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Abstract

Let ZK denote the ring of algebraic integers of an algebraic number field K = Q(θ), where θ is a root of
a monic irreducible polynomial f (x) = xn + a(bx + c)m ∈ Z[x], 1 ≤ m < n. We say f (x) is monogenic if
{1, θ, . . . , θn−1} is a basis for ZK . We give necessary and sufficient conditions involving only a, b, c, m, n
for f (x) to be monogenic. Moreover, we characterise all the primes dividing the index of the subgroup
Z[θ] in ZK . As an application, we also provide a class of monogenic polynomials having non square-free
discriminant and Galois group Sn, the symmetric group on n letters.

2020 Mathematics subject classification: primary 11R04; secondary 11R29, 11Y40.
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1. Introduction and statements of results

Let K = Q(θ) be an algebraic number field with θ in the ring ZK of algebraic integers
of K and let f (x) of degree n be the minimal polynomial of θ over the field Q of
rational numbers. Let dK denote the discriminant of K and D f the discriminant of the
polynomial f (x). It is well known that dK and D f are related by the formula

D f = [ZK : Z[θ]]2dK .

We say that f (x) is monogenic if ZK = Z[θ], or equivalently, if D f = dK . In this case,
{1, θ, . . . , θn−1} is an integral basis of K and K is a monogenic number field. A number
field K is called monogenic if there exists some α ∈ ZK such that ZK = Z[α].

The determination of monogenity of an algebraic number field is one of the classical
and important problems in algebraic number theory. An arithmetic characterisation
of monogenic number fields is a problem due to Hasse (see [6]). Gaál’s book [5]
provides some classifications of monogenity in lower degree number fields. Using
Dedekind’s Index Criterion, Jakhar et al. [8] gave necessary and sufficient conditions
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for ZK = Z[θ] when θ is a root of an irreducible trinomial xn + axm + b ∈ Z[x] having
degree n, providing infinitely many monogenic trinomials. Jones [9] computed the
discriminant of the polynomial f (x) = xn + a(bx + c)m ∈ Z[x] with 1 ≤ m < n and
proved that when gcd(n, mb) = 1, there exist infinitely many values of a such that
ZK = Z[θ] where K = Q(θ) and θ has minimal polynomial f (x). He also con-
jectured that if gcd(n, mb) = 1 and a is a prime number, then the polynomial
xn + a(bx + c)m ∈ Z[x] is monogenic if and only if nn + (−1)n+mbn(n − m)n−mmma
is square-free. Recently, Kaur and Kumar [12] proved that this conjecture is true.
Jones [11] gave infinite families of number fields K generated by a root θ of an
irreducible quadrinomial, quintinomial or sextinomial for which ZK = Z[θ]. He
also proved in [10] that if θ is a root of an irreducible polynomial of the type
f (x) = xp − 2ptxp−1 + p2t2xp−2 + 1 ∈ Z[x] and p is an odd prime with p � t, then
ZK � Z[θ].

Let K = Q(θ) be an algebraic number field where θ has minimal polynomial
f (x) = xn + a(bx + c)m over Q with 1 ≤ m < n. We characterise all the primes dividing
the index of Z[θ] in ZK . As an application, we provide necessary and sufficient condi-
tions for ZK = Z[θ]. We also establish a more general result confirming [9, Conjecture
4.1]. Further, we give a class of monogenic polynomials of prime degree q having non
square-free discriminant and Galois group isomorphic to the symmetric group Sq. In
some examples, we determine the index [ZK : Z[θ]] as well.

Throughout the paper, D f will stand for the discriminant of f (x) = xn + a(bx + c)m

with 1 ≤ m < n. Jones [9, Theorem 3.1] proved that the discriminant D f is given by

D f = (−1)(
n
2)cn(m−1)an−1[cn−mnn + (−1)m+nabnmm(n − m)n−m]. (1.1)

We prove the following result.

THEOREM 1.1. Let K = Q(θ) be an algebraic number field with θ in the ring ZK of
algebraic integers of K having minimal polynomial f (x) = xn + a(bx + c)m, 1 ≤ m < n,
over Q. A prime factor p of the discriminant D f of f (x) does not divide [ZK : Z[θ]] if
and only if p satisfies one of the following conditions:

(i) when p | a, then p2 � ac;
(ii) when p � a, p | b, p | c, then m = 1 and p2 � c;
(iii) when p � ac and p | b with j ≥ 1 as the highest power of p dividing n, then either

p | b1 and p � c2 or p does not divide b1[(acm)bn
1 + (−c2)n], where

b1 =
mabcm−1

p
, c2 =

1
p

[acm + (−acm)pj
];

(iv) when p does not divide ab and p | c, then m = 1 and either p | b2 with p � c1 or
p does not divide b2[(ab)bn−1

2 + (−c1)n−1], where

b2 =
1
p

[ab + (−ab)pl
], c1 =

ac
p

and n − 1 = pls′, p � s′;
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(v) when p does not divide abc and p | m with n = s′pk, m = spk, p � gcd(s′, s), then
the polynomials

xs′ + a(bx + c)s and
1
p

[
pt(bx + c)m −

pk−1∑
j=1

(
pk

j

)
(xs′)pk−j(a(bx + c)s) j

]

are coprime modulo p, where t ∈ Z is an integer such that a = apk
+ pt;

(vi) when p � abcm, then p2 does not divide D f .

The following corollary is immediate. It extends the main results of [9].

COROLLARY 1.2. Let K = Q(θ) and f (x) = xn + a(bx + c)m be as in Theorem 1.1. Then
ZK = Z[θ] if and only if each prime p dividing D f satisfies one of the conditions (i)–(vi)
of Theorem 1.1.

If we take gcd(n, mb) = 1 and c = 1, then conditions (ii)–(v) of Theorem 1.1 are not
possible. So in the special case when c = 1 and gcd(n, mb) = 1, the above corollary
provides the main result of [12] stated below. This gives infinite families of monogenic
polynomials and establishes a more general form of [9, Conjecture 4.1].

COROLLARY 1.3 [12]. Let f (x) = xn + a(bx + 1)m ∈ Z[x] be a monic irreducible
polynomial of degree n with gcd(n, mb) = 1. Then ZK = Z[θ] if and only if each prime
p dividing D f satisfies either (i) p | a and p2 � a or (ii) p � a and p2 � D f .

The following proposition follows readily from the proof of Theorem 1.1(vi) and is
of independent interest.

PROPOSITION 1.4. Let f (x) = xq + a(bx + c)m ∈ Z[x], 1 ≤ m < q, be an irreducible
polynomial of prime degree. If there exists a prime p such that p divides D f and p2 � D f

with p � abcm, then the Galois group of f (x) is Sq.

The following result is an immediate consequence of Corollary 1.3 and
Proposition 1.4. It provides a class of monogenic polynomials having non square-free
discriminant and Galois group equal to a symmetric group.

COROLLARY 1.5. Let m be a positive odd integer and f (x) = xq + a(bx + 1)m ∈ Z[x]
be a polynomial having prime degree q ≥ 3 with q � b. If a � {0,±1} and D f /aq−1 are
square-free numbers, then f (x) is a monogenic polynomial having Galois group Sq.

The following example is an application of Theorem 1.1, Corollary 1.3 and
Proposition 1.4. In this example, K = Q(θ) with θ a root of f (x).

EXAMPLE 1.6. Let p be a prime number. Consider f (x) = xp + p(x + 1)p−1. Note that
|D f | = pp(pp−1 − (p − 1)p−1). Using Proposition 1.4, it is easy to check that the Galois
group of f (x) is Sp. By Corollary 1.3, ZK = Z[θ] if and only if pp−1 − (p − 1)p−1 is
square-free. We now compute [ZK : Z[θ]] for p < 20. For p = 2, 3, 7, 11, 17, it can be
verified that the number pp−1 − (p − 1)p−1 is square-free; and hence ZK = Z[θ]. Next
we calculate the exact value of [ZK : Z[θ]] corresponding to p = 5, 13 and 19.
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(i) For p = 5, it can be easily checked that D f = 55 · 32 · 41. In view of Theorem
1.1(i), 5 does not divide [ZK : Z[θ]]. Also, 3 divides [ZK : Z[θ]] and 41 does not
divide [ZK : Z[θ]] by Theorem 1.1(vi). Since D f=[ZK : Z[θ]]2 · dK , where dK is
the discriminant of K, we see that [ZK : Z[θ]] is 3 when p = 5.

(ii) Consider p = 13. One can verify that D f = 1313 · 52 · 7 · 67 · 109 · 157 · 229 · 313.
By Theorem 1.1(i), 13 does not divide [ZK : Z[θ]]. Also in view of Theorem
1.1(vi), 5 divides [ZK : Z[θ]] and the primes 7, 67, 109, 157, 229, 313 do not divide
[ZK : Z[θ]]. Since the exact power of 5 dividing D f is 2, [ZK : Z[θ]] = 5.

(iii) When p = 19, then one can check that the prime factorisation of D f is given by
1919 · 73 · r with r a square-free number. Arguing as above, 19 and each prime
p dividing r do not divide [ZK : Z[θ]] and 7 divides [ZK : Z[θ]]. Therefore,
[ZK : Z[θ]] = 7.

2. Proof of Theorem 1.1

In what follows, while dealing with a prime number p, for a polynomial h(x) in
Z[x], we shall denote by h̄(x) the polynomial over Z/pZ obtained by interpreting each
coefficient of h(x) modulo p.

We first state the following well-known theorem. The equivalence of assertions (i)
and (ii) of the theorem was proved by Dedekind (see [2, Theorem 6.1.4], [3]). A simple
proof of the equivalence of assertions (ii) and (iii) is given in [7, Lemma 2.1].

THEOREM 2.1. Let f (x) ∈ Z[x] be a monic irreducible polynomial having the factori-
sation ḡ1(x)e1 · · · ḡt(x)et modulo a prime p as a product of powers of distinct irreducible
polynomials over Z/pZ with each gi(x) ∈ Z[x] monic. Let K = Q(θ) with θ a root of
f (x). Then the following statements are equivalent:

(i) p does not divide [ZK : Z[θ]];
(ii) for each i, either ei = 1 or gi(x) does not divide M(x) where

M(x) =
1
p

( f (x) − g1(x)e1 · · · gt(x)et );

(iii) f (x) does not belong to the ideal 〈p, gi(x)〉2 in Z[x] for any i, 1 ≤ i ≤ t.

The next lemma (see [7, Corollary 2.3]) is easily proved using the binomial theorem.

LEMMA 2.2. Let k ≥ 1 be the highest power of a prime p dividing a number n = pks′

and c be an integer not divisible by p. If ḡ1(x) · · · ḡr(x) is the factorisation of xs′ − c̄ into
a product of distinct irreducible polynomials over Z/pZ with each gi(x) ∈ Z[x] monic,
then

xn − c = (g1(x) · · · gr(x) + pH(x))pk
+ pg1(x) · · · gr(x)T(x) + p2U(x) + cpk − c

for some polynomials H(x), T(x), U(x) ∈ Z[x].

PROOF OF THEOREM 1.1. Let p be a prime dividing D f . In view of Theorem 2.1, p
does not divide [ZK : Z[θ]] if and only if f (x) � 〈p, g(x)〉2 for any monic polynomial
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g(x) ∈ Z[x] which is irreducible modulo p. Note that f (x) � 〈p, g(x)〉2 if ḡ(x) is not a
repeated factor of f̄ (x). We prove the theorem case by case.

Case (i): p | a. In this case, f (x) ≡ xn (mod p). Clearly, f (x) ∈ 〈p, x〉2 if and only if p2

divides acm; consequently, p � [ZK : Z[θ]] if and only if p2 � ac.

Case (ii): p � a and p divides both b and c. In this situation, f (x) ≡ xn (mod p) and it
is easy to see that f (x) ∈ 〈p, x〉2 if and only if p2 divides cm. Therefore, p � [ZK : Z[θ]]
if and only if p2 � cm, that is, m = 1 and p2 � c.

Case (iii): p � ac and p | b. As p | D f , it is clear from (1.1) that p | n. Write
n = pjs′, p � s′. By the binomial theorem,

f (x) ≡ xn + acm ≡ (xs′ + acm)pj
(mod p).

Let ḡ1(x) · · · ḡt(x) be the factorisation of h(x) = xs′ + acm over Z/pZ, where gi(x) ∈ Z[x]
are monic polynomials which are distinct and irreducible modulo p. Write h(x) as
g1(x) · · · gt(x) + pH(x) for some polynomial H(x) ∈ Z[x]. Applying Lemma 2.2 to h(x)
and keeping in view that

f (x) = h(xpj
) + a(bx)m +

(
m
1

)
a(bx)m−1c + · · · +

(
m

m − 1

)
a(bx)cm−1

with p | b, we see that

f (x) =
( t∏

i=1

gi(x) + pH(x)
)pj

+ pT(x)
t∏

i=1

gi(x) + p2U(x) + acm + (−acm)pj
+ ma(bx)cm−1

(2.1)

for some polynomials T(x), U(x) ∈ Z[x]. As j ≥ 1, the first three summands on the
right-hand side of (2.1) belong to 〈p, gi(x)〉2 for each i, 1 ≤ i ≤ t. So f (x) ∈ 〈p, gi(x)〉2
for some i, 1 ≤ i ≤ t, if and only if mabcm−1x + acm + (−acm)pj

= p(b1x + c2) does so.
Clearly, p(b1x + c2) belongs to 〈p, gi(x)〉2 for some i if and only if either p divides
both b1, c2 or p � b1 and the polynomials b̄1x + c̄2, xn + acm have a common root. One
can easily check that the polynomials b̄1x + c̄2 and xn + acm have a common root if
and only if (−c̄2/b̄1)n = −acm, that is, if and only if p | [(−acm)bn

1 − (−c2)n]. Hence,
f (x) � 〈p, gi(x)〉2 for any i if and only if either p | b1 and p � c2 or p does not divide
b1[(acm)bn

1 + (−c2)n]. This proves the theorem in case (iii) by virtue of Theorem 2.1.

Case (iv): p � ab and p | c. In this case, f (x) = xm(xn−m + abm). If m ≥ 2, then x
is a repeated factor and it is easy to check that f (x) ∈ 〈p, x〉2, that is, p always
divides [ZK : Z[θ]] by Theorem 2.1. So, assume now that m = 1. By (1.1),
p | (n − 1), say n − 1 = pls′ with p � s′. Write xs′ + ab = g1(x) · · · gt(x) + pH(x), where
g1(x), . . . , gt(x) are monic polynomials which are distinct as well as irreducible
modulo p and H(x) ∈ Z[x]. Applying Lemma 2.2 to h(x) = xs′ + ab, we can write
f (x) = x(xn−1 + ab) + ac as
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f (x) = x
[( t∏

i=1

gi(x) + pH(x)
)pl

+ pT(x)
t∏

i=1

gi(x) + p2U(x) + ab + (−ab)pl
]
+ ac,

(2.2)

where T(x), U(x) belong to Z[x]. Note that x, ḡ1(x), . . . , ḡt(x) are distinct irreducible
factors of f̄ (x). Since l ≥ 1, the first three summands inside the square bracket on the
right-hand side of (2.2) belong to 〈p, gi(x)〉2 for each i, 1 ≤ i ≤ t. So f (x) ∈ 〈p, gi(x)〉2
for some i, 1 ≤ i ≤ t, if and only if (ab + (−ab)pl

)x + ac = p(b2x + c1) does so. Clearly,
the polynomial p(b2x + c1) belongs to 〈p, gi(x)〉2 for some i if and only if either p
divides both b2, c1 or p � b2 and the polynomials b̄2x + c̄1, xn−1 + ab have a common
root. The polynomials b̄2x + c̄1 and xn−1 + ab have a common root if and only if
(−c̄1/b̄2)n−1 = −ab. Thus, f (x) ∈ 〈p, gi(x)〉2 for some i if and only if either p divides
both b2, c1 or p � b2 and p | [(−ab)bn−1

2 − (−c1)n−1]. So we conclude that p does not
divide [ZK : Z[θ]] if and only if m = 1 and either p | b2 with p � c1 or p does not divide
b2[(ab)bn−1

2 + (−c1)n−1]. This proves the theorem in case (iv).

Case (v): p � abc and p | m. As p | D f , p divides n in view of (1.1). Write n = s′pk,
m= spk with p� gcd(s′, s) so that f (x)= (xs′)pk

+a(bx + c)spk
. Set h(x)=xs′ +a(bx + c)s.

Let t ∈ Z be an integer such that a = apk
+ pt. Then one can easily check that

f (x) ≡ h(x)pk
(mod p). Let h(x) ≡ g1(x)d1 · · · gt(x)dt (mod p) be the factorisation of h(x)

into a product of irreducible polynomials modulo p with gi(x) ∈ Z[x] monic and di > 0.
Write

f (x) = h(x)pk
+ pt(bx + c)m −

pk−1∑
j=1

(
pk

j

)
(xs′)pk−j(a(bx + c)s) j.

Now f (x) = (g1(x)d1 · · · gt(x)dt )pk
+ pM(x) for some M(x) ∈ Z[x]. Since k > 0, by

Theorem 2.1, p does not divide [ZK : Z[θ]] if and only if M(x) is coprime to h̄(x),
which holds if and only if the polynomial

1
p

[
pt(bx + c)m −

pk−1∑
j=1

(
pk

j

)
(xs′)pk−j(a(bx + c)s) j

]

is coprime to h(x) modulo p. This proves the theorem in case (v).

Case (vi): p � abcm. Since p | D f and p � abcm, it follows from (1.1) that p � n(n − m).
Let β be a repeated root of f̄ (x) = xn + ā(b̄x + c̄)m in the algebraic closure of Z/pZ.
Then

f̄ (β) = βn + ā(b̄β + c̄)m = 0̄; f̄ ′(β) = n̄βn−1 + m̄āb̄(b̄β + c̄)m−1 = 0̄. (2.3)

On substituting n̄βn−1 = −m̄āb̄(b̄β + c̄)m−1 in the first equation of (2.3), we see that

(bβ + c)m−1(ab(n − m)β + nac) ≡ 0 (mod p).
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Observe that (bβ + c) � 0 (mod p), otherwise β = 0̄ in view of the first equation of
(2.3) which is not possible as p � ac. Therefore, keeping in mind that p � abcn(n − m),

β ≡ − nc
b(n − m)

(mod p) (2.4)

is the unique repeated root of f̄ (x) in Z/pZ and it can be easily checked that β has
multiplicity 2. Assuming that β is a positive integer satisfying (2.4), we can write

f (x) = (x − β + β)n + a(b(x − β + β) + c)m,

=

n∑
k=0

(
n
k

)
βn−k(x − β)k + a

( m∑
k=0

(
m
k

)
(bβ + c)m−kbk(x − β)k

)
,

= (x − β)2g(x) + f ′( β)(x − β) + f ( β),

where f ′(x) is the derivative of f (x) and

g(x) =
n∑

k=2

(
n
k

)
βn−k(x − β)k−2 + a

( m∑
k=2

(
m
k

)
(bβ + c)m−kbk(x − β)k−2

)

is in Z[x]. Then

f̄ (x) = (x − β)2ḡ(x), (2.5)

where ḡ(x) ∈ (Z/pZ)[x] is separable. Write g(x) = g1(x) · · · gt(x) + ph(x), where
g1(x), . . . , gt(x) are monic polynomials which are distinct as well as irreducible modulo
p and h(x) ∈ Z[x] monic. Therefore, we can write

f (x) = (x − β)2
( t∏

i=1

gi(x) + ph(x)
)
+ f ′(β)(x − β) + f (β).

So, by Theorem 2.1, p does not divide [ZK : Z[θ]] if and only if M(x) is coprime to
x − β, where

M(x) =
1
p

[p(x − β)2h(x) + (x − β) f ′(β) + f (β)],

that is, f (β) � 0 (mod p)2. By (2.4), since p � abcmn(n − m), we see that f ( β) � 0
(mod p)2 if and only if (nncn−m + (−1)n+mbn(n − m)n−mmma) � 0 (mod p)2. This final
case completes the proof of the theorem. �

3. Proof of Proposition 1.4

The following two results on Galois groups will be used in the proof of
Proposition 1.4.

THEOREM 3.1 [1, Theorem 2.1]. Let f (x) ∈ Z[x] be a monic irreducible polynomial of
degree n, having a root θ. Let p be a rational prime which is ramified in Q(θ). Suppose
that f (x) ≡ (x − c)2φ2(x) · · · φr(x) (mod p), where (x − c), φ2(x), . . . , φr(x) are monic
polynomials over Zwhich are distinct and irreducible modulo p. Then the Galois group
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of f (x) over Q contains a nontrivial automorphism which keeps n − 2 roots of f (x)
fixed.

LEMMA 3.2 [4, Lemma 2]. Let f (x) be an irreducible polynomial of degree n ≥ 2. If
the Galois group of f (x) over Q contains a transposition and a p-cycle for some prime
p > n/2, then the Galois group is Sn.

PROOF OF PROPOSITION 1.4. Let α be any root of f (x), so that [Q(α) : Q] = q. By
the fundamental theorem of Galois theory, the Galois group of f (x), say G f , contains
a subgroup whose index is q. By Lagrange’s theorem, q divides the order of G f . So,
by Cauchy’s theorem, G f has an element of order q. Hence, G f contains a q-cycle.
Now we show that G f contains a transposition. By hypothesis, there exists a prime
p such that p | D f and p � abcm. As in (2.5) in the proof of Theorem 1.1(vi), f (x) ≡
(x − β)2g1(x) · · · gt(x) (mod p), where x − β, g1(x), . . . , gt(x) are monic polynomials over
Z which are distinct and irreducible modulo p. Also, if K = Q(θ) with θ a root of f (x),
then keeping in mind the hypothesis p2 � D f and the relation D f = [ZK : Z[θ]]2dK , we
see that p | dK . Hence, p is ramified in K. Therefore, by Theorem 3.1, the Galois group
of f (x) contains a transposition. Hence, by Lemma 3.2, the Galois group is Sq. �
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