CHARACTERISATION OF PRIMES DIVIDING THE INDEX OF A CLASS OF POLYNOMIALS AND ITS APPLICATION[S](#page-0-0)

ANUJ JAKHA[R](https://orcid.org/0000-0002-8733-0007)

(Received 16 January 2024; accepted 10 February 2024; first published online 1 April 2024)

Dedicated to Professor Sudesh Kaur Khanduja

Abstract

Let \mathbb{Z}_K denote the ring of algebraic integers of an algebraic number field $K = \mathbb{Q}(\theta)$, where θ is a root of a monic irreducible polynomial $f(x) = x^n + a(bx + c)^m \in \mathbb{Z}[x]$, $1 \le m < n$. We say $f(x)$ is monogenic if $a \ne m$ a^{n-1} is a basis for \mathbb{Z}_n . We give necessary and sufficient conditions involving only a b c m n $\{1, \theta, \ldots, \theta^{n-1}\}$ is a basis for \mathbb{Z}_K . We give necessary and sufficient conditions involving only *a*, *b*, *c*, *m*, *n* for $f(x)$ to be monogenic. Moreover, we characterise all the primes dividing the index of the subgroup $\mathbb{Z}[\theta]$ in \mathbb{Z}_K . As an application, we also provide a class of monogenic polynomials having non square-free discriminant and Galois group S_n , the symmetric group on *n* letters.

2020 *Mathematics subject classification*: primary 11R04; secondary 11R29, 11Y40.

Keywords and phrases: rings of algebraic integers, index of an algebraic integer, power basis.

1. Introduction and statements of results

Let $K = \mathbb{Q}(\theta)$ be an algebraic number field with θ in the ring \mathbb{Z}_K of algebraic integers of *K* and let $f(x)$ of degree *n* be the minimal polynomial of θ over the field $\mathbb Q$ of rational numbers. Let d_K denote the discriminant of K and D_f the discriminant of the polynomial $f(x)$. It is well known that d_K and D_f are related by the formula

$$
D_f=[\mathbb{Z}_K:\mathbb{Z}[\theta]]^2d_K.
$$

We say that $f(x)$ is monogenic if $\mathbb{Z}_K = \mathbb{Z}[\theta]$, or equivalently, if $D_f = d_K$. In this case, $\{1, \theta, \ldots, \theta^{n-1}\}\$ is an integral basis of *K* and *K* is a monogenic number field. A number field *K* is called monogenic if there exists some $\alpha \in \mathbb{Z}_K$ such that $\mathbb{Z}_K = \mathbb{Z}[\alpha]$.

The determination of monogenity of an algebraic number field is one of the classical and important problems in algebraic number theory. An arithmetic characterisation of monogenic number fields is a problem due to Hasse (see [\[6\]](#page-7-0)). Gaál's book [\[5\]](#page-7-1) provides some classifications of monogenity in lower degree number fields. Using Dedekind's Index Criterion, Jakhar *et al.* [\[8\]](#page-7-2) gave necessary and sufficient conditions

The author is thankful to IIT Madras for NFIG grant RF/22-23/1035/MA/NFIG/009034.

[©] The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

for $\mathbb{Z}_K = \mathbb{Z}[\theta]$ when θ is a root of an irreducible trinomial $x^n + ax^m + b \in \mathbb{Z}[x]$ having degree *n*, providing infinitely many monogenic trinomials. Jones [\[9\]](#page-7-3) computed the discriminant of the polynomial $f(x) = x^n + a(bx + c)^m \in \mathbb{Z}[x]$ with $1 \le m < n$ and proved that when $\operatorname{gcd}(n, mb) = 1$ there exist infinitely many values of *a* such that proved that when $gcd(n, mb) = 1$, there exist infinitely many values of *a* such that $\mathbb{Z}_K = \mathbb{Z}[\theta]$ where $K = \mathbb{Q}(\theta)$ and θ has minimal polynomial $f(x)$. He also conjectured that if $gcd(n, mb) = 1$ and *a* is a prime number, then the polynomial $x^n + a(bx + c)^m \in \mathbb{Z}[x]$ is monogenic if and only if $n^n + (-1)^{n+m}b^n(n-m)^{n-m}m^m a$ is square-free. Recently, Kaur and Kumar [\[12\]](#page-7-4) proved that this conjecture is true. Jones [\[11\]](#page-7-5) gave infinite families of number fields K generated by a root θ of an irreducible quadrinomial, quintinomial or sextinomial for which $\mathbb{Z}_K = \mathbb{Z}[\theta]$. He also proved in [10] that if θ is a root of an irreducible polynomial of the type also proved in [\[10\]](#page-7-6) that if θ is a root of an irreducible polynomial of the type $f(x) = x^p - 2ptx^{p-1} + p^2t^2x^{p-2} + 1 \in \mathbb{Z}[x]$ and p is an odd prime with $p \nmid t$, then $\mathbb{Z}_K \neq \mathbb{Z}[\theta].$
Let $K =$

Let $K = \mathbb{Q}(\theta)$ be an algebraic number field where θ has minimal polynomial *f*(*x*) = $x^n + a(bx + c)^m$ over Q with $1 \le m < n$. We characterise all the primes dividing the index of $\mathbb{Z}[q]$ in \mathbb{Z}_r . As an application, we provide necessary and sufficient condithe index of $\mathbb{Z}[\theta]$ in \mathbb{Z}_K . As an application, we provide necessary and sufficient conditions for $\mathbb{Z}_K = \mathbb{Z}[\theta]$. We also establish a more general result confirming [\[9,](#page-7-3) Conjecture 4.1]. Further, we give a class of monogenic polynomials of prime degree *q* having non square-free discriminant and Galois group isomorphic to the symmetric group *Sq*. In some examples, we determine the index $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$ as well.

Throughout the paper, D_f will stand for the discriminant of $f(x) = x^n + a(bx + c)^m$ with $1 \le m < n$. Jones [\[9,](#page-7-3) Theorem 3.1] proved that the discriminant D_f is given by

$$
D_f = (-1)^{{n \choose 2}} c^{n(m-1)} a^{n-1} [c^{n-m} n^n + (-1)^{m+n} a b^n m^m (n-m)^{n-m}]. \tag{1.1}
$$

We prove the following result.

THEOREM 1.1. Let $K = \mathbb{Q}(\theta)$ be an algebraic number field with θ in the ring \mathbb{Z}_K of *algebraic integers of K having minimal polynomial* $f(x) = x^n + a(bx + c)^m$ *,* $1 \le m < n$,
over \bigcirc A prime factor p of the discriminant D_s of $f(x)$ does not divide $\bigcirc x : \mathcal{I}(A)$ is *over* Q. A prime factor p of the discriminant D_f of $f(x)$ does not divide $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$ if *and only if p satisfies one of the following conditions:*

- (i) when $p \mid a$, then $p^2 \nmid ac$;
- (ii) *when* $p \nmid a, p \mid b, p \mid c$, then $m = 1$ and $p^2 \nmid c$;
- (iii) when $p \nmid ac$ and $p \mid b$ with $j \ge 1$ as the highest power of p dividing n, then either $p | b_1$ *and* $p \nmid c_2$ *or* p *does not divide* $b_1[(ac^m)b_1^n + (-c_2)^n]$ *, where*

$$
b_1 = \frac{mabc^{m-1}}{p}, \quad c_2 = \frac{1}{p}[ac^m + (-ac^m)^{p'}];
$$

(iv) when p does not divide ab and $p \mid c$, then $m = 1$ and either $p \mid b_2$ with $p \nmid c_1$ or *p* does not divide $b_2[(ab)b_2^{n-1} + (-c_1)^{n-1}]$, where

$$
b_2 = \frac{1}{p}[ab + (-ab)^{p'}],
$$
 $c_1 = \frac{ac}{p}$ and $n - 1 = p's', p \nmid s';$

462 **A. Jakhar A. Jakhar A. Jakhar 13**

(v) when p does not divide abc and $p \mid m$ with $n = s'p^k$, $m = sp^k$, $p \nmid gcd(s', s)$, then *the polynomials*

$$
x^{s'} + a(bx + c)^s
$$
 and $\frac{1}{p} \Big[pt(bx + c)^m - \sum_{j=1}^{p^k-1} {p^k \choose j} (x^{s'})^{p^k - j} (a(bx + c)^s)^j \Big]$

are coprime modulo p, where $t \in \mathbb{Z}$ *is an integer such that* $a = a^{p^k} + pt$ *;* (vi) when $p \nmid abcm$, then p^2 does not divide D_f .

The following corollary is immediate. It extends the main results of [\[9\]](#page-7-3).

COROLLARY 1.2. Let $K = \mathbb{Q}(\theta)$ and $f(x) = x^n + a(bx + c)^m$ be as in Theorem [1.1.](#page-1-0) Then $\mathbb{Z}_n = \mathbb{Z}[\theta]$ if and only if each prime *n* dividing D_c satisfies one of the conditions (i)–(yi) $\mathbb{Z}_K = \mathbb{Z}[\theta]$ *if and only if each prime p dividing* D_f *satisfies one of the conditions (i)–(vi) of Theorem [1.1.](#page-1-0)*

If we take $gcd(n, mb) = 1$ and $c = 1$, then conditions (ii)–(v) of Theorem [1.1](#page-1-0) are not possible. So in the special case when $c = 1$ and $gcd(n, mb) = 1$, the above corollary provides the main result of [\[12\]](#page-7-4) stated below. This gives infinite families of monogenic polynomials and establishes a more general form of [\[9,](#page-7-3) Conjecture 4.1].

COROLLARY 1.3 [\[12\]](#page-7-4). *Let* $f(x) = x^n + a(bx + 1)^m \in \mathbb{Z}[x]$ *be a monic irreducible polynomial of degree n with* $gcd(n, mb) = 1$ *. Then* $\mathbb{Z}_K = \mathbb{Z}[\theta]$ *if and only if each prime p* dividing D_f satisfies either (i) $p \mid a$ and $p^2 \nmid a$ or (ii) $p \nmid a$ and $p^2 \nmid D_f$.

The following proposition follows readily from the proof of Theorem [1.1\(](#page-1-0)vi) and is of independent interest.

PROPOSITION 1.4. Let $f(x) = x^q + a(bx + c)^m \in \mathbb{Z}[x]$, $1 \le m < q$, be an irreducible
polynomial of prime degree If there exists a prime p such that p divides D_c and $n^2 \nmid R$ polynomial of prime degree. If there exists a prime p such that p divides D_f and $p^2 \nmid D_f$ *with p* \nmid *abcm, then the Galois group of* $f(x)$ *is* S_q *.*

The following result is an immediate consequence of Corollary [1.3](#page-2-0) and Proposition [1.4.](#page-2-1) It provides a class of monogenic polynomials having non square-free discriminant and Galois group equal to a symmetric group.

COROLLARY 1.5. *Let m be a positive odd integer and* $f(x) = x^q + a(bx + 1)^m \in \mathbb{Z}[x]$ *be a polynomial having prime degree* $q \geq 3$ *with* $q \nmid b$ *. If* $a \notin \{0, \pm 1\}$ *and* D_f/a^{q-1} *are square-free numbers then* $f(x)$ *is a monogenic polynomial having Galois group S square-free numbers, then f*(*x*) *is a monogenic polynomial having Galois group Sq.*

The following example is an application of Theorem [1.1,](#page-1-0) Corollary [1.3](#page-2-0) and Proposition [1.4.](#page-2-1) In this example, $K = \mathbb{Q}(\theta)$ with θ a root of $f(x)$.

EXAMPLE 1.6. Let *p* be a prime number. Consider $f(x) = x^p + p(x+1)^{p-1}$. Note that $|D_f| = p^p(p^{p-1} - (p-1)^{p-1})$. Using Proposition [1.4,](#page-2-1) it is easy to check that the Galois group of $f(x)$ is S_p . By Corollary [1.3,](#page-2-0) $\mathbb{Z}_K = \mathbb{Z}[\theta]$ if and only if $p^{p-1} - (p-1)^{p-1}$ is square-free. We now compute $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$ for $p < 20$. For $p = 2, 3, 7, 11, 17$, it can be verified that the number $p^{p-1} - (p-1)^{p-1}$ is square-free; and hence $\mathbb{Z}_K = \mathbb{Z}[\theta]$. Next we calculate the exact value of $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$ corresponding to $p = 5$, 13 and 19.

[4] Monogenic polynomials 463

- (i) For $p = 5$, it can be easily checked that $D_f = 5^5 \cdot 3^2 \cdot 41$. In view of Theorem [1.1\(](#page-1-0)i), 5 does not divide $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$. Also, 3 divides $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$ and 41 does not divide $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$ by Theorem [1.1\(](#page-1-0)vi). Since $D_f = [\mathbb{Z}_K : \mathbb{Z}[\theta]]^2 \cdot d_K$, where d_K is the discriminant of *K*, we see that $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$ is 3 when $p = 5$.
- (ii) Consider $p = 13$. One can verify that $D_f = 13^{13} \cdot 5^2 \cdot 7 \cdot 67 \cdot 109 \cdot 157 \cdot 229 \cdot 313$. By Theorem [1.1\(](#page-1-0)i), 13 does not divide $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$. Also in view of Theorem [1.1\(](#page-1-0)vi), 5 divides $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$ and the primes 7, 67, 109, 157, 229, 313 do not divide $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$. Since the exact power of 5 dividing D_f is 2, $[\mathbb{Z}_K : \mathbb{Z}[\theta]] = 5$.
- (iii) When $p = 19$, then one can check that the prime factorisation of D_f is given by $19^{19} \cdot 7^3 \cdot r$ with *r* a square-free number. Arguing as above, 19 and each prime *p* dividing *r* do not divide $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$ and 7 divides $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$. Therefore, $[\mathbb{Z}_K : \mathbb{Z}[\theta]] = 7.$

2. Proof of Theorem [1.1](#page-1-0)

In what follows, while dealing with a prime number p , for a polynomial $h(x)$ in $\mathbb{Z}[x]$, we shall denote by $\bar{h}(x)$ the polynomial over $\mathbb{Z}/p\mathbb{Z}$ obtained by interpreting each coefficient of *h*(*x*) modulo *p*.

We first state the following well-known theorem. The equivalence of assertions (i) and (ii) of the theorem was proved by Dedekind (see $[2,$ Theorem 6.1.4], $[3]$). A simple proof of the equivalence of assertions (ii) and (iii) is given in [\[7,](#page-7-9) Lemma 2.1].

THEOREM 2.1. Let $f(x) \in \mathbb{Z}[x]$ be a monic irreducible polynomial having the factori s ation $\bar{g}_1(x)^{e_1}\cdots\bar{g}_t(x)^{e_t}$ modulo a prime p as a product of powers of distinct irreducible *polynomials over* $\mathbb{Z}/p\mathbb{Z}$ *with each g_i(x)* ∈ $\mathbb{Z}[x]$ *monic. Let* $K = \mathbb{Q}(\theta)$ *with* θ *a root of f*(*x*)*. Then the following statements are equivalent:*

- (i) *p* does not divide $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$;
- (ii) *for each i, either* $e_i = 1$ *or* $\overline{g_i}(x)$ *does not divide* $\overline{M}(x)$ *where*

$$
M(x) = \frac{1}{p}(f(x) - g_1(x)^{e_1} \cdots g_t(x)^{e_t});
$$

(iii) *f*(*x*) *does not belong to the ideal* $\langle p, g_i(x) \rangle^2$ *in* $\mathbb{Z}[x]$ *for any i,* $1 \le i \le t$ *.*

The next lemma (see [\[7,](#page-7-9) Corollary 2.3]) is easily proved using the binomial theorem.

LEMMA 2.2. Let $k \ge 1$ be the highest power of a prime p dividing a number $n = p^k s'$ and c be an integer not divisible by p. If $\bar{g}_1(x) \cdots \bar{g}_r(x)$ is the factorisation of $x^\text{s'} - \bar{c}$ into *a product of distinct irreducible polynomials over* $\mathbb{Z}/p\mathbb{Z}$ *with each g_i(x)* $\in \mathbb{Z}[x]$ *monic, then*

$$
x^{n} - c = (g_{1}(x) \cdots g_{r}(x) + pH(x))^{p^{k}} + pg_{1}(x) \cdots g_{r}(x)T(x) + p^{2}U(x) + c^{p^{k}} - c
$$

for some polynomials $H(x)$ *,* $T(x)$ *,* $U(x) \in \mathbb{Z}[x]$ *.*

PROOF OF THEOREM [1.1.](#page-1-0) Let p be a prime dividing D_f . In view of Theorem [2.1,](#page-3-0) p does not divide $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$ if and only if $f(x) \notin \langle p, g(x) \rangle^2$ for any monic polynomial

464 A. Jakhar [5]

g(*x*) ∈ $\mathbb{Z}[x]$ which is irreducible modulo *p*. Note that $f(x) \notin \langle p, g(x) \rangle^2$ if $\bar{g}(x)$ is not a repeated factor of $\bar{f}(x)$. We prove the theorem case by case.

Case (i): *p* | *a*. In this case, $f(x) \equiv x^n \pmod{p}$. Clearly, $f(x) \in \langle p, x \rangle^2$ if and only if p^2 divides *ac*^{*m*}; consequently, $p \nmid [\mathbb{Z}_K : \mathbb{Z}[\theta]]$ if and only if $p^2 \nmid ac$.

Case (ii): *p* \nmid *a and p divides both b and c*. In this situation, $f(x) \equiv x^n \pmod{p}$ and it is easy to see that $f(x) \in \langle p, x \rangle^2$ if and only if p^2 divides c^m . Therefore, $p \nmid [\mathbb{Z}_K : \mathbb{Z}[\theta]]$
if and only if $p^2 \nmid c^m$ that is $m = 1$ and $p^2 \nmid c$ if and only if $p^2 \nmid c^m$, that is, $m = 1$ and $p^2 \nmid c$.

Case (iii): $p \nmid ac$ *and* $p \mid b$. As $p \mid D_f$, it is clear from [\(1.1\)](#page-1-1) that $p \mid n$. Write $n = p^j s'$, $p \nmid s'$. By the binomial theorem,

$$
f(x) \equiv x^n + ac^m \equiv (x^{s'} + ac^m)^{p^j} \pmod{p}
$$
.

Let $\bar{g}_1(x) \cdots \bar{g}_t(x)$ be the factorisation of $h(x) = x^{s'} + ac^m$ over $\mathbb{Z}/p\mathbb{Z}$, where $g_i(x) \in \mathbb{Z}[x]$ are monic polynomials which are distinct and irreducible modulo *n*. Write $h(x)$ as are monic polynomials which are distinct and irreducible modulo p . Write $h(x)$ as $g_1(x) \cdots g_t(x) + pH(x)$ for some polynomial $H(x) \in \mathbb{Z}[x]$. Applying Lemma [2.2](#page-3-1) to $h(x)$ and keeping in view that

$$
f(x) = h(x^{p^i}) + a(bx)^m + {m \choose 1}a(bx)^{m-1}c + \dots + {m \choose m-1}a(bx)c^{m-1}
$$

with $p \mid b$, we see that

$$
f(x) = \left(\prod_{i=1}^{t} g_i(x) + pH(x)\right)^{p^j} + pT(x) \prod_{i=1}^{t} g_i(x) + p^2 U(x) + ac^m + (-ac^m)^{p^j} + ma(bx)c^{m-1}
$$
\n(2.1)

for some polynomials $T(x)$, $U(x) \in \mathbb{Z}[x]$. As $j \ge 1$, the first three summands on the right-hand side of [\(2.1\)](#page-4-0) belong to $\langle p, g_i(x) \rangle^2$ for each *i*, $1 \le i \le t$. So $f(x) \in \langle p, g_i(x) \rangle^2$ for some *i*, 1 ≤ *i* ≤ *t*, if and only if $mabc^{m-1}x + ac^m + (-ac^m)^{p^j} = p(b_1x + c_2)$ does so. Clearly, $p(b_1x + c_2)$ belongs to $\langle p, g_i(x) \rangle^2$ for some *i* if and only if either *p* divides both b_1 , c_2 or $p \nmid b_1$ and the polynomials $\bar{b}_1x + \bar{c}_2$, $x^n + \overline{ac^m}$ have a common root. One can easily check that the polynomials $\bar{b}_1x + \bar{c}_2$ and $x^n + \overline{ac^m}$ have a common root if and only if $(-\bar{c}_2/\bar{b}_1)^n = -\overline{ac^m}$, that is, if and only if $p \mid [(-ac^m)b_1^n - (-c_2)^n]$. Hence, $f(x) \notin (n, a_1(x))^2$ for any *i* if and only if either $n \mid b_1$ and $n \nmid c_2$ or *n* does not divide $f(x) \notin \langle p, g_i(x) \rangle^2$ for any *i* if and only if either $p \mid b_1$ and $p \nmid c_2$ or p does not divide $b_1[(ac^m)b_1^n + (-c_2)^n]$. This proves the theorem in case (iii) by virtue of Theorem [2.1.](#page-3-0)

Case (iv): *p* \nmid *ab and p* \mid *c*. In this case, $\overline{f}(x) = x^m(x^{n-m} + ab^m)$. If $m \ge 2$, then *x* is a repeated factor and it is easy to check that $f(x) \in \langle p, x \rangle^2$, that is, *p* always divides $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$ by Theorem [2.1.](#page-3-0) So, assume now that $m = 1$. By [\(1.1\)](#page-1-0), $p \mid (n-1)$, say $n-1 = p^l s'$ with $p \nmid s'$. Write $x^{s'} + ab = g_1(x) \cdots g_t(x) + pH(x)$, where $g_1(x),..., g_t(x)$ are monic polynomials which are distinct as well as irreducible modulo p and $H(x) \in \mathbb{Z}[x]$. Applying Lemma [2.2](#page-3-1) to $h(x) = x^{s'} + ab$, we can write $f(x) = x(x^{n-1} + ab) + ac$ as

[6] Monogenic polynomials 465

$$
f(x) = x \left[\left(\prod_{i=1}^{t} g_i(x) + pH(x) \right)^{p'} + pT(x) \prod_{i=1}^{t} g_i(x) + p^2 U(x) + ab + (-ab)^{p'} \right] + ac,
$$
\n(2.2)

where $T(x)$, $U(x)$ belong to $\mathbb{Z}[x]$. Note that $x, \overline{g}_1(x), \ldots, \overline{g}_t(x)$ are distinct irreducible factors of $\bar{f}(x)$. Since $l \geq 1$, the first three summands inside the square bracket on the right-hand side of [\(2.2\)](#page-4-1) belong to $\langle p, g_i(x) \rangle^2$ for each *i*, $1 \le i \le t$. So $f(x) \in \langle p, g_i(x) \rangle^2$ for some *i*, $1 \le i \le t$, if and only if $(ab + (-ab)^{p^i})x + ac = p(b_2x + c_1)$ does so. Clearly, the polynomial $p(b_2x + c_1)$ belongs to $\langle p, g_i(x) \rangle^2$ for some *i* if and only if either *p* divides both b_2 , c_1 or $p \nmid b_2$ and the polynomials $\bar{b}_2x + \bar{c}_1$, $x^{n-1} + \overline{ab}$ have a common root. The polynomials $\bar{b}_2x + \bar{c}_1$ and $x^{n-1} + \overline{ab}$ have a common root if and only if $(-\bar{c}_1/\bar{b}_2)^{n-1} = -\bar{a}\bar{b}$. Thus, $f(x) \in \langle p, g_i(x) \rangle^2$ for some *i* if and only if either *p* divides both *b*₂, *c*, or *n k b*₂ and *n* | $[(-a b)b^{n-1} - (-c)$ ⁿ⁻¹, So we conclude that *n* does not both *b*₂, *c*₁ or *p* \nmid *b*₂ and *p* | [($-ab$)*b*ⁿ⁻¹</sup> $-(-c_1)^{n-1}$]. So we conclude that *p* does not divide $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$ if and only if $m = 1$ and either $p \mid b_2$ with $p \nmid c_1$ or p does not divide $b_2[(ab)b^{n-1} + (-c)^{n-1}]$. This proves the theorem in case (iv) $b_2[(ab)b_2^{n-1} + (-c_1)^{n-1}]$. This proves the theorem in case (iv).

Case (v): *p* \nmid *abc and p* \mid *m*. As *p* \mid *D_f*, *p* divides *n* in view of [\(1.1\)](#page-1-1). Write $n = s'p^k$, $m = sp^k$ with $p \nmid gcd(s', s)$ so that $f(x) = (x^{s'})^{p^k} + a(bx + c)^{sp^k}$. Set $h(x) = x^{s'} + a(bx + c)^s$. Let $t \in \mathbb{Z}$ be an integer such that $a = a^{p^k} + pt$. Then one can easily check that $f(x) \equiv h(x)^{p^k} \pmod{p}$. Let $h(x) \equiv g_1(x)^{d_1} \cdots g_t(x)^{d_t} \pmod{p}$ be the factorisation of $h(x)$ into a product of irreducible polynomials modulo *p* with $g_i(x) \in \mathbb{Z}[x]$ monic and $d_i > 0$. Write

$$
f(x) = h(x)^{p^k} + pt(bx + c)^m - \sum_{j=1}^{p^k-1} {p^k \choose j} (x^{s'})^{p^k - j} (a(bx + c)^s)^j.
$$

Now $f(x) = (g_1(x)^{d_1} \cdots g_t(x)^{d_t})^{p^k} + pM(x)$ for some $M(x) \in \mathbb{Z}[x]$. Since $k > 0$, by
Theorem 2.1, *n* does not divide $\mathbb{Z}[x] \cdot \mathbb{Z}[B]$ if and only if $\overline{M}(x)$ is contime to $\overline{b}(x)$. Theorem [2.1,](#page-3-0) *p* does not divide $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$ if and only if $\overline{M}(x)$ is coprime to $\overline{h}(x)$, which holds if and only if the polynomial

$$
\frac{1}{p}\left[pt(bx+c)^{m}-\sum_{j=1}^{p^{k}-1}\binom{p^{k}}{j}(x^{s'})^{p^{k}-j}(a(bx+c)^{s})^{j}\right]
$$

is coprime to $h(x)$ modulo *p*. This proves the theorem in case (v).

Case (vi): *p* \nmid *abcm*. Since *p* $|D_f \text{ and } p \nmid$ *abcm*, it follows from [\(1.1\)](#page-1-1) that $p \nmid n(n-m)$. Let β be a repeated root of $\bar{f}(x) = x^n + \bar{a}(\bar{b}x + \bar{c})^m$ in the algebraic closure of $\mathbb{Z}/p\mathbb{Z}$.
Then Then

$$
\bar{f}(\beta) = \beta^n + \bar{a}(\bar{b}\beta + \bar{c})^m = \bar{0}; \quad \bar{f}'(\beta) = \bar{n}\beta^{n-1} + \bar{m}\bar{a}\bar{b}(\bar{b}\beta + \bar{c})^{m-1} = \bar{0}.
$$
 (2.3)

On substituting $\bar{n}\beta^{n-1} = -\bar{m}\bar{a}\bar{b}(\bar{b}\beta + \bar{c})^{m-1}$ in the first equation of [\(2.3\)](#page-5-0), we see that

$$
(b\beta + c)^{m-1}(ab(n-m)\beta + nac) \equiv 0 \pmod{p}.
$$

466 **A. Jakhar A. Jakhar A. Jakhar 17**

Observe that $(b\beta + c) \neq 0 \pmod{p}$, otherwise $\beta = \overline{0}$ in view of the first equation of [\(2.3\)](#page-5-0) which is not possible as *p* \uparrow *ac*. Therefore, keeping in mind that *p* \uparrow *abcn*(*n* − *m*),

$$
\beta \equiv -\frac{nc}{b(n-m)} \pmod{p} \tag{2.4}
$$

is the unique repeated root of $\bar{f}(x)$ in $\mathbb{Z}/p\mathbb{Z}$ and it can be easily checked that β has multiplicity 2. Assuming that β is a positive integer satisfying [\(2.4\)](#page-6-0), we can write

$$
f(x) = (x - \beta + \beta)^n + a(b(x - \beta + \beta) + c)^m,
$$

=
$$
\sum_{k=0}^n {n \choose k} \beta^{n-k} (x - \beta)^k + a \left(\sum_{k=0}^m {m \choose k} (b\beta + c)^{m-k} b^k (x - \beta)^k \right),
$$

=
$$
(x - \beta)^2 g(x) + f'(\beta)(x - \beta) + f(\beta),
$$

where $f'(x)$ is the derivative of $f(x)$ and

$$
g(x) = \sum_{k=2}^{n} {n \choose k} \beta^{n-k} (x - \beta)^{k-2} + a \left(\sum_{k=2}^{m} {m \choose k} (b\beta + c)^{m-k} b^k (x - \beta)^{k-2} \right)
$$

is in $\mathbb{Z}[x]$. Then

$$
\bar{f}(x) = (x - \beta)^2 \bar{g}(x),\tag{2.5}
$$

where $\bar{g}(x) \in (\mathbb{Z}/p\mathbb{Z})[x]$ is separable. Write $g(x) = g_1(x) \cdots g_t(x) + ph(x)$, where $g_1(x), \ldots, g_t(x)$ are monic polynomials which are distinct as well as irreducible modulo *p* and $h(x) \in \mathbb{Z}[x]$ monic. Therefore, we can write

$$
f(x) = (x - \beta)^2 \Big(\prod_{i=1}^t g_i(x) + ph(x) \Big) + f'(\beta)(x - \beta) + f(\beta).
$$

So, by Theorem [2.1,](#page-3-0) *p* does not divide $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$ if and only if $M(x)$ is coprime to $x - \beta$, where

$$
M(x) = \frac{1}{p} [p(x - \beta)^{2} h(x) + (x - \beta) f'(\beta) + f(\beta)],
$$

that is, $f(\beta) \neq 0 \pmod{p^2}$. By [\(2.4\)](#page-6-0), since $p \nmid abcmn(n-m)$, we see that $f(\beta) \neq 0$
(mod *n*)² if and only if $(n^n c^{n-m} + (-1)^{n+m} b^n (n-m)^{n-m} m^m a) \neq 0 \pmod{p^2}$. This final (mod *p*)² if and only if $(n^n c^{n-m} + (-1)^{n+m} b^n (n - m)^{n-m} m^m a) \neq 0$ (mod *p*)². This final case completes the proof of the theorem. \Box

3. Proof of Proposition [1.4](#page-2-1)

The following two results on Galois groups will be used in the proof of Proposition [1.4.](#page-2-1)

THEOREM 3.1 [\[1,](#page-7-10) Theorem [2.1\]](#page-3-0). Let $f(x) \in \mathbb{Z}[x]$ *be a monic irreducible polynomial of degree n, having a root* θ*. Let p be a rational prime which is ramified in* ^Q(θ)*. Suppose that* $f(x) \equiv (x - c)^2 \phi_2(x) \cdots \phi_r(x)$ (mod *p*)*, where* $(x - c) \phi_2(x), \ldots, \phi_r(x)$ *are monic polynomials over* \mathbb{Z} *which are distinct and irreducible modulo p. Then the Galois group polynomials over* Z *which are distinct and irreducible modulo p. Then the Galois group*

of $f(x)$ *over* $\mathbb Q$ *contains a nontrivial automorphism which keeps n − 2 <i>roots of* $f(x)$ *fixed.*

LEMMA 3.2 [\[4,](#page-7-11) Lemma 2]. *Let* $f(x)$ *be an irreducible polynomial of degree n* \geq 2*. If the Galois group of* $f(x)$ *over* $\mathbb Q$ *contains a transposition and a p-cycle for some prime* $p > n/2$, then the Galois group is S_n .

PROOF OF PROPOSITION [1.4.](#page-2-1) Let α be any root of $f(x)$, so that $[Q(\alpha) : Q] = q$. By the fundamental theorem of Galois theory, the Galois group of $f(x)$, say G_f , contains a subgroup whose index is q . By Lagrange's theorem, q divides the order of G_f . So, by Cauchy's theorem, G_f has an element of order q. Hence, G_f contains a q-cycle. Now we show that G_f contains a transposition. By hypothesis, there exists a prime *p* such that $p \mid D_f$ and $p \nmid abcm$. As in [\(2.5\)](#page-6-1) in the proof of Theorem [1.1\(](#page-1-0)vi), $f(x) \equiv$ $(x - \beta)^2 g_1(x) \cdots g_t(x)$ (mod *p*), where $x - \beta$, $g_1(x), \ldots, g_t(x)$ are monic polynomials over \mathbb{Z} which are distinct and irreducible modulo *p*. Also if $K = \mathbb{Q}(\theta)$ with θ a root of $f(x)$ Z which are distinct and irreducible modulo *p*. Also, if $K = \mathbb{Q}(\theta)$ with θ a root of $f(x)$, then keeping in mind the hypothesis $p^2 \nmid D_f$ and the relation $D_f = [\mathbb{Z}_K : \mathbb{Z}[\theta]]^2 d_K$, we see that $n \mid d_K$. Hence *n* is ramified in K. Therefore, by Theorem 3.1, the Galois group see that $p \mid d_K$. Hence, p is ramified in *K*. Therefore, by Theorem [3.1,](#page-6-2) the Galois group of $f(x)$ contains a transposition. Hence, by Lemma [3.2,](#page-7-12) the Galois group is S_a . \Box

References

- [1] A. Bishnoi and S. K. Khanduja, 'A class of trinomials with Galois group *Sn*', *Algebra Colloq.* 19(1) (2012), 905–911.
- [2] H. Cohen, *A Course in Computational Algebraic Number Theory* (Springer-Verlag, Berlin–Heidelberg, 1993).
- [3] R. Dedekind, 'Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Kongruenzen', *Götttingen Abh.* 23 (1878), 1–23.
- [4] M. Filaseta and R. Moy, 'On the Galois group over Q of a truncated binomial expansion', *Colloq. Math.* 154 (2018), 295–308.
- [5] I. Gaál, *Diophantine Equations and Power Integral Bases: Theory and Algorithms*, 2nd edn (Birkhäuser/Springer, Cham, 2019).
- [6] H. Hasse, *Zahlentheorie* (Akademie-Verlag, Berlin, 1963).
- [7] A. Jakhar, S. K. Khanduja and N. Sangwan, 'On prime divisors of the index of an algebraic integer', *J. Number Theory* 166 (2016), 47–61.
- [8] A. Jakhar, S. K. Khanduja and N. Sangwan, 'Characterisation of primes dividing the index of a trinomial', *Int. J. Number Theory* 13(10) (2017), 2505–2514.
- [9] L. Jones, 'A brief note on some infinite families of monogenic polynomials', *Bull. Aust. Math. Soc.* 100 (2019), 239–244.
- [10] L. Jones, 'On necessary and sufficient conditions for the monogenity of a certain class of polynomials', *Math. Slovaca* 72(3) (2022), 591–600.
- [11] L. Jones, 'Infinite families of monogenic quadrinomials, quintinomials and sextinomials', *Colloq. Math.* 169 (2022), 1–10.
- [12] S. Kaur and S. Kumar, 'On a conjecture of Lenny Jones about certain monogenic polynomials', *Bull. Aust. Math. Soc.*, to appear. Published online (21 November 2023).

ANUJ JAKHAR, Department of Mathematics,

Indian Institute of Technology (IIT) Madras, Chennai, India e-mail: [anujjakhar@iitm.ac.in,](mailto:anujjakhar@iitm.ac.in) anujiisermohali@gmail.com