξ ⊗ η, δt ⊗ Tb∗ ζ ⊗Uwκ⟩g(rzw) dzdw

= ∫
H
∫

G
ΔG

H(w)1/2ΔG(s)−1/2⟨δs , δt⟩⟨Tb f (r−1 zs−1)ξ ⊗ η, ζ ⊗Uwκ⟩g(zw) dzdw

= ∫
H
∫

G
ΔG

H(w)1/2ΔG(s)−1/2⟨δs , δt⟩⟨T(b f )(zs−1)ξ ⊗ η, ζ ⊗Uwκ⟩g(zw) dzdw

= ⟨L([s, b f , ξ, η]), L(g ⊙ (δt ⊗ ζ ⊗ κ))⟩ = ⟨I(b f ⊗
∣s T⊗s U (ξ ⊗ η)), L(v)⟩

= ⟨I ○ Sb(u), L(v)⟩.
Since u and v are arbitrary basic tensors and L has dense range, by linearity and
continuity we get that [T ⊗G V]b ○ I = I ○ Sb ; which implies that for all f ∈ Cc(B)

[T⊗̃G V] f ○ I = I ○ S̃ f .(4.11)

The same identity holds for all f ∈ C∗(B) because Cc(B) is dense in C∗(B).
Recall that G ⋅ K spans a dense subset of �2(G) ⊗ X ⊗ Y p

U , thus for all g ∈ C∗(B),
we have

[T⊗̃G V]g = 0 ⇔ [T⊗̃G V]g ρt ○ I = 0 ∀ t ∈ G ⇔ ρt[T⊗̃G V]g ○ I = 0 ∀ t ∈ G

⇔ [T⊗̃G V]g ○ I = 0 ⇔ I ○ S̃g = 0 ⇔ S̃g = 0,

where the last equivalence follows from the fact that I is an isometry. We may then
define a *-homomorphism Ω∶ (T⊗̃G V)(C∗(B)) → S̃(C∗(B)) by Ω ([T⊗̃G V]g) =
S̃g .

The thesis of the theorem was shown to be the equivalent to (4.1) which, in turn,
is equivalent to say Ω is an isometry. But Ω is indeed an isometry because it is an
injective *-homomorphism between two C*-algebras. ∎

The first application of Theorem 4.1 is the comparison of the C*-algebras C∗H↑G(B)
and C∗H↑B(B)when the normalizer of H is open in G . This covers the cases examined
in the example of Section 3.1, where there is always a quotient map ΘH

B∶C∗H↑G(B) →
C∗H↑B(B) that it is not always injective.

Corollary 4.2 Given a Fell bundle B = {Bt}t∈G and H ⩽ G with open normalizer,
there exists a *-homomorphism ΘH

B∶C∗H↑G(B) → C∗H↑B(B) such that ΘB
H ○ qH↑G

B
=

qH↑B . If for all r ∈ G we identify C∗H↑G(B) = C∗rHr−1↑G(B) as indicated in Remark 3.3,
then ∩r∈G ker(ΘrHr−1

B ) = {0}. Moreover, ΘH
B is an isomorphism if either B is saturated

or H normal.

Proof Let T̃ ∶B→ B(X) be a faithful nondegenerate representation and κ∶H → C

the trivial representation. By Propositions 3.1 and 3.2, Lemma 3.5, and Theorem 4.1,
for all f ∈ C∗(B), we have

∥qH↑B( f )∥ = ∥IndB
H (T ∣BH ⊗ κ) f ∥ ⪯ ∥[T ⊗ IndG

H(κ)] f ∥ ≤ ∥qH↑G
B

( f )∥;

which implies the existence of ΘH
B . Uniqueness is a consequence of the fact that qH↑G

B

is surjective. In case B is saturated, ΘH
B is the inverse of the πH

B of (1.3).
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To prove the claim about the intersection of the kernels, we take a faithful non-
degenerate representation Ũ of H. The integrated form of all the restrictions T ∣BrHr−1

and conjugations rU have faithful integrated forms, so for all f ∈ C∗(B), we have

qH↑G
B

( f ) ∈ ⋂
r∈G

ker(ΘrHr−1

B ) ⇔ qrHr−1↑B
B

( f ) ∀ r ∈ G

⇔ ∥IndB
rHr−1(T ∣BrHr−1 ⊗ rU) f ∥ = 0 ∀ r ∈ G

⇔ ∥[T ⊗ IndG
H(U)] f ∥ = 0

⇔ qH↑G
B

( f ) = 0,

which completes the proof. ∎

In many parts of [11] Fell gets a result for representations of Banach *-algebraic
bundles out of the corresponding result for Fell bundles. Such techniques yield the
following.

Corollary 4.3 Let B = {Bt}t∈G be a Banach *-algebraic bundle over a locally compact
group, H ⩽ G, T ∶B→ B(X) a nondegenerate representation and U ∶H → B(Y) a
unitary representation. If for each t ∈ G we denote by tU the conjugated representation
tHt−1 → B(Y), r ↦ Ut−1 r t , then {T ∣BtHt−1 ⊗ tU}t∈G is a set of B-positive representa-
tions and

T ⊗ IndG
H(U) ≈ {IndB

tHt−1(T ∣BtHt−1 ⊗ tU)}t∈G .(4.12)

Proof Let C be the bundle C*-completion of B and let ρ∶B→ C be the canonical
quotient map of [11, Chapter VIII Section 16.7]. The construction of C implies the
existence of a unique representation S∶C→ B(X) such that S ○ ρ = T .

Theorem 2.1 implies S∣CtHt−1 ⊗ tU is C-positive for every t ∈ G . Hence, by [11,
Chapter XI Section 12.6], the composition (S∣CtHt−1 ⊗ tU) ○ (ρ∣BtHt−1 ) ≡ T ∣BtHt−1 ⊗ tU
is B-positive for all t ∈ G .

We know that S ⊗ IndG
H(U) ≈ {IndC

tHt−1(S∣CtHt−1 ⊗ tU)}t∈G , which implies

(S ⊗ IndG
H(U)) ○ ρ ≈ {IndC

tHt−1(S∣CtHt−1 ⊗ tU) ○ ρ}t∈G .(4.13)

It is clear that (S ⊗ IndG
H(U)) ○ ρ = (S ○ ρ) ⊗ IndG

H(U) = T ⊗ IndG
H(U). On the

other hand, by [11, Chapter XI Section 12.6], for all t ∈ G we have

IndC
tHt−1(S∣CtHt−1 ⊗ tU) ○ ρ = IndB

tHt−1 ((S∣CtHt−1 ⊗ tU) ○ (ρ∣BtHt−1 ))
= IndB

tHt−1(T ∣BtHt−1 ⊗ tU).

Thus (4.13) implies (4.12). ∎

4.1 Exel–Ng’s absorption principle

If the subgroup H of Theorem 2.3 is normal in G , then all the restrictions T ∣BtHt−1

become T ∣BH and T ⊗ IndG
H(U) ≈ {IndB

H (T ∣BH ⊗ tU)}t∈G . One can arrange U to
have tU ≈ U for all t ∈ G. Indeed, this is the case if Ũ is faithful or U ∶= ⊕s∈G sV for
some other representation V of H.
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Corollary 4.4 If, in addition to the hypotheses of Theorem 2.3, we assume that H is
normal in G and tU ≈ U for all t ∈ G , then T ⊗ IndG

H(U) ≈ IndB
H (T ∣BH ⊗U).

Proof It is clear that IndB
H (T ∣BH ⊗U) ⪯ {IndB

tHt−1(T ∣BtHt−1 ⊗ tU)}t∈G . Besides, for
any t ∈ G we have T ∣BH ⊗ tU ⪯ T ∣BH ⊗U and, since induction preserves weak con-
tainment,

IndB
H (T ∣BH ⊗ tU) ⪯ IndB

H (T ∣BH ⊗U).

Then, IndB
H (T ∣BH ⊗U) ≈ {IndB

tHt−1(T ∣BtHt−1 ⊗ tU)}t∈G and the thesis follows from
Theorem 2.3 (and the transitivity of weak equivalence). ∎

The hypotheses of the Corollary above are fulfilled if T ∶B→ B(X) is any represen-
tation, H = {e} and U ∶H → C, s ↦ 1. In this case, Corollary 4.4 becomes Exel–Ng’s
absorption principle.

5 Weak containment and subgroups

In [8] a Fell bundle B is called amenable if C∗(B) = C∗r (B) (i.e. λB∶C∗(B) →
B(L2

e(B)) is faithful). This is equivalent to say any representation T of B is weakly
contained in some other of the form S ⊗ λ (this is the so called weak containment
property, WCP).

The recent developments on amenable actions (á la Anantharaman–Delaroche)
suggest Exel and Ng should have named amenable those bundles having the approxi-
mation property they introduced in [8]. We follow this stream, so amenability implies
the WCP.

The reduced representation λB , considered as a map from C∗G↑B(B) = C∗G↑G(B) =
C∗(B) to C∗{e}↑B(B) = C∗{e}↑G(B) = C∗r (B), is a particular case of the maps μ and ν
of

Proposition 5.1 Let B = {Bt}t∈G be a Fell bundle. Given subgroups K ⩽ H ⩽ G , there
exist unique *-homomorphisms μHK

B ∶C∗H↑B(B) → C∗K↑B(B) and νHK
B ∶C∗H↑G(B) →

C∗K↑G(B) such that μHK
B ○ qH↑B = qK↑B and νHK

B ○ qH↑G
B

= qK↑G
B

.

Proof The existence of μHK
B is equivalent to the validity of ∥qK↑B( f )∥ ≤ ∥qH↑B( f )∥

for all f ∈ C∗(B). To prove this, we take a faithful nondegenerate representation
T̃ ∶C∗(BK) → B(X). By Proposition 3.1 and induction in stages [11, Chapter XI
Section 12.15],

∥qK↑B( f )∥ = ∥ ˜IndB

H (T) f ∥ = ∥ ˜IndB

K (IndBK
H (T)) f ∥ ≤ ∥qH↑B( f )∥.(5.1)

The proof of the existence of νHK
B is similar. It combines induction in stages with

Proposition 3.2, the details are left to the reader with the suggestion to consult (5.2).
∎

Corollary 5.2 The restrictions of both qH↑B and qH↑G
B

to L1(B) are faithful.

Proof We have μH{e}
B

○ qH↑B = q{e}↑B = λB = q{e}↑G
B

= νH{e}
B

○ qH↑G
B

, so it suffices
to consider the case H = {e}. In [11, Chapter VIII Section 16.4] Fell proves that the
direct sum of the integrated forms of the generalized regular representations of B is

https://doi.org/10.4153/S0008414X2400083X Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X2400083X


24 D. Ferraro

faithful. This is equivalent to say that ˜IndB

{e}(π)∣L1(B) = λB ⊗π 1∣L1(B) is faithful, with
π the universal representation of Be . Thus, λB∣L1(B) is faithful. ∎
Corollary 5.3 In the situation of Proposition 5.1, the following claims hold:
(1) C∗(B) = C∗r (B)⇔ C∗H↑B(B) = C∗r (B) for all H ⩽ G ⇔ C∗H↑G(B) = C∗r (B) for

all H ⩽ G .
(2) If C∗(BH) = C∗K↑BH

(BH), then C∗K↑B(B) = C∗H↑B(B).
(3) If C∗(H) = QH

K , then C∗H↑G(B) = C∗K↑G(B).
(4) If H is amenable, then C∗H↑B(B) = C∗r (B) = C∗H↑G(B).

Proof The first claim follows easily after one notices μG{e}
B

= μH{e}
B

○ μGH
B ; νG{e}

B
=

νH{e}
B

○ νGH
B and identifies μG{e}

B
= λB = νG{e}

B
. For the second claim, we go back

to (5.1). The hypothesis implies the integrated form of IndBK
H (T) is faithful, so the

inequality of (5.1) becomes an equality.
The proof of the third claim is similar. Take faithful nondegenerate representations

T̃ ∶C∗(B) → B(X) and Ũ ∶C∗(K) → B(Y). Then, ˜IndH
K (U) is faithful and Proposi-

tion 3.2 (together with induction in stages) implies that for all f ∈ C∗(B)

∥qK↑B( f )∥ = ∥[T⊗̃IndG
K(U)] f ∥ = ∥[T⊗̃IndG

H(IndH
K (U))] f ∥ = ∥qH↑B( f )∥,(5.2)

which clearly implies νHK
B is isometric.

If H is amenable and we set K = {e}, then C∗K↑B(B) = C∗K↑G(B) = C∗r (B);
C∗(H) = C∗r (H) = QH

K and C∗(BH) = C∗r (BH) (see [8]). Thus the last claim is a
consequence of the preceding ones. ∎

The converse of claim (2) of the Corollary above is intimately related to question
(4) of the Introduction. If we put K = {e} in the claim, then we get that C∗(BH) =
C∗r (BH) implies C∗H↑B(B) = C∗r (B). Whenever the converse holds, one can use claim
(1) of Corollary 5.3 to deduce the WCP passes from B to BH . This is false in general
because B may be the semidirect product bundle of a C*-dynamical system (A, G , α),
in which case BH is that of the restricted system (A, H, α∣H). By [5, Section 5.3], it is
not true that A⋊α G = A⋊rα G (i.e. C∗(B) = C∗r (B)) implies A⋊α∣H H = A⋊rα∣H H
(C∗(BH) = C∗r (BH)).

In Theorem 5.5, we show that whenever the normalizer of H is open in G,
BH has the WCP if and only if C∗H↑B(B) = C∗r (B). When applied to semidirect
product bundles, this gives a condition on H for the WCP to pass from (A, G , α) to
(A, H, α∣H) (see Corollary 5.6); giving a partial affirmative answer to Question (b) of
[3, Section 9].

We need a (probably well known) fact about the regular representations of sub-
groups.

Proposition 5.4 Let G be a locally compact group and H a closed subgroup of G with
open normalizer. If we denote by λG the left regular representation of G , then λG ∣H ≈ λH .

Proof Assume H is open in G and decompose L2(G) into a direct sum with respect
to the right cosets H/G = {Ht∶ t ∈ G}, that is L2(G) = ⊕Z∈H/G L2(Z). With this
decomposition λG ∣H becomes a direct sum of representations unitary equivalent to
λH , so λG ∣H ≈ λH .
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We now assume that H is normal in G and that the left invariant Haar measures of
G , H and G/H have been normalized so that ∫G f (t) dt = ∫G/H ∫H f (ts) dsd(tH) for
all f ∈ Cc(G) (exactly as in [10, Chapter III Section 13.17]). Besides, we let Γ∶G → R

+

be the continuous homomorphism of [10, Chapter III Section 13.20], i.e., the unique
function such that ∫H f (sts−1) dt = Γ(s) ∫H f (t) dt for all f ∈ Cc(H) and s ∈ G .

For any f ∈ Cc(H) and ξ ∈ Cc(G) ⊂ L2(G), we have

∥ ˜(λG ∣H) f ξ∥2 = ∫
G
∫

H
f ∗ ∗ f (t)ξ(t−1s)ξ(s)dtds

= ∫
G/H

∫
H
∫

H
f ∗ ∗ f (t)ξ(t−1sr)ξ(sr) dtdrd(sH)

= ∫
G/H

Γ(s)∫
H
∫

H
f ∗ ∗ f (t)ξ(t−1rs)ξ(rs)dtdrd(sH).(5.3)

To bound the inner double integral in the last term above we define, for each s ∈ G,
ξs ∈ Cc(H) ⊂ L2(H) by ξs(z) = ξ(zs). Then

∫
H
∫

H
f ∗ ∗ f (t)ξ(t−1rs)ξ(rs)dtdr = ∫

H
f ∗ ∗ f (t)⟨λH

t ξs , ξs⟩ dt ≤ ∥λ̃H f ∥2∥ξs∥2

and we can continue (5.3) to get

∥ ˜(λG ∣H) f ξ∥2 ≤ ∥λ̃H f ∥2 ∫
G/H

∫
H

ξ(sr)ξ(sr) drd(sH) = ∥λ̃H f ∥2∥ξ∥2 .

Thus ∥ ˜(λG ∣H) f ∥ ≤ ∥λ̃H f ∥ for all f ∈ Cc(H) and this implies λG ∣H ⪯ λH . Lemma 3.5
gives λH ⪯ λG ∣H , so λH ≈ λG ∣H .

For the general case, we define N as the normalizer of H in G and use the argu-
ments of the proof of Lemma 3.5 to get λG ∣H = λG ∣N ∣H ≈ λN ∣H ≈ λH , which implies
λG ∣H ≈ λH . ∎

Theorem 5.5 Let B = {Bt}t∈G be a Fell bundle and H ⩽ G . If the normalizer of H is
open, then C∗H↑B(B) = C∗r (B) if and only if C∗(BH) = C∗r (BH) and these conditions
hold if C∗H↑G(B) = C∗r (B).

Proof We have μH{e}
B

○ ΘH
B = νH{e}

B
. Hence, C∗H↑G(B) = C∗r (B) (i.e., νH{e}

B
an iso-

morphism) if and only if C∗H↑G(B) = C∗H↑B(B) = C∗r (B) (both μH{e}
B

and ΘH
B are

isomorphisms). By Corollary 5.3, C∗(BH) = C∗r (BH) implies C∗H↑B(B) = C∗r (B).
Suppose C∗H↑B(B) = C∗r (B) and take a faithful nondegenerate representation T̃ of

B. By Proposition 3.1, IndB
H (T ∣BH) ≈ IndB

{e}(T ∣Be ) and this, together with Lemma 3.5,
yields T ∣BH ⪯ IndB

H (T ∣BH)∣BH ≈ IndB
{e}(T ∣Be )∣BH ⇒ T ∣BH ⪯ IndB

{e}(T ∣Be )∣BH . By
Exel–Ng’s absorption principle, IndB

{e}(T ∣Be )∣BH ≈ T ∣BH ⊗ λG ∣H and from Lemma 5.4
we get IndB

{e}(T ∣Be )∣BH ≈ T ∣BH ⊗ λH and we conclude T ∣BH ⪯ T ∣BH ⊗ λH . Lemma 3.5
implies the integrated for of T ∣BH is faithful, thus BH has the WCP. ∎
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Corollary 5.6 If B = {Bt}t∈G is a Fell bundle, C∗(B) = C∗r (B) and the normalizer of
H ⩽ G is open, then C∗(BH) = C∗r (BH).

Proof This is a straightforward consequence of Corollary 5.3 and Theorem 5.5. ∎

References

[1] F. Abadie, Enveloping actions and Takai duality for partial actions. J. Funct. Anal. 197(2003),
no. 1, 14–67.

[2] F. Abadie and D. Ferraro, Equivalence of Fell bundles over groups. J. Operator Theory 81(2019),
no. 2, 273–319.

[3] C Anantharaman-Delaroche, Amenability and exactness for dynamical systems and their
C∗-algebras. Trans. Amer. Math. Soc. 354(2002), no. 10, 4153–4178.

[4] R. J. Blattner, On induced representations. Amer. J. Math. 83(1961), no. 1, 79–98.
[5] A. Buss, S Echterhoff, and R Willett, Amenability and weak containment for actions of locally

compact groups on C∗-algebras. Mem. Amer. Math. Soc. 301(2024), no. 1513, v+88 pp. ISBN:
978-1-4704-7152-1; 978-1-4704-7957-2

[6] A. Derighetti, Some remarks on L1(G). Math. Z. 164(1978), no. 2, 189–194.
[7] R. Exel, Partial dynamical systems, Fell bundles and applications, Mathematical Surveys and

Monographs, 224, American Mathematical Society, Providence, RI, 2017.
[8] R Exel and C.-K Ng, Approximation property of C∗-algebraic bundles. Math. Proc. Camb.

Philos. Soc. 132(2002), 509–522.
[9] J. M. G. Fell, Induced representations and Banach ∗-algebraic bundles, Lecture Notes in

Mathematics, 582, Springer-Verlag, Berlin and New York, 1977. With an appendix due to A.
Douady and L. Dal Soglio-Hérault.

[10] J. M. G Fell and R. S. Doran, Representations of ∗-algebras, locally compact groups, and Banach
∗-algebraic bundles: Basic representation theory of groups and algebras. Vol. 1, Pure and Applied
Mathematics, 125, Academic Press, Boston, MA, 1988a.

[11] J. M. G Fell and R. S Doran, Representations of ∗-algebras, locally compact groups, and
Banach∗-algebraic bundles: Banach ∗-algebraic bundles, induced representations, and the
generalized Mackey analysis. Vol. 2, Pure and Applied Mathematics, 126, Academic Press,
Boston, MA, 1988b.

[12] S Kaliszewski, M. B Landstad, and J Quigg, Exotic group C∗-algebras in noncommutative
duality. New York J. Math. 19(2013), 689–711.

[13] G. W. Mackey, Induced representations of locally compact groups. I. Ann. of Math. 2(1952),
no. 55, 101–139.

[14] A. McKee and R. Pourshahami, Amenable and inner amenable actions and approximation
properties for crossed products by locally compact groups. Can. Math. Bull. 65(2020) no. 2,
381–399.

[15] I. Raeburn, On crossaed products by coactions and their representation theory. Proc. London
Math. Soc. (3) 64(1992), no. (3), 25–652.

[16] I. Raeburn and D. P Williams, Morita equivalence and continuous-trace C∗-algebras. Vol. 60,
American Mathematical Society, Providence, RI, 1998.

[17] M. A Rieffel, Induced representations of C∗-algebras. Adv. Math. 13(1974), 176–257.

Departamento de Matemática y Estadística del Litoral, CENUR Litoral Norte, Universidad de la República,
Salto, Uruguay
e-mail: dferraro@litoralnorte.udelar.edu.uy

https://doi.org/10.4153/S0008414X2400083X Published online by Cambridge University Press

mailto:dferraro@litoralnorte.udelar.edu.uy
https://doi.org/10.4153/S0008414X2400083X

	1 Introduction
	2 Positivity and induction
	2.1 Fell's abstract induction process for Fell fundles
	2.1.1 The induction module


	3 Universal properties of cross-sectional C*-algebras
	3.1 An example
	3.2 Exotic coactions
	3.3 Inner amenable groups

	4 An absorption principle
	4.1 Exel–Ng's absorption principle

	5 Weak containment and subgroups

