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Let M and L be quadratic lattices over the maximal order of an
algebraic number field. In case of dealing with representations of M
by L, they sometimes assume certain indefiniteness and the condition
rank L-rank M > 3. In this case, representation problems are reduced
not to global but to local problems by virtue of the strong approximation
theorem for rotations and of the fact that for regular quadratic spaces
U,V over a non-archimedian local field there is an isometry from U to
VifdimV — dim U > 3. On the contrary, global properties seem to be
strongly concerned if we omit one of those two assumptions. As an
example we prove in §1 that there is a sublattice of codimension 1 which
characterizes L in a certain sense. In §2 we prove as its application
that certain Selberg’s zeta functions are linearly independent.

We denote by Q, Z, @, and Z, the rational number field, the ring
of rational integers, the p-adic completion of @, and the p-adic comple-
tion of Z. We mean by a quadratic lattice L over Z (resp. Z,) a Z (resp. Z,)-
lattice in a regular quadratic space U over Q (resp. @,), and by definition
rank L = dim U. For a quadratic lattice L over Z (or Z,) we denote by
Q) and B(z,y) the quadratic form and the bilinear form associated
with L 2B(z,y) = Qx + %) — Q(x) — Q(%)), and by dL the determinant
of (B(e;,e,)) where {e;} is a basis of L over Z (or Z,). dL is uniquely
determined for a quadratic lattice L over Z, and for a quadratic lattice
L over Z,, dL is unique up to the squares of units in Z,. For two
ordered sets (a,, @y, * * +, @), (by, by, - - +, b,), we define the order (a,, @y, - - -, @)
< (®,b,, ---,b,) by either a, = b; for ¢ < k and a; < b, for some k < n
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or a; = b, for any 1.
Let L be a quadratic lattice over Z,; then L has a Jordan splitting
L=L-| L, | --- | L, where L, is a p%*-modular lattice and «, < a,

< ... <ay. Wedenote by t,(L) the ordered set (@, -+, 0y« +, Az, < -+, g
rank Ly m

For simplicity we denote £,(Z,L) by t,(L) for a quadratic lattice L over
Z.

§1. LEMMA. Let L be a Z,lattice in o regular quadratic space U
over Q,; then L has a Z,~submodule® M satisfying the following con-
ditions 1), 2):

1) dM #0, rank M =rank L — 1, and M is a direct summand of
L as a module.

2) Let L' be a Z,lattice in U containing M; then L’ =L if dL’
= dL, and t,(L) > t,(L).

Proof. Firstly we assume that L is modular; then we may assume
that L is unimodular without loss of generality by scaling. Let L’ be
a lattice in question in 2); then dL’ = dL, ¢,(I/) > ¢,(L) imply that L’
is also unimodular. Suppose that L has an orthogonal base, that is,

L = _7|: Z,v;. We put M =711 Z,v;; then M satisfies 1), and M is uni-
=1 i=1

modular. Hence M splits L/ and L' =M | aZ,v, for acQ, Since L’

is unimodular, e is a unit. This means L’ = L. If L does not have

k
an orthogonal base, then p =2 and L = | Z,Ju,,v,], where Z)[u,;,v,] =
i=1

O 1) for i<k, and =2 Ne=0ory. PtM="1
1 o) fore , and Z,[ug, vi] = 1 9 (c=0o0r1). Put —i‘l‘lz’*[u“vi]

| ZJu, + ve]; then Q(u; + vy) = 4¢ + 2 #= 0 implies dM # 0. The rest
of 1) is obvious. Since a unimodular lattice kj_l Z,Ju;, v;] splits L,L’ and
i=1
M, we may assume k = 1 to prove 2). Now we have L = Z,[u, v], M
= Z,u + v], where Qu) = Q) = 2¢, B(u,v) = 1, and L’ is a unimodular
lattice containing # + v. Since Q(u + v) = 2(2¢ + 1), # + v is maximal
in L’. Hence L' = ZJ[u + v,0u + bv] for some a, b in @, From the
assumption that L’/ is unimodular follows that B(u + v, au + bv) =
(@ 4 b)2c + 1) is a unit and Q(au + bv) = 2¢(a® + b%) + 2ab is in Z,.
Put ¢ + b = x; then z is a unit. Qau + bv) = 2(2¢c — 1)a* — 2(2¢ — 1ax

* We mean a finitely generated module by a module for brevity in this paper.
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+ 2c¢x*e Z, implies a ¢ Z,. Hence we get a,bc Z,, and L' = L. Coming

j_ L,, where

back to general cases, let L be a quadratic lattice and L =
. i=1

L, is p*-modular and a, < --- < a,. Denote by M; a submodule of L,
which satisfies 1), 2) in case of I = L; in Lemma and put M = kI L, | M,.
i=1

Obviously M satisfies the condition 1). Let L’ be a lattice in question
in 2); then from the assumptions £,(L") > t,(L), L’ O M follows that L,
splits L,M and L/ (82:15 in [2]). Hence we have only to prove the
Lemma for the orthogonal complements of L, in L,L’ and M. By in-
duction it suffices to prove it in case of k = 1. This was proved firstly.

We call M a characteristic submodule of L.

THEOREM. Let L be a Z-lottice in a regulor quadratic space U over
Q; then L has a Z-submodule M satisfying the following conditions 1), 2):

1) dM +# 0, rank M =rank L — 1, and M is a direct summand of
L as a module.

2) Let L’ be a quadratic lattice over Z in some regular quadratic
space U’ over Q satisfying dL’ = dL, rank I’ = rank L, t,(L") > t,(L)
for any prime p. If there is an isometry ¢ from M to L’ such that o(M)
18 a direct summand of L’ as a module, then L’ is isometric to L.

Proof. Let rank L = 2; by scaling we may assume that a matrix

’ 4
(%’,” 9 C,) corresponding to L satisfies that a/, b/, ¢/ are integers such that

(a,b',¢)=1, ¢/ > 0. From the classical theory we know that there is
an element % in L such that Q(u) = 2p, where p is a prime with (p, 2dL)

=1, Hence L has a matrix (%p 22) where 0 < b <p. Let ¢ be an

integer such that ¢2 = —dLmodp and 0 < e <9p. From dL = 4dpc — b®
follows b = e or p — e. If there is an integer x such that dL = 4px — €7,
then there is no integer ¥y satisfying dL = 4py — (p — e)>. Therefore
the condition 0 < b < p determines b uniquely. Now we put M = Zlu].

If L’ satisfies the condition 2), then L’ has a matrix (%22 22::) ", ¢’

€ Q), since L’ contains a primitive vector % with Q) = Q(u) = 2p.
t(L") > t,(L) implies b”,c¢” ¢ Z, for any prime ¢q. Hence b”,c¢” are in-
tegers, and we may assume 0 < b” < p. As above we have b” =b.
Hence L’ is isometric to L. Let rank L be larger than 2. By scaling
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we may assume that the scale of L is in Z, and L is not negative de-
finite. For brevity we denote Z,N by N, for a quadratic lattice N over
Z. For a prime p dividing 2dL we can take an element v, in L, such
that v, is in the orthogonal complement of a characteristic submodule
of L,. Put Q(,) = u,p"», where @ is the quadratic form associated with
L and u, is a unit of Z,, and r, > 0. We take a prime ¢ such that
(¢,2dL) =1 and qp'];[dL p™* = Q(v;) mod I! for any prime ! dividing 2dL and

a sufficiently large fixed integer t. Put a =¢q [[ p"; then Q(L,) con-

P|2dL
tains o for a prime p|2dL, since a'Q(v,) is a square of a unit of Z,.

If a prime p does not divide 2dL, then L, is unimodular and Q(L,) = Z,
(92:1b in [2]). Therefore from the non-negative-definiteness of L follows
that U = QL represents a by virtue of the Minkowski-Hasse theorem.
Since a7'Q(v,) is a square of unit of Z, for p dividing 2dL, we may
assume that Q(v,) = a and the orthogonal complement of v, in L, is a
characteristic submodule of L,. We can take an element v in U such
that Q(v) =@, and v and v, are sufficiently near if p|2dL. Put S =
{p;veL,, and o,v € L, for a rotation ¢, with ord, 6,(¢c,) = 1 mod 2}, where
6, stands for the spinor norm; then py2dL if peS. We take a prime

h+#2 such that & = [| pmod (2dL)* and ( —‘;LdL) =1. Put u = o(v),
pES
where ¢ is a rotation of U whose spinor norm is & [[ p (101:8 in [2]).
pPES

For a prime p with py2hqdL there is a rotation ¢, such that o,07'u
=g,weL, and ord,f,(c,) =0 or 1mod2 according to peS or peS
respectively, and then ord, 6,(s,67") = O mod 2. Hence there is a rotation
np such that 6,(y,) =1, 9,(w) € L, by virtue of 92:5 in [2] for p } 2hqdL.
If p = h, then there is a rotation 5, such that 5,(u) € L, since Q(u) = a
is a unit of Z, and L, is unimodular. Since 5,(w) splits L, and its

orthogonal complement N, in L, is a unimodular lattice with <~_—‘}lLN’L>

_{ —adL
- (=5

norm of 5, is 1 by virtue of 55:2a in [2]. For p|2dL put 5, =¢7';
then 7,(u) is sufficiently near to v, and 6,(y,) = 1. By the strong ap-
proximation theorem regarding the set {p; prime # ¢} as an indefinite
set for U, there is a rotation » such that 5 and 7, are sufficiently near
at both p dividing 2dL and p satisfying u ¢ L, for p f2qdL, and yL, =

) =1, N, is isotropic. Hence we may assume that the spinor
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L, otherwise. Put p(u) = w; then Q(w) =a and weL, if p = ¢. Since
7 and ¢~' are sufficiently near for »|2dL and w = 5e(v) is sufficiently
near to v, for p|2dL, hence the orthogonal complement of w in L, is a
characteristic submodule in L,. Moreover for p t2¢dL L, is unimodular
and Q(w) is a unit of Z,. This implies that the orthogonal complement
of w is also a characteristic submodule in L,. Put M = {xeL;z | w}.
Then a submodule M of L satisfies the condition 1) and dM = ¢"m, where
q is a prime with ¢ Y 2dL and a prime p|2dL if p|m, and » > 0, and
moreover M, is a characteristic submodule of L, for p ++ q. Let L’ be
a quadratic lattice in question in 2). Since L’ represents M and dL’ =
dL, U’ = QL' is isometric to U = QL. Hence we may assume that L’
is in U and L’ D M. Since M, is a characteristic submodule of L, for

p # q, Lj, = L, for p #+ q. Take a basis {w,} of L, such that M, = nj_l Z,w;
=1

(n = rank L) and ord, Q(w,) <- - - < ord, Q(w,_,) ; then a matrix correspond-
ing to L, is

a,q™ b,
: 0
0 Op_,1Q""* bn—l
by-++  bay b )
where a; is a unit of Z, and 0 < < --- < 7,_,. Since the determinant
of this matrix is a unit of Z,, we see easily r,=..-=7,.,=0. By

n—2
taking w, — > a;'b,w, instead of w,, we may assume that b, = ... =
i=1

b,_, = 0 in the matrix. Then N, = Z,[w,_;, w,] is unimodular and —dN,
=b:_, — @, bqg*. If r,.,>1, then b,_, is a unit, and —dN, is a
square of a umit of Z,. If r,_, =0, then M, is unimodular. Hence L,
has a basis 2, ---,2, such that z; | Z,[z,_,,2,] for ¢t <n — 2, Qz,_) =
Qz,) =0, B(Zy_1,2,) =1 and My, = Z,[2,, - -+, 2n_y, Zn_y + UgQ"2,], Where u,
is a unit. Since L} is unimodular and contains M, primitively, we get
L, = ZJz, - -,2,.,] 1 K,, where K, is unimodular and z,_; + %,q"z, is
primitive in K,. Put K, = Z,[2,_; + %Q %, C2n_y + dz,] (¢, d e Q,); then
Q(czy_y + dz2y) € Zyy, BRn_y + UgQ"%0y C2yy + d2,) is @ unmit, if » > 0. If
r =0, then ¢,de Z,. Hence we have K, = Z,[2,_,, 2,] or Z,[q7"2,_,, ¢"2,].
From w | M and (2,., — %,9"%2,) | M, follows that two symmetries
Tws Tan_s-ugerz, 7€ €qual. Therefore we see Z Q" 21y Q"%0) = 14 Zy[20 1, 24l
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Thus we get L' = L or r,L since L, =¢,L,, = L, for p # q, and L, = L,
or r,L,. This completes our proof.

For brevity we call M a characteristic submodule of L.

Remark. Our proof shows:

Let the scale of L be in Z and rank L > 3; if a direct summand M
of L satisfies

1) M, is a characteristic submodule of L, if p|2dL,

2) dM = q"m, where q is a prime with ¢ y2dL, r > 0 and p|2dL
if a prime p divides m,
then M is a characteristic submodule of L.

If we can take r = 0 or 1, then ¢(M) is a direct summand of L’ as
a module in the assertion 2) if ¢(M) is a submodule in L’. If rank L
# 3 and L is indefinite, then we can easily show to take » = 1. In de-
finite cases analytic methods will be required.

§2. Let S, T be n X n rational symmetric matrices. We say that S, T
are equivalent if and only if there is an element U in GL(n,Z) such
that S[U] = T. For a rational symmetric matrix S = (s;;) we define a
quadratic lattice L = Zle, ---,e,] by B(e;,e;) = s;;. L is called the
quadratic lattice corresponding to S. Then dL = |S|.

LEMMA. Let S, be positive definite rational matrices with |S;| = d
ond rank = n, and suppose that they are not equivalent. Put 6(Z,S,)
= > et SilAD  ywhere G runs over My, (Z), and Z" P =‘Z, ImZ > 0;
then 6(Z,S;) are linearly independent.

Proof. Obviously we may assume that S; is integral. Denote by
L, the quadratic lattice corresponding to S;; then dL; = d. Put 6(Z,S,)
= > a;(Te"=T», For |T|+# 0, a,(T) is the number of isometries from
the quadratic lattice corresponding to T to L,. Suppose that 4(Z, S;) are
linearly dependent and ) ¢;0(Z,S;) = 0 with each ¢; = 0. Let p,, 0, ---,
p, be all primes dividing 2d, and A, be the set of L, whose ¢,(L,) is
minimal in the set {{,,(L;)}. Inductively we define the set A,,, as fol-
lows; Ay, is the set of L, whose t,,,.(L;) is minimal in {¢,,, (L,); L; € A,}.
For L; in A, we take a characteristic submodule M, such that (i), is
a characteristic submodule of (L,), if p|2d, and dM; = qj'm;, where g,
is a prime with ¢; Y2d, and p|2d if a prime p divides m; (Proof of

Pr+1
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Theorem in §1). Put r = ]];‘nelil r;, and for some L, in A, and its char-
51[1: t
acteristic submodule M; we have dM,; = qim,. If there is an isometry
o from M; to L;, then ¢ is extended to the isometry from QL; to QL,,
and ¢ '(Lj),, D (M,),,. By definition of a characteristic submodule we
get o7'(L,),, = (Ly,, and L, is in A,. Inductively we obtain ¢7'(L,), =
(L;), for p|2d and L, is in A,. Suppose that ¢(M;) is not a direct summ-
and of L,; then there is a direct summand N of L; such that N C ¢(M,)
and rank N = rank M;. From o '(L,), = (L;), for p|2d follows (M,), C
¢ '(N), C (L;),. Hence we have (M), = o"'(N), for p|2d since (M), is
a direct summand of (L;),, and dN = qi'm,;, ' <r —2<r. Hence N
is a characteristic submodule of L; if n > 3 (Remark in §1). This con-
tradicts the minimality of . In case of n =2, from the eclassical
theory we can take r, = r = 1. Hence ' < 0 is a contradiction. There-
fore o(M;) is a direct summand of L;. Hence L; is isometric to L, by
virtue of Theorem in §1. This means that we have a,(T) + 0 and a,(T)
=0 if j # ¢ for the matrix corresponding to M,;. This contradicts ¢, + 0.

Remark 1. Put 6,(Z,S;) = 3 em'"®d€D  where G runs over primitive
matrices in M, , ,(Z). The proof of Lemma states that 6,(Z,S,) are
linearly independent.

Remark 2. Let the class number of even integral positive definite
quadratic forms over Z with det = 1, rank = 8k be h(8%k). Then we have
h(8k) linearly independent Siegel modular forms with weight 4k, degree
8k — 1 defined by 6(Z,S,) as above. The dimension of the space spanned

by the corresponding Dirichlet series > _ o) _
>0 e(T) | T

Mg 5:(Z); S;[X] = T} and T runs over the representatives of equivalence
classes of positive definite integral matrices, and «(T) = the order of the
group of units of T, is equal to the dimension of the space spanned by
the Epstein zeta functions of S, by Theorem 4 in p. 298 in [1] and it
ammounts to [k/3] + 1, since the space of elliptic modular forms with
weight 4k is spanned by theta functions, and its dimension is [k/3] + 1.
Numerically we know A(8) =1, h(16) = 2, h(24) = 24, w(32) > 8.10%

Let S = (s;;) be a positive definite real matrix with rank =n. L
denotes a Z-lattice Zle,, ---,¢,] which has an inner product defined by
B(e;, e;) = s;;. For a submodule M = Z[f,, .-+, fn] of L we denote
det (B(f:, f) by dM. Denote by 2, ---,2,_, a system of n — 1 complex

, where a(T) = #{X e
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variables and by s, ---,8, a system of n complex variables, the two be-
ing related by the equations

zk:8k+1—sk+%’ k:1’29"',n_‘1-
Now the Selberg’s zeta function is defined by
C*(S; 815 8as s sn) = Z (dLn——l)_zn_l'(dLn-z)_z"_2 e (dLl)—h )

where L, runs over direct summands of L;,, with rank L, = k and L,
= L. This is absolutely convergent for Rez, > 1 1 < k < mn) and sat-
isfies certain functional equations (Theorem 1. p. 263 in [1]). Our aim
in this section is to prove

THEOREM. Let S, be positive definite rational matrices with rank = n,
|8;] = d. If they are not equivalent with each other, then {*(S;; s, - -+, 8,)
are linearly independent as functions of s,, -+ -, 8,. Especially the Selberg’s
zeta function is a complete analytic class invariant.

Proof. Theorem is equivalent to the linear independence of 6,(Z, S;)
by the Mellin transform in case of n =2 and it is true by virtue of
Remark 1. Suppose that Theorem is true for n — 1 but false for =;
then there are positive definite rational matrices S; with rank = », [S;]
= d’ such that

Z%C*(Sﬁ&, ""sn) =0 ’

where S; are not equivalent with each other. Put

n=2 s/ (e n—2
WY) = Uy g... p oY) = |V pZ D 2 [T IYIUL ™,

where Y is positive definite and of rank = n — 1, U runs over the factor
* %k

set GLn —1,2)/|| - |eGLn -1, 2)}, Y=(
0 =

— 8¢ + 3. This is a GroBen-character in the sense of §10 in [1]. We

define a function E;(s) by

k
——
Y],; *

N *> and 2, = Sz,

R(s) = L 0,GY, 8) | Y] w(¥-Ydv

where F' is the Minkowski’s domain of reduced matrices in the space
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of all positive definite matrices with rank = n — 1 and dv = | Y| [] dys;.
§<t

Putting
0p(7;Y, S’i) = Z: ai(T)e~2ntr(TY) ,
>0
Ri(s) = J‘ Z ai(T)e—Zntr(TY) |Yls u(Y—l)dQ)
FT>0

= ai((;')) - e =T | Y s (Y dw ,
& Y(n—1)>0

where T runs over representatives of equivalence classes of positive de-
finite rational matrices of rank =n — 1,

= g-D@-D/4(Qr)A=ms "ﬁl I'(s—co Y a,(T) \T|*w(T) ,
E=1 e(T)

where ¢; is a certain complex number (p. 94 in [1]), thus we get

R«,;(S) — n.(n—l)(n—-2)/4(2n.)(1—n)s nl:[I F(S _— C:c)C*(Si; S;, cee, 3;;) s

k=1
where s; is defined by
te= S — S+t k<n—1), —s+ Shan/t—1) =5, —s, +%.
k=1

Hence our assumption implies > a;E;(s) = 0. On the other hand, from
Remark 1 follows that 3 @,0,(Y, S;) = > a(T)e %*=T¥) ig not zero. This
yields that there is a T, such that a(T,) = 0. Regarding > a;R,(s) as
Dirichlet series with respect to s, we obtain

a(T)

D) wT) =0,

2.

where T runs over representatives of classes with |T| =|T,|. This con-

tradicts our assumption since |T[7#% “ "™ 4(T) is by definition the Sel-

berg’s zeta function of positive definite matrix 7T®-?.
COROLLARY. Let f(Z2) = > a(T)e* =% he a Siegel modular form of
degree n. If the corresponding Dirichlet series

a(T)u(T)
o ()| TP
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nil 23/
with a GréBen-character w(T) as |T[~ " E*(T; 81,85 -+ 5 8,) 1S zero as a
function of s,s,---,s,, then a(T) =0 for T > 0.
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