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Abstract 1 

This study extends the loss function-based parameter estimation method for diagnostic 2 

classification models proposed by C. Ma, de la Torre, et al. (2023, Psychometrika) to consider 3 

prior knowledge and uncertainty of sampling. To this end, we integrate the loss function-based 4 

estimation method with the generalized Bayesian method. We establish the consistency of 5 

attribute mastery patterns of the proposed generalized Bayesian method. The proposed 6 

generalized Bayesian method is compared in a simulation study and found to be superior to the 7 

previous nonparametric diagnostic classification method—a special case of the loss function-8 

based method. Moreover, the proposed method is applied to real data and compared with 9 

previous parametric and nonparametric estimation methods. Finally, practical guidelines for the 10 

proposed method and future research directions are discussed.  11 

Keywords: diagnostic classification models, parameter estimation, loss function-based 12 

method, generalized Bayesian method 13 
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Generalized Bayesian Method for Diagnostic Classification Models  1 

1. Introduction 2 

Learning is an important aspect of human life. The current status of individual knowledge 3 

or depth of understanding must be evaluated to ensure efficient learning. Test analysis models 4 

called diagnostic classification models (DCMs; Rupp et al., 2010; von Davier & Lee, 2019) have 5 

been popularly employed to capture an individual's learning status. Notably, DCMs provide 6 

useful statistical tools to reveal individuals' current learning status based on the test's item 7 

responses. Latent knowledge or cognitive elements are called attributes and expressed as latent 8 

categorical variables in DCMs. Moreover, DCMs are known as restricted latent class models 9 

(e.g., Rupp & Templin, 2008; Xu, 2017), wherein each possible set of attributes represents a 10 

latent class. In other words, attribute mastery patterns indicate the attributes that are either 11 

mastered or not mastered. Therefore, one of the DCMs' final outputs is the estimate of the 12 

attribute mastery patterns of individuals or attribute mastery probabilities. 13 

Various parameter estimation methods for the DCMs have been actively developed. 14 

Parametric and nonparametric estimation methods are commonly used in DCMs. Parametric 15 

estimation methods assume parametric item-response functions and structural models. Therefore, 16 

parametric estimation methods employ a likelihood function under the assumed model and 17 

include (penalized or regularized) maximum likelihood estimation (e.g., Chen et al., 2015; de la 18 

Torre, 2009; C. Ma, Ouyang, et al., 2023) and Bayesian estimation methods (e.g., Culpepper, 19 

2015; Yamaguchi & Okada, 2020; Yamaguchi & Templin, 2022b), incorporating prior 20 

distributions for model parameters. Numerous parametric estimation methods have been 21 

developed and their properties have been studied (e.g., von Davier & Lee, 2019). 22 

On the other hand, nonparametric methods (e.g., Chiu & Douglas, 2013; Chiu et al., 23 

2018) do not use probabilistic item-response models; instead, they use an ideal response to 24 

define a type of discrepancy function, which will be formally defined in a later section. Such 25 

discrepancy functions are defined based on the distance between each item's ideal and actual 26 

responses. Intuitively, nonparametric methods directly estimate attribute mastery patterns, which 27 
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minimize the discrepancy function. Therefore, nonparametric methods do not require a 1 

probabilistic item-response function. Nonparametric methods exhibit satisfactory statistical 2 

properties, such as consistency under certain conditions (Chiu & Köhn, 2019; Wang & Douglas, 3 

2015). 4 

Recently, a general parameter estimation method that can uniformly express parametric 5 

and nonparametric methods was developed by C. Ma, de la Torre, et al. (2023). The unified 6 

estimation method developed by C. Ma, de la Torre, et al. (2023) is a loss function-based 7 

estimation method for DCMs. If we select cross-entropy for a loss function, its minimization 8 

corresponds to maximizing the joint maximum likelihood (Chiu et al., 2016). The distance or 9 

discrepancy function in nonparametric methods is a well-known loss function. Additionally, by 10 

adding penalty terms to a cross-entropy loss function, we obtain the maximum a posteriori 11 

(MAP) estimates, classical Bayesian estimates, to minimize it. These examples indicate that the 12 

loss function-based estimation method is flexible and can represent various estimation methods 13 

in a unified manner. Furthermore, a unified estimation algorithm for the loss function-based 14 

estimation method was available. 15 

However, loss function-based methods exhibit certain limitations. First, these methods 16 

only provide point estimates, which may be problematic because we cannot evaluate how point 17 

estimates vary due to sampling or estimation variations. Therefore, we cannot evaluate the 18 

uncertainty of attribute mastery using the loss function-based method. Furthermore, attribute 19 

mastery probabilities for each individual are not expressed in the loss function-based method. 20 

This is the same problem that occurs in DCMs' nonparametric estimation method. However, 21 

attribute mastery probabilities represent a more nuanced situation than attribute mastery pattern 22 

results, with or without mastery. Another limitation of these methods is that prior information on 23 

weight parameters in the generalized nonparametric method that defines generalized ideal 24 

responses is generally not considered. However, DCM users may have prior knowledge of the 25 

test items' conjunctive and disjunctive nature. If so, domain-specific knowledge must be included 26 

to improve parameter estimates. 27 
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It is not only loss function-based methods that have limitations that need to be addressed; 1 

several limitations of previous parametric and nonparametric estimation methods likewise need 2 

to be noted. First, parametric estimation methods need to specify data-generating distributions, 3 

which determine the likelihood function. The likelihood function provides a connection between 4 

data and model parameters such as attribute mastery patterns. Moreover, likelihood functions 5 

make it possible to evaluate estimation uncertainty with the asymptotical theory within the 6 

maximum likelihood framework or the posterior distribution within the Bayesian framework. 7 

However, the data-generating process is not always specified. DCMs are part of the educational 8 

measurement model family that need various constraints and limitations, making it difficult to 9 

specify the model. 10 

Some of the limitations of the nonparametric methods are the same as those of the loss 11 

function-based methods. For instance, current nonparametric methods for DCMs cannot evaluate 12 

the uncertainty of attribute mastery estimates. The nonparametric methods for DCMs were 13 

developed in studies with small sample sizes (Chiu & Douglas, 2013). Ultimately, the 14 

nonparametric method for DCMs can be applied to individuals; however, the parameter 15 

estimates need to be evaluated with variability of parameter estimates. Currently, the 16 

nonparametric methods simply select attribute mastery patterns to minimize prespecified 17 

distance functions so the parameter uncertainty evaluation is not included in the framework. The 18 

parameter estimates with nonparametric methods can be changed by small differences of the loss 19 

function. One main purpose of DCMs is the diagnosis of individual knowledge. Thus, such 20 

variations in parameter estimates due to small differences in the distance functions may be a 21 

fundamental problem for application. 22 

To overcome these limitations and extend the previous loss function-based estimation 23 

method for DCMs, we employ the generalized Bayesian (GB; Bissiri et al., 2016) method. The 24 

usual Bayesian parameter update determines the likelihood function and updates the model 25 

parameters in the likelihood with the observed dataset. By contrast, the GB method can express 26 

parameter updating with a dataset via loss functions. Therefore, Bayesian inference is applicable 27 
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to nonparametric-based estimation methods as well as to likelihood-based methods. Moreover, 1 

other benefits of the GB method are as follows. First, the GB method originally assumes the ℳ-2 

open setting (Bernardo & Smith, 2009, Chap. 6), which implies that the GB method provides a 3 

valid inference even if the assumed model does not match the true data-generating mechanism. 4 

Various DCMs have been developed; however, selecting an appropriate item response function 5 

that expresses the true data-generating mechanism is not always possible. The GB method does 6 

not require an entire data-generating model but instead, sets a loss function related to the 7 

parameter sets of interest. This means that we do not need to find a correct data-generating 8 

model, which is always unknown and often misspecified. We expect the GB method to overcome 9 

the practical difficulties of DCMs' applications. 10 

Second, the GB method allows the use of flexible loss functions and priors. The 11 

uncertainty of the parameters expressed in the loss functions is easily demonstrated in the 12 

generalized posteriors generated using the GB method. In other words, the GB method can 13 

handle the amount of uncertainty of attribute mastery estimates. Not only point estimates but also 14 

uncertainty variation is important for careful decisions of diagnostic evaluation. The GB method 15 

provides a useful tool for addressing the above problems, which both parametric and 16 

nonparametric methods have. Furthermore, the generalized posterior is easily obtained using a 17 

Markov chain Monte Carlo (MCMC) routine, such as the Metropolis-Hastings method. Third, 18 

we can control the relative importance between the dataset and the prior via the learning rate 19 

parameter. If the obtained data's quality is questionable, an inference that is completely 20 

dependent on the data may lead to inappropriate decisions. In such cases, the data's relative 21 

importance can be reduced. The learning rate parameter enables a more flexible inference. 22 

Based on these discussions, we develop a GB method to overcome the limitations of the 23 

loss function-based estimation method for DCMs (C. Ma, de la Torre, et al., 2023). The 24 

remainder of this paper is organized as follows: The second section demonstrates the basic setup 25 

of the DCMs and the previous loss function-based estimation method. The third section provides 26 

the GB method's fundamentals and its application to DCMs based on their loss functions. 27 

https://doi.org/10.1017/psy.2024.20 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.20


 7 

 

Therein, the MCMC algorithm for a generalized posterior is also discussed. The GB method's 1 

mathematical properties under certain conditions are discussed in the fourth section. The fifth 2 

and sixth sections comprise simulation and real data analysis examples of generalized Bayesian 3 

inference for DCMs, wherein we compare previous nonparametric estimation methods in a 4 

simulation study. Finally, the seventh section serves as the discussion, where the limitations of 5 

the GB inference and future directions of DCMs' estimation methods are discussed. 6 

2. Model Setup and Previous Estimation Methods 7 

2.1. Model Setup of DCMs 8 

First, we express an individual's attribute mastery pattern using a vector of length 9 

𝐾, 𝛂௜ ∈ {0,1}௄, where 𝑖 ∈ {1,2, … , 𝐼}. The 𝑘-th element of the attribute mastery pattern vector 10 

𝛂௜ is α௜௞ ∈ {0,1}, where 𝑘 ∈ {1,2, … , 𝐾}; it takes one if individual 𝑖 masters attribute 𝑘, and 11 

otherwise, it takes 0. In this study, we assume unconditional attribute mastery patterns, where all 12 

possible attribute mastery patterns and the number is 𝐿 = 2௄. Therefore, the 𝑙 ∈ {1,2, … , 𝐿}-th 13 

attribute mastery pattern can be written as 𝛂௟. The set of attribute mastery patterns for all 14 

individuals is 𝒜 = {𝛂௜}௜ୀଵ
ூ . To define the parametric measurement model, we also need to 15 

specify the diagnostic relationship between the attributes and item sets. 16 

The diagnostic relationship between the attributes and test items is called the 𝒒-vector, 17 

𝒒௝ ∈ {0,1}௄ ∖ {𝟎௄}, where 𝑗 ∈ {1,2, … , 𝐽}; if the 𝑘-th attribute is required for item 𝑗, 𝑞௝௞ = 1; 18 

otherwise 𝑞௝௞ = 0. Additionally, 𝟎௄ is a vector of length 𝐾 and all its elements are 0. Here 19 

we assume there is no item with 𝒒௝ = 𝟎௄. The Q-matrix (Tatsuoka, 1985) is a 𝐽 × 𝐾 matrix 20 

defined by ൫𝒒ଵ
ୃ, 𝒒ଶ

ୃ, … , 𝒒௃
ୃ൯

ୃ
. 21 

Parametric DCMs define their measurement models using attribute mastery patterns and 22 

a 𝒒-vector. For example, one of the most general DCMs, known as the log linear cognitive 23 

diagnostic model (LCDM; Henson et al., 2009) uses an item parameter vector 𝛌௝ =24 

൫λ௝଴, λ௝ଵ, … , λ௝ଵଶ…௄൯
ୃ

, and the measurement model of 𝑋௜௝ = 1, which is a conditional response 25 

probability of individual 𝑖 for item 𝑗, is 26 
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 𝑃൫𝑋௜௝ = 1 ∣ 𝛌௝ , 𝒒௝ , 𝛂௜ = 𝛂௟൯ =
exp ቀ𝑓൫𝛌௝ , 𝒒௝ , 𝛂௜൯ቁ

1 + exp ቀ𝑓൫𝛌௝ , 𝒒௝ , 𝛂௜൯ቁ
, (1)  

where 𝑓൫𝛌௝ , 𝛂௜൯ is: 1 

 

𝑓൫𝛌௝ , 𝒒௝ , 𝛂௜൯= log
𝑃൫𝑋௜௝ = 1 ∣ 𝛌௝, 𝒒௝ , 𝛂௜ = 𝛂௟൯

1 − 𝑃൫𝑋௜௝ = 1 ∣ 𝛌௝ , 𝒒௝ , 𝛂௜ = 𝛂௟൯
 

= λ௝଴ + ෍ λ௝௞𝑞௝௞α௜௞

௄

௞ୀଵ

+ ෍ ෍ λ௝௞௞ᇲ𝑞௝௞𝑞௝௞ᇲα௜௞α௜௞ᇲ

௞ᇲழ௞

௄

௞ୀଵ

+ ⋯ + λ௝ଵ …௄ ෑ 𝑞௝௞α௜௞

௄

௞ୀଵ

. 

(2)  

The LCDM has several parameters. The first parameter is the intercept λ௝଴, which determines 2 

the baseline correct item response probability. Attribute mastery patterns that do not master any 3 

attributes requiring item 𝑗 take response probability. The main effect parameters were 4 

λ௝ଵ , λ௝ଶ, … , λ௝௄; each parameter affected the correct item response probabilities with the 5 

corresponding attributes. The first-order interaction parameter λ௝௞௞ᇲ is the effect of 6 

simultaneously mastering the attributes 𝑘 and 𝑘ᇱ. Similarly, we introduce the highest 7 

interaction term as λ௝ଵଶ…௄. General cognitive diagnosis models that are similar to LCDM have 8 

also been proposed in the literature, including the generalized DINA (GDINA) model (de la 9 

Torre, 2011) and general diagnostic model (GDM; von Davier, 2008). 10 

As some attributes are not measured by item 𝑗, the number of estimated item 11 

parameters under LCDM is 2∑ೖ  ௤ೕೖ ≤ 2௄. Moreover, notably, one-to-one mapping exists 12 

between the LCDM item parameters and conditional item response probabilities (Rupp et al., 13 

2010). Therefore, it is convenient to use conditional item response probabilities to develop 14 

parameter-estimation methods. The same strategy was adopted in previous studies (Yamaguchi 15 

& Okada, 2020; Yamaguchi & Templin, 2022b), where DCMs are a restricted version of latent 16 

class models (e.g., Rupp & Templin, 2008; Xu & Shang, 2018). 17 

 Therefore, let the correct item response probability be parameter θ௝௟: 18 

 θ௝,𝛂೗
= 𝑃൫𝑋௜௝ = 1 ∣ 𝛌௝ , 𝒒௝ , 𝛂௜ = 𝛂௟൯, (3)  
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Additionally, the attribute mastery mixing parameters π𝛂భ
, π𝛂మ

, … , π𝛂ಽ
∈ (0,1) are defined as 1 

π𝛂೗
= 𝑃(𝛂௜ = 𝛂௟), satisfying ∑௟  π𝛂೗

= 1. From this notation, the complete data likelihood 2 

function of the LCDM is  3 

 ℒ( 𝒜, Θ, 𝛑 ∣ 𝑋 ) = ෑ  

ூ

௜ୀଵ

 ෑ  

௃

௝ୀଵ

 ෑ  

௅

௟ୀଵ

  ቄπ௟θ
௝,𝛂೗

௫೔ೕ ൫1 − θ௝,𝛂೗
൯

ଵି௫೔ೕ
ቅ

ℐ(𝛂೔ୀ𝛂೗)

, (4)  

where 𝑋 = ൛𝑥௜௝ൟ
௜,௝ୀଵ

ே,௃
, Θ = ൛θ௝௟ൟ

௝,௟ୀଵ

௃,௅
, 𝛑 = ൫π𝛂భ

, π஑మ
, … , π𝛂ಽ

൯
ୃ

, and ℐ(⋅) is an indicator function. 4 

 We add some remarks on the correct item response probabilities for item 𝑗. First, as 5 

mentioned previously, some attribute mastery patterns have the same item response probabilities 6 

because of the setting of the 𝒒 vector. Moreover, some sub-models of the LCDM assume fewer 7 

parameters than the general LCDM and have parsimonious model forms. The model settings for 8 

each item can differ, but we assume that all test items have the same general LCDM form. 9 

 Second, the correct item response probabilities for item 𝑗 exhibit an ordinal 10 

relationship: These relationships are known as monotonicity constraints (Xu & Shang, 2018). 11 

The formal expression of the monotonicity constraints proposed by Xu and Shang (2018) is 12 

 max
𝛂:𝛂≽𝒒ೕ

 θ௝,𝜶 = min
𝛂:𝛂≽௤ೕ

 θ௝,𝛂 ≥ θ௝,𝛂ᇲ ≥ θ௝,𝟎಼
, (5)  

where we write 𝛂 ≽ 𝒒௝ if 𝛼௞ ≽ 𝑞௝௞ , ∀𝑘; otherwise, 𝛂 ⋡ 𝒒௝. These constraints imply that the 13 

patterns mastering all skills measured in item 𝑗൫𝛂: 𝛂 ≽ 𝒒௝൯ should have the highest of all the 14 

patterns. By contrast, all non-mastering patterns had the lowest correct item response probability. 15 

The middle mastering patterns satisfying 𝜶ᇱ ⋡  𝒒௝  have response probabilities between these 16 

two probabilities. 17 

2.2. Loss Function-Based Parameter Estimation 18 

This section introduces the loss function-based parameter estimation method proposed in C. Ma, 19 

de la Torre, et al. (2023). First, we describe certain elements of the loss function-based method. 20 

In this framework, we introduce the length 𝐽 centroid parameter vector: 𝛍𝛂೗
=21 

൫μଵ,𝛂೗
, μଶ,𝛂೗

, … , μ௃,𝛂೗
൯

ୃ
∈ ℝ௃. Additionally, a penalty term for the mixing parameter π஑೗

 is 22 
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introduced as ℎ൫π஑೗
൯ ∈ ℝ. Furthermore, an element-wise loss function taking item response 1 

vector 𝒙௜ and a centroid parameter vector 𝛍𝛂೗
 is expressed as ℓ൫𝒙௜ , 𝛍𝛂೗

൯; its codomain is real 2 

positive number ℝା. The ℓ൫𝒙௜ , 𝛍𝛂೗
൯ is the individual-level loss function. Therefore, the loss 3 

function of the entire dataset is based on the individual-level loss function: 4 

 ℒ(𝒜, 𝛍, 𝛑) = ෍  

௅

௟ୀଵ

  ෍  

௜:𝛂೔ୀ𝛂೗

  ൛ℓ൫𝒙௜ , 𝛍𝛂೗
൯ + ℎ൫π𝛂೗

൯ൟ. (6)  

The second summation takes over the individuals with the attribute mastery pattern 𝛂௟.  5 

Parameter estimates are obtained to minimize the loss function defined above: 6 

 ൛𝒜መ, 𝛍ෝ, 𝛑ෝൟ = argmin
𝒜,𝛍,𝛑

 ℒ(𝒜, 𝛍, 𝛑). (7)  

Directly minimizing the above loss function is not easy; therefore, we use the iterative update 7 

rule instead. In the estimation algorithm, we first set initial parameters ൛𝛍(଴), 𝛑(଴)ൟ. When we 8 

have parameter estimates at 𝑡-th iteration, ൛𝝁(௧), 𝝅(௧)ൟ, the following update steps are repeated: 9 

 

Step 1: ൛𝒜(௧ାଵ)ൟ = argmin
𝒜

 ℒ൫𝒜, 𝛍(௧), 𝛑(௧)൯, 

Step 2: ൛𝛍(௧ାଵ), 𝛑(௧ାଵ)ൟ = argmin
𝛍,𝛑

 ℒ൫𝒜(௧ାଵ), 𝛍, 𝛑൯. 
(8)  

If the predetermined convergence criterion is satisfied, for example ϵ > 1 − ∑௜  ൬ℐቀ𝛂௜
(௧ାଵ)

=10 

𝛂௜
(௧)

ቁ൰ /𝐼, 0 < 𝜖 < 1, the update process is stopped, and the parameter estimates become output: 11 

{𝒜መ, 𝛍ෝ, 𝛑ෝ} = ൛𝒜(௧ାଵ), 𝛍(௧ାଵ), 𝛑(௧ାଵ)ൟ. 12 

Many previous estimation methods can be viewed as special cases of the general loss 13 

function formulation framework. The joint likelihood estimation of the parametric DCM is a first 14 

example. In the following, we focus on the deterministic inputs noisy, “and” gate model (DINA 15 

model; Junker & Sijtsma, 2001; MacReady & Dayton, 1977; Maris, 1999) as an example 16 

because it is well-known and considered the most parsimonious DCM. The loss function further 17 

used to obtain the MAP estimation, which is the negative of the sum of the log-likelihood and 18 
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log-prior density functions, is also presented. Subsequently, a nonparametric classification 1 

method (NPC; Chiu & Douglas, 2013; Wang & Douglas, 2015) and generalized NPC (GNPC; 2 

Chiu & Köhn, 2019; Chiu et al., 2018) are formulated under the above framework. Furthermore, 3 

NPC and GNPC are extended to the GB framework in a later section. 4 

The DINA model is the simplest and most fundamental DCM, which is a special case of 5 

the LCDM. The DINA model assumes only the intercept and the highest interaction terms of the 6 

LCDM item parameters. Let the subscript set of attributes measured by item 𝑗 be 𝒦 =7 

൛𝑘; 𝑞௝௞ = 1, 𝑘 = 1,2, … , 𝐾ൟ and let the LCDM kernel for the DINA model be reduced to 8 

 𝑓൫𝛌௝ , 𝒒௝ , 𝛂௜൯ = 𝜆௝଴ + 𝜆௝𝒦 ෑ  

௞∈𝒦

 α௜௞ . (9)  

In the conventional DINA formulation, two-item response probabilities are represented by 9 

estimating the 𝑔௝  and slipping 𝑠௝ parameters:  10 

 𝑔௝  =
exp ൫λ௝଴൯

1 + exp ൫λ௝଴൯
, (10)  

 
1 − 𝑠௝  =

exp ൫𝜆௝଴ + 𝜆௝𝒦 ∏  ௞∈𝒦  𝛼௜௞൯

1 + exp ൫𝜆௝଴ + 𝜆௝𝒦 ∏  ௞∈𝒦  𝛼௜௞൯
. 

(11)  

The guessing parameter 𝑔௝  indicates the chance level of a correct item response for attribute 11 

mastery patterns that lack at least one attribute required by item 𝑗. The slipping parameter 𝑠௝ is 12 

the incorrect response probability of all mastering-attribute mastery patterns required by item 𝑗. 13 

Both 𝑔௝ and 𝑠௝ can be represented as functions of the ideal responses 14 

 𝜂௝
஽ூே஺(𝛂௟) = ෑ  

௄

௞ୀଵ

 α௟௞

௤ೕೖ . (12)  

The ideal response represents the response of an individual who belongs to the 𝑙-th attribute 15 

mastery pattern for item 𝑗 without errors. Then, the 𝑔௝  and 𝑠௝ are represented as conditional 16 

probabilities: 17 

 𝑔௝ = 𝑃൫𝑋௝ = 1 ∣ 𝜂௝
஽ூே஺(𝛂௟) = 0൯, (13)  

 𝑠௝ = 𝑃൫𝑋௝ = 0 ∣ 𝜂௝
஽ூே஺(𝛂௟) = 1൯. (14)  
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Using the item response probabilities, the centroid parameter under the DINA model is 1 

 θ௝௟ = 𝑔
௝

ଵିఎೕ
ವ಺ಿಲ(𝛂೗)

൫1 − 𝑠௝൯
ఎೕ

ವ಺ಿಲ(𝛂೗)
. (15)  

Assuming a cross-entropy loss, which is −log 𝑦, the likelihood-based loss function for the 2 

DINA model is 3 

ℒ(𝒜, 𝛍, 𝛑) = − ෍  

ூ

௜ୀଵ

 ෍  

௅

௟ୀଵ

 ℐ(𝛂௜ = 𝛂௟) ቎෍  

௃

௝ୀଵ

  ൛𝑥௜௝ log θ௝௟ + ൫1 − 𝑥௜௝൯ log൫1 − θ௝௟൯ൟ + log π𝛂೗
቏. (16)  

We assume ℎ൫π𝛂೗
൯ = − log π𝛂೗

. The loss function defined in Equation 16 is equivalent to a 4 

negative log complete likelihood function. Therefore, minimizing equation 16 corresponds to 5 

maximizing the likelihood function; the minimizers {𝒜ሗ , 𝛍̀, 𝛑̀} can be considered as the 6 

maximum likelihood estimate. 7 

 Subsequently, we examine the NPC and GNPC methods. Following Chiu and Douglas 8 

(2013), the loss function in the NPC method is defined by the Hamming distance between the 9 

individual item response vector and the ideal response vector: 10 

 ℓ൫𝒙௜ , 𝛍𝛂೗
൯ = ෍  

௃

௝ୀଵ

 ℓ൫𝑥௜௝ , μ௝,𝛂೗
൯ = ෍  

௃

௝ୀଵ

  ห𝑥௜௝ − η௝
஽ூே஺(𝛂௟)ห. (17)  

In the NPC method, the centroid parameter is the ideal response μ௝,𝛂೗
. The NPC estimates are 11 

obtained to minimize Equation 17 for each individual: 12 

 𝛂̀௜ = argmin
𝛂೗

෍  

௃

௝ୀଵ

  ห𝑥௜௝ − η௝
஽ூே஺(𝛂௟)ห, ∀𝑖. (18)  

Clearly, the Hamming distance is a loss function, and the NPC method is a loss function-based 13 

estimation method. 14 

 As introduced in Chiu et al. (2018), the GNPC is a type of generalization that employs 15 

DINA- and deterministic inputs noisy, “or” gate (DINO; Templin & Henson, 2006)-type ideal 16 

responses to define a generalized ideal response. The DINO-type ideal response is 17 
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 η௝
஽ூேை(𝛂௟) = 1 − ෑ  

௄

௞ୀଵ

  (1 − α௟௞)௤ೕೖ , (19)  

and η௝
஽ூேை(𝛂௟) becomes one if pattern 𝑙 masters at least one attribute required for item 𝑗; 1 

otherwise, it becomes 0. The generalized ideal response is then defined as 2 

 η௝
(௪)(𝛂௟) = 𝑤௝௟η௝

஽ூே஺(𝛂௟) + ൫1 − 𝑤௝௟൯η௝
஽ூேை(𝛂௟), (20)  

where 𝑤௝௟ ∈ [0,1] is a weight parameter that determines an item's tendency. If the item is more 3 

like DINA or conjunctive, 𝑤௝௟  is close to one. By contrast, a 𝑤௝௟ near zero means that the item 4 

is DINO-like or disjunctive in nature. The GNPC assumes a Euclidean distance for its loss 5 

function 6 

 𝑑 ቀ𝒙௝ , 𝛈(௪)(𝛂௟)ቁ = ෍  

ூ

௜ୀଵ

 ℐ(𝛂௜ = 𝛂௟) ቀ𝑥௜௝ − η௝
(௪)(𝛂௟)ቁ

ଶ

, (21)  

where 𝛈(௪)(𝛂௟) = ቀηଵ
(௪)(𝛂௟), ηଶ

(௪)(𝛂௟), … , η௃
(௪)(𝛂௟)ቁ

ୃ
. The weight parameter is estimated via 7 

𝑤̀௝௟ = 1 − ∑௜ୀଵ
ூ  ℐ(𝛂௜ = 𝛂௟)𝑥௜௝/∑௜ୀଵ

ூ  ℐ(𝛂௜ = 𝛂௟). The loss function of the GNPC is 8 

 ℒ({𝒜, 𝑊}) = ෍  

௃

௝ୀଵ

 ෍  

௅

௟ୀଵ

 𝑑 ቀ𝒙௝ , 𝛈(௪)(𝛂௟)ቁ = ෍  

௃

௝ୀଵ

 ෍  

௅

௟ୀଵ

 ෍  

ூ

௜ୀଵ

 ℐ(𝛂௜ = 𝛂௟) ቀ𝑥௜௝ − η௝
(௪)(𝛂௟)ቁ

ଶ

, (22)  

where 𝑊 = ൛𝑤௝௟ൟ
௝,௟ୀଵ

௃,௅
. The GNPC requires iterative updates of weight 𝑤௝௟  and attribute 9 

mastery patterns. The detailed update rule is described in Chiu et al. (2018). Note that if η௝
஽ூே஺ 10 

and η௝
஽ூேை are not distinguished for some items and attribute patterns, the weight value is fixed 11 

to a value close to zero or one. See Chiu et al. (2018) for a detailed discussion. 12 

 As demonstrated above, parametric and nonparametric estimation methods can be 13 

treated in a unified loss function-based framework (C. Ma, de la Torre, et al., 2023). However, 14 

these loss function-based parameter estimates usually only provide point estimates, and 15 

uncertainty quantification in the parameter estimates has been considered less serious. 16 

Furthermore, different specifications of the measurement model precipitate significantly different 17 

attribute mastery patterns (e.g., Li et al., 2016). However, assessing all possible measurement 18 
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models for all test items may be difficult. The GNPC is a promising estimation method that can 1 

be used in varied situations, even when the measurement model is unknown. However, prior 2 

knowledge of the weight parameters in the GNPC is often not considered. These problems can be 3 

solved using the generalized Bayesian method introduced in the following section. 4 

3. Generalized Bayesian Method for DCMs 5 

3.1. Construction of the Generalized Posterior 6 

The GB method is a decision theory under a model misspecification situation (Bissiri 7 

et al., 2016). In other words, the assumed model may not accurately represent the true data-8 

generating process, or the relationship between the model parameters and data may not be 9 

described via the assumed model, which is known as the ℳ-open situation (Bissiri et al., 2016, 10 

p. 1111). The GB method is a coherent belief update procedure that uses a loss function even in 11 

the ℳ-open situation. Thus, the GB method extends the applicability of the typical Bayesian 12 

methods, which require a likelihood function. 13 

Let datasets and parameter sets be 𝒚 and 𝚯, respectively. Additionally, the loss 14 

function and prior distribution are ℓ(𝒚; 𝚯) and 𝑝(𝚯). Then, the generalized posterior of the 15 

parameter 𝑝(𝚯) ∣ 𝒚) is 16 

 𝑝( 𝚯 ∣∣ 𝒚 ) ∝ exp൫−ωℓ(𝒚; 𝚯)൯ 𝑝(𝚯), (23)  

where ω is called the learning rate, a tuning parameter that controls a dataset's importance. 17 

Methods for determining the learning rate are still being studied (Wu & Martin, 2023); notably, 18 

no standard has been established thus far. The generalized posterior function is the result of 19 

updating the prior distribution based on the loss function. If we select a negative log-likelihood 20 

function for the loss function and ω = 1, the generalized posterior becomes the usual Bayesian 21 

posterior function.  22 

Bissiri et al. (2016, pp. 1106-1107) discusses some of the validity requirements for loss 23 

functions. First, the solution of the loss function must exist. Second, the loss function must 24 

satisfy the following condition: 25 
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 0 < න exp൫−ℓ(𝒚; 𝚯)൯ 𝑝(𝚯)𝑑𝚯 < ∞. (24)  

Some major loss functions considered in this study, such as the Hamming distance, Euclid 1 

distance, or cross-entropy loss, satisfy the above integral conditions. Additionally, Bissiri et al. 2 

(2016, p. 1107) identify natural assumptions for deriving a generalized posterior from a loss 3 

function. We should also point out that we only need to construct loss functions given a set of 4 

data for only the parameter of interest to employ the GB method. In our manuscript, the GB 5 

method employed the loss function for attribute mastery patterns. The loss function is based on 6 

the GNPC: quadratic of Euclid distance. It satisfies the above conditions and is valid. 7 

3.3 General Form of the Generalized Bayesian Method for DCMs 8 

The general form of the GB method for DCMs can be expressed using Equations 6 and 9 

23; 10 

 

𝑝( {𝒜, 𝛍, 𝛑} ∣∣ 𝑋 )∝ exp(−ω{ℒ({𝒜, 𝛍, 𝛑})}) 𝑝(𝛍)𝑝(𝛑), 

∝ exp ቌ−ω ෍ ෍ ൛ℓ൫𝒙௜ , 𝛍𝛂೗
൯ + ℎ൫π𝛂೗

൯ൟ

௜:𝛂೔ୀ𝛂𝒍

௅

௟ୀଵ

ቑቍ 𝑝(𝛍)𝑝(𝛑). (25)  

The penalty term was ℎ൫π𝛂೗
൯ = − log π஑೗

. 11 

Using the GNPC loss function defined in Equation 22 and adding a penalty term for the 12 

mixing parameter 𝛑, the generalized posterior is  13 

𝑝( {𝒜, 𝝁, 𝝅} ∣∣ 𝑋 ) ∝ exp ቌ−ω ෍ ෍ ቐℐ(𝛂௜ = 𝛂௟) ቎෍  ቀ𝑥௜௝ − η௝
(௪)(𝛂௟)ቁ

ଶ
௃

௝ୀଵ

቏ − log π𝛂೗
ቑ

ூ

௜ୀଵ

௅

௟ୀଵ

ቍ 𝑝(𝑊)𝑝(𝛑). (26)  

Notably, we treat weight 𝑊 as a parameter and assume a prior instead of a centroid parameter 14 

𝛍 because the centroid parameter 𝛈(௪)(𝛂௟) is determined by two ideal responses and weight 15 

parameters; thus, it is natural. Priors for the mixing parameters and weight parameters are 16 

assumed Dirichlet and Beta distributions: 17 
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 𝑝(𝛑) ∝ ෑ π௟

ஔ೗
బିଵ

 

௅

௟ୀଵ

, (27)  

 𝑝(𝑊) ∝ ෑ  

௃

௝ୀଵ

 ෑ  

௅

௟ୀଵ

 𝑤
௝௟

௔ೕ೗
బ ିଵ

൫1 − 𝑤௝௟൯
௕ೕ೗

బ ିଵ
, (28)  

where 𝛿ଵ
଴, 𝛿ଶ

଴, … , 𝛿௅
଴ ≥ 0, ∑௟  δ௟

଴ = 1 and 𝑎௝௟
଴ , 𝑏௝௟

଴ ≥ 0. 1 

The posterior was numerically obtained using MCMC techniques, such as Metropolis-2 

Hastings within the Gibbs sampling method, or MCMC software, such as JAGS (Plummer, 3 

2003) or Stan (Carpenter et al., 2017). The conditional distribution of 𝛂௜ is categorical:  4 

 

𝑝(𝛂௜ ∣ 𝒙௜ , 𝑊, 𝛑) ∝ ෑ  

௅

௟ୀଵ

  𝑟௜௟
ℐ(𝛂೔ୀ𝛂೗)

, 

𝑟௜௟ =
ρ௜௟

∑ ρ௜௟௟
, 

ρ௜௟ = exp ቌ−ωℐ(𝛂௜ = 𝛂௟) ቎෍  

௃

௝ୀଵ

  ቀ𝑥௜௝ − η௝
(௪)(𝛂௟)ቁ

ଶ
቏ − log π𝛂೗

ቍ. 

(29)  

The conditional distribution of the mixing parameters was a Dirichlet distribution: 5 

 

𝑝( 𝛑 ∣ 𝑋 )∝  ෑ π௟

ஔ೗
∗ିଵ

 

௅

௟ୀଵ

, 

δ௟
∗ = ω ෍ ℐ(𝛂௜ = 𝛂௟)

ூ

௜ୀଵ

+ δ௟
଴. 

(30)  

The conditional distribution of the weight parameter is not easily expressed; therefore, its 6 

MCMC update was performed using the Metropolis-Hastings method. The candidate was 7 

generated by a random walk using a uniform distribution: 𝑤௝௟
(cand)

= 𝑤௝௟
(now)

+ 𝑢, 𝑢 ∼8 

Unif(−0.05, 0.05). Using the above distributions and updating rules, the MCMC for a 9 
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generalized posterior is numerically approximated as follows: The mixing and weight parameters 1 

were initialized as ൛𝛑(଴), 𝑊(଴)ൟ and the hyperparameters were set to δ௟
଴ = 1, ∀𝑙 and 𝑎௝௟

଴ =2 

2, 𝑏௝௟
଴ = 1, ∀𝑗, 𝑙 for example. Then, at the 𝑡-th MCMC iteration (𝑡 = 1,2, … , 𝑇 ∈ ℕ), 𝛂௜

(௧ାଵ) is 3 

generated from the categorical distribution expressed in Equation 29 with the 𝑡-th MCMC 4 

sample of the parameter set at ൛𝛂(௧), 𝑊(௧)ൟ. The (𝑡 + 1)-th MCMC sample of the mixing 5 

parameter is generated from the Dirichlet distribution shown in Equation 30 using 𝒜(௧ାଵ). 6 

𝑊(௧ାଵ) is obtained using the Metropolis-Hastings method. 7 

Under the hyperparameter setting, the Dirichlet distribution for mixing parameters 8 

becomes a uniform distribution. This represents a scenario in which we have no information 9 

about the population attribute mastery ratio. In this means, the prior of the attribute mastery 10 

pattern has almost no information. The mean and SD of the prior of the weight parameter are 11 

0.667 and 0.236, respectively. Under this setting, interval [0.158,0.987] covers 95% of the 12 

support of the parameter. The data analyst expected the items in the test to have a slightly 13 

conjunctive nature, which means the items behave more like in the DINA model than in the 14 

DINO model. However, the expectation is not particularly strong because the interval covering 15 

95% of the support of the parameter is wide. This interpretation indicates that the prior conveys 16 

some information about the weight parameters. 17 

4. Mathematical Properties of the Proposed Method: Consistency of the Maximum a 18 

Posteriori Estimators 19 

First, we formally introduce the estimators under the GB framework and subsequently 20 

discuss their statistical behaviors under certain conditions. The Appendix provides the full 21 

proofs. In this work, we assume that the item responses were generated from the Bernoulli 22 

distribution with parameter Θ defined by Equation 3; the attribute mastery patterns were 23 

generated from a categorical distribution with a mixing parameter 𝛑. Although several 24 

alternatives exist, MAP estimation provides a relatively natural and simple choice. Furthermore, 25 

MAP estimators of the GB method (𝒜መ, Θ෡, 𝛑ෝ) are estimators of the true parameters 26 

https://doi.org/10.1017/psy.2024.20 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.20


 18 

 

(𝒜଴, Θ଴, 𝛑଴) in the data-generating process. These are obtained by minimizing the loss function 1 

of (𝒜, Θ, 𝛑) under the constraint imposed by the Q matrix, as follows: 2 

 ℒ(𝒜, Θ, 𝛑 ∣ 𝑋) = ෍  

ூ

௜ୀଵ

 ൮෍  

௃

௝ୀଵ

 ℓ൫𝑋௜௝ , θ௝,𝛂೔
൯ + ℎ൫π𝛂೔

൯൲ + ෍  

௝,௟

  log 𝑓௝,𝛂೗
൫θ௝,𝛂೗

൯ + ෍  

௅

௟ୀଵ

  log 𝑔𝛂೗
൫π𝛂೗

൯, (31)  

where ℎ(⋅) is a continuous nonincreasing regularization function of the proportion parameters 3 

π஑, often taken as ℎ(π) = − log π ; 𝑓௝,𝛂 and 𝑔𝛂 are the prior density functions of θ௝,஑ and π𝛂, 4 

respectively. Note that we consider a model sequence indexed by (𝐼, 𝐽), where both 𝐼 and 𝐽 5 

tend to infinity, while 𝐾 is held constant. 6 

Several regularity conditions are required to ensure the consistency of MAP estimators. 7 

The first assumption is as follows. 8 

Assumption 1. There exists δଵ, δଶ > 0 such that 9 

min
ଵஸ௝ஸ௃

 ቊ min
𝛂೗∘𝒒ೕ

బஷ𝛂೗ᇲ ∘𝒒ೕ
బ

  ቀθ௝,𝛂೗

଴ − θ௝,𝛂
೗ᇲ

଴ ቁ
ଶ

ቋ ≥ δଵ, 10 

and δଶ ≤ min௝,஑  θ௝,஑
଴ < max௝,஑  θ௝,஑

଴ ≤ 1 − δଶ. 11 

The first condition in Assumption 1 serves as an identification condition for local latent classes 12 

at each item level. The gap denoted by δ measures the separation between the latent classes, 13 

thereby quantifying the signals' strength. The second condition in Assumption 1 keeps the true 14 

parameters away from the boundaries of the parameter space to prevent unusual behaviors of the 15 

element-wise loss. 16 

 Assumption 2 pertains to the discrete structures of 𝐐 and is expressed as the following. 17 

Assumption 2. All proportion parameters π஑ are strictly greater than zero, and there exist 18 

൛δ௃ൟ ⊂ (0, ∞) such that  19 
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 min
ଵஸ௞ஸ௄

 
1

𝐽
෍  

௃

௝ୀଵ

 ℐ൛𝒒௝
଴ = 𝒆௞ൟ ≥ δ௃. (32)  

This assumption holds that 𝐐 includes an increasing number of identity submatrices, 𝐈௄, as 𝐽 1 

grows. Notably, by attaching the subscript 𝐽 to the lower bound (32) in Assumption (2), we 2 

allow it to decrease to zero as 𝐽 approaches infinity. As the following theorems show, if the rate 3 

at which variable δ௃ decreases meets certain mild requirements, the consistency of (𝒜መ, Θ෡) can 4 

be ensured. 5 

The subsequent assumption concerns the element-wise loss function ℓ. 6 

Assumption 3. The loss function ℓ(𝑋, θ) is twice continuously differentiable in θ on (0,1) 7 

and ∃𝑏௅ > 𝑏௎ > 0 such that 𝑏௅ ≤ 𝜕஘మℓ(𝑅, θ) ≤ 𝑏௎ for θ in a compact subset of (0,1). The 8 

total loss (31) is minimized at class means given the subjects' membership, as in, θ෠௝,𝛂 =9 

∑௜ୀଵ
ூ  ℐ{𝛂ෝ௜ = 𝛂}𝑋௜௝/∑௜ୀଵ

ூ  ℐ{𝛂ෝ௜ = 𝛂}. 10 

Assumption 3 imposes smoothness conditions on the element-wise loss function, rendering it 11 

convex. The upper bound of the second derivative is necessary to control the remaining term in 12 

the expansion of the first-order condition, and the lower bound allows us to quantify the 13 

estimator drift caused by the given priors. For the sample average assumption, we can verify that 14 

both ℓଶ and cross-entropy loss functions satisfy Assumption 3.  15 

Assumption 4 states that the true parameters minimize the element-wise loss functions 16 

and quantify the deviations when θ is not a true parameter. This assumption is expressed as 17 

follows: 18 

Assumption 4. There exist constants η ≥ 2, 𝑐 > 0 such that 19 

 𝔼ൣℓ൫𝑋௜௝ , θ൯൧ − 𝔼 ቂℓ ቀ𝑋௜௝ , θ
௝,஑೔

బ
଴ ቁቃ ≥ 𝑐 ቚθ − θ

௝,஑೔
బ

଴ ቚ
஗

. (33)  
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Assumption 4 holds for both the ℓଶ loss and the cross-entropy loss. 1 

 Assumption 5 is a technical assumption that allows us to control the effects of prior 2 

distributions on the estimators. 3 

Assumption 5. ℎ(⋅) in (31) is a continuous nonincreasing function of the proportion 4 

parameters, and 𝐶 > 𝑐 > 0 exists such that for any 𝑗 and 𝛂, 𝐶 > 𝑓௝,஑, 𝑔஑ > 𝑐 on a compact 5 

parameter subspace of (0,1). 6 

We can verify that the Dirichlet and Beta distributions satisfy this assumption. 7 

 Under the aforementioned regularity conditions, we demonstrate the consistency 8 

properties of the GB method with constraints for different attribute mastery patterns 𝛂௟  and 9 

𝛂௟ᇲ , 𝑙 ≠ 𝑙ᇱ (C. Ma, de la Torre, et al., 2023; Xu, 2017): 10 

 ൫𝛂௟ ∘ 𝒒௝ = 𝛂௟ᇲ ∘ 𝒒௝൯ ⟹ ቀθ௝,𝛂೗
= θ௝,𝛂

೗ᇲ ቁ, (34)  

where 𝛂 ∘ 𝒒௝ = ൫αଵ ⋅ 𝑞௝ଵ , … , α௄ ⋅ 𝑞௝௞൯ denotes the element-wise product of binary vectors 𝛂 11 

and 𝒒௝. This implies that the item response parameter θ௝,𝛂 depends only on whether the 12 

attribute mastery pattern 𝛂 contains the required attributes 𝒦௝: = ൛𝑘 ∈ [𝐾]; 𝑞௝௞ = 1ൟ for item 13 

𝑗. 14 

 Based on the above five assumptions, we can derive consistent results for the GB 15 

method. The following main theorem first validates the clustering consistency of the GB method 16 

under the constraint (34), providing a bound for its convergence rate in recovering the attribute 17 

mastery patterns. 18 

Theorem 1 (Clustering Consistency). Consider (𝒜መ, Θ෡, 𝛑ෝ) = arg min(𝒜,஀,𝛑)  ℒ(𝒜, Θ, 𝛑 ∣ 𝑋) 19 

under the constraint (34). When 𝐼, 𝐽 → ∞ jointly, suppose ඥ𝐽 = 𝑂(𝐼ଵି௖) for some small 20 

constant 𝑐 ∈ (0,1). Under Assumption 1 to Assumption 5. the clustering error rate is 21 
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1

𝐼
෍  

ூ

௜ୀଵ

 ℐ{𝛂ෝ௜ ≠ 𝛂௜
଴} = 𝑜௣ ቆ

(log 𝐽)஫̀/஗

δ௃(𝐽)ଵ/஗
ቇ, (35)  

where for a small positive constant ϵ̀ > 0. 1 

Theorem 1 bounds the error of the estimator 𝒜ሗ , which establishes the clustering consistency of 2 

the MAP estimators of the GB method, allowing the rate δ௃ to go to zero. Notably, the scaling 3 

condition only assumes that 𝐽 goes to infinity jointly with 𝐼, but at a slower rate. 4 

 The following result demonstrates that the MAP estimator of the item parameters can be 5 

uniformly estimated consistently as 𝐼, 𝐽 → ∞: 6 

Theorem 2 (Item Parameters Consistency). Under Assumptions 1 to 5 and the scaling conditions 7 

given in Theorem 1, we have the following uniform consistency result for all 𝑗 ∈ [𝐽] and 𝜶 ∈8 

{0,1}௄: 9 

 max
௝,஑

 หθ෠௝,஑ − θ௝,஑
଴ ห = 𝑜௣ ൬

1

√𝐼ଵି௖̀
൰ + 𝑜௣ ቆ

(log 𝐽)஫̀/஗

δ௃(𝐽)ଵ/஗
ቇ, (36)  

where 𝑐̀ and 𝜖  ̀ are small positive constants. 10 

On the first error term, the condition π𝛂 > 0 for all 𝛂 ∈ {0,1}௄ ensures that with probability 11 

one, there are enough samples within each class to provide accurate estimates of item 12 

parameters. Notably, 𝑐̀ the first error term arises because the number of parameters approaches 13 

infinity jointly with the sample size 𝐼, which causes a slight deviation from the optimal error rate 14 

of 𝑂௣(1/√𝐼). The maximum deviation max௝,஑  หθ෠௝,஑ − θ௝,஑
଴ ห is also affected by the classification 15 

error. This is indicated in the second error term 𝑜௣൫(log 𝐽)஫̀/δ௃ඥ𝐽൯. 16 

 We can easily establish the consistency of the mixing parameter estimator 𝛑̀. When 17 

ℎ(π) = − log π, the mixing parameters will be estimated as the sample average form 18 

∑௜  ℐ{𝛂଴ = 𝛂}/𝐼, which converge in probability to π஑
଴  because of the clustering consistency. 19 

Corollary 1 (Proportion Parameters Consistency). Under Assumptions 1 to 5 and the scaling 20 

conditions given in Theorem 1, when ℎ(π) is taken as − log π, we have πෝ஑ →
௉

π஑
଴ . 21 

 22 
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5. Simulation Study 1 

This section compares the previous (G)NPC and the corresponding GB methods using the 2 

loss functions in NPC and GNPC, named as GBNPC and GBGNPC, respectively. This 3 

simulation study primarily aims to assess the behavior of the GB method's parameter estimates 4 

under finite small sample and item situations. As the GBNPC and GNPC are based on loss 5 

function in nonparametric methods, the most interesting parameters are attribute mastery 6 

patterns. In this simulation study, we mainly focus on the comparisons of the point estimates 7 

from these methods. To represent the uncertainty of the estimates, we also present attribute 8 

mastery probabilities using the GBGNPC and GBNPC methods, which indicate the benefit of the 9 

proposed method against the nonparametric methods. 10 

The code for this simulation study is available on the Open Science Framework (OSF) 11 

webpage: https://osf.io/sau6j/. 12 

5.1. Simulation Settings  13 

Five factors are manipulated in the simulations. All factors had two conditions; hence, 14 

2ହ = 32 simulation settings were used. The first factor was the data-generating model: DINA or 15 

general DCM (e.g., LCDM). The DINA model condition is a simpler data-generating situation, 16 

whereas the general DCM model is more complex. The second factor was the Q-matrix; four or 17 

five attributes are listed in Tables 1 and 2. Table 1 contains 19 items: eight simple items (i.e., 18 

measuring only one attribute), six items measuring two attributes, five items requiring three 19 

attributes, and the most complex item measuring all four attributes. Table 2 lists 30 items: eight 20 

simple items, ten items measuring two attributes, and ten items measuring three attributes. 21 

Sample size was the third factor, with 30 or 300 participants assumed. The sample size 22 

setting of 30 participants mimicked classroom size. The sample size of 300 participants was 10 23 

times larger than that of other classroom settings. The fourth condition was attribute correlation: 24 

independent (ρ = 0) or highly correlated (ρ = 0.8). The independent attribute condition was 25 

unrealistic but represented an ideal condition. The highly correlated condition was more realistic 26 

because the DCMs application indicated a high correlation among attributes (e.g., von Davier, 27 
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2008). The fifth condition was item quality. The high-item-quality condition indicates a high 1 

description of all non-mastering attributes and all perfectly mastering attributes. In the high-item-2 

quality condition, the correct response probability of the all non-mastering pattern was 0.1 and 3 

that of the all-mastering pattern was 0.9. On the other hand, in the low-item-quality condition, 4 

the corresponding probabilities were 0.3 and 0.7. The correct item response probabilities of the 5 

intermediate mastering patterns are generated based on Yamaguchi and Templin (2022b) or 6 

Yamaguchi and Templin (2022a). 7 

The data generation process used herein was similar to those in previous studies, such 8 

as Chiu and Douglas (2013), Yamaguchi and Templin (2022b), and Yamaguchi and Templin 9 

(2022a). First, for each individual, we generated a continuous latent variable vector 𝛂̀௜ =10 

(ὰ௜ଵ, … , ὰ௜௄)ୃ from 𝐾-dimensional normal distributions with zero means and compound 11 

symmetry covariance with a correlation of 0 or 0.8, and variances of 1. Subsequently, the 12 

continuous latent variable vector ὰ௜ଵ was converted into an attribute mastery pattern. More 13 

precisely, if ὰ௜௞  was greater than Φ(𝑘/(1 + 𝐾))ିଵ, α௜௞ = 1; otherwise, α௜௞ = 0, where Φ(⋅14 

)ିଵ is the inverse cumulative normal distribution function. The simulated item responses were 15 

randomly generated using these attribute mastery patterns, an assumed data-generating model 16 

(DINA or general DCM), and item response probabilities. As mentioned in the previous section, 17 

the parameters of the priors in the GB method were set to 𝑎௝௟
଴ = 2, 𝑏௝௟

଴ = 1, ∀𝑗, 𝑙 and 𝛿௟
଴ = 1, ∀𝑙. 18 

The step size of the Metropolis update was fixed at 0.05. A one-chain MCMC with 1,000 19 

iterations was employed. The first 500 iterations are discarded as the burn-in period; therefore, 20 

500 MCMC samples were used to approximate the posterior distributions. 21 

The main target parameter is attribute masteries, and they are categorical latent 22 

variables. However, common MCMC convergence criteria, such as Gelman-Rubin's 𝑅ሗ , are for 23 

continuous variables, which means the indicators may not be applicable to categorical variables. 24 

Therefore, performing a convergence check of categorical variables in MCMC is not easy in this 25 

context. Instead of directly checking for the convergence of attribute mastery, we calculated the 26 

average correlations of the attribute mastery probabilities, which we estimated for the first and 27 
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second halves of the MCMC iterations after the burn-in period. If the estimated results of the 1 

attribute mastery probabilities with the first half after the burn-in period are consistent with those 2 

of the later MCMC iterations, we consider the attribute mastery results to be stable. 3 

The attribute mastery pattern of the 𝑖-individual was calculated based on the posterior 4 

attribute mastery probabilities. If the probability of the 𝑘-th attribute was greater than 0.5, the 5 

attribute was considered mastered. Each estimation method was evaluated using two attribute 6 

mastery recovery indices: attribute level agreement ratio (AAR) and pattern level agreement ratio 7 

(PAR). AAR and PAR were calculated as follows: 8 

 AAR௞ =
1

𝐼𝑀
෍  

ெ

௠ୀଵ

 ෍  

ூ

௜ୀଵ

 ℐቀὰ௜௞
(௠)

= α௜௞
(True )

ቁ, ∀𝑘 (37)  

 PAR =
1

𝐼𝑀
෍  

ெ

௠ୀଵ

 ෍  

ூ

௜ୀଵ

 ℐቀ𝛂̀௜
(௠)

= 𝛂௜
(True )

ቁ, (38)  

where 𝛂௜
(௠)

= ቀα௜ଵ
(௠)

, α௜ଶ
(௠)

, … , α௜௄
(௠)

ቁ
ୃ

 is an estimate of the attribute mastery pattern for 9 

individual 𝑖 in the 𝑚-th simulation, and 𝛂௜
(True )

= ቀα௜ଵ
(True )

, α௜ଶ
(True )

, … , α௜௄
(True )

ቁ
ୃ

 is the true 10 

attribute vector of individual 𝑖, where 𝑀 is the total number of simulations, which is 𝑀 =11 

100. 12 

5.2. Results 13 

Table 3 shows the results, which indicate correlations greater than 0.98. Therefore, this 14 

result can be interpreted as an indication that the MCMC iterations were stable and attribute 15 

mastery can be estimated from the MCMC samples after the burn-in period. 16 

Figures 1 and 2 present the simulation results of the DINA data generation with four- 17 

and five-attribute Q-matrix conditions, respectively. In this simulation, the AARs and PARs of 18 

the two Q-matrix conditions demonstrated similar tendencies; therefore, our discussion here 19 

focuses on the four-attribute Q-matrix condition. The high item quality conditions presented in 20 

the four left panels of Figure 1 indicated that all four estimation methods provide high AARs and 21 

PARs. The low-item-quality conditions presented in the four right panels of Figure 1 indicated 22 
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lower AARs and PARs than the high-item-quality conditions, and the low-item-quality 1 

conditions exhibited some differences among the four estimation methods. Attribute correlations 2 

under low-item-quality conditions affected AARs and PARs more significantly. Furthermore, 3 

GBNPC and GBGNPC demonstrated higher AARs and PARs than the corresponding NPC and 4 

GNPC methods under the 30-sample size, 0.8 attribute correlation, and low-item-quality 5 

conditions. Interestingly, GBNPC exhibited the highest AARs and PARs under the 300-sample 6 

size, 0.8 attribute correlation, and low-item-quality conditions. Moreover, under these conditions, 7 

GBGNPC had similar AARs and PARs to the NPC, and the GNPC produced the least optimal 8 

result. 9 

Figures 3 and 4 present the results of the general DCM data generation with four- and 10 

five-attribute Q-matrix conditions, respectively. Again, the AARs and PARs of the two Q-matrix 11 

conditions exhibited similar patterns; hereafter, we predominantly focus on results of the four-12 

attribute Q-matrix conditions. Under high-item-quality conditions, GNPC and GBGNPC 13 

outperformed NPC and GBNPC. Furthermore, under high-attribute correlation conditions, 14 

GBGNPC was superior to GNPC; the same pattern was observed between GBNPC and NPC 15 

under the same conditions. In the low-item-quality conditions presented in the four right panels 16 

of Figure 3, GBGNPC and GBNPC tended to have higher AARs and PARs than GNPC and 17 

NPC. In particular, a sample size of 300, a high attribute correlation, and low-item-quality 18 

conditions indicated better AARs and PARs for GBGNPC and GBNPC than GNPC or NPC. 19 

We also checked attribute mastery probabilities of the GBGNPC and GBNPC methods 20 

that represented uncertainty of parameter estimates. Figures 5 and 6 represent box plots of 21 

average attribute mastery probabilities of the four- and five-attribute conditions under the DINA 22 

model-based data-generating process. Interestingly, the GBNPC method tended to show higher 23 

average attribute mastery probabilities than the GBGNPC. The differences between the 24 

GBGNPC and GBNPC methods were relatively small in the first attribute but the discrepancy 25 

became larger as the attribute number increased. The later attributes were more difficult to 26 

master and the number of individuals mastering them was small. These tendencies also occurred 27 
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in the general data-generating process situations, which are shown in Figures 7 and 8. These 1 

posterior probabilities of attribute mastering represent estimation uncertainty, so we can carefully 2 

check the attribute mastery status. For example, the attribute mastery probabilities around cut-off 3 

values might represent indeterminacy of mastery or non-mastery. Such uncertainty quantification 4 

results cannot be obtained through the GNPC or NPC methods. 5 

In summary, NPC and GBNPC tended to have higher AARs and PARs under DINA 6 

data generation, low-item-quality conditions, and high attribute correlations. However, 7 

GBGNPC was sometimes similar to NPC under the DINA data generation conditions, whereas 8 

GNPC was the least optimal. By contrast, under general DCM data generation conditions, 9 

GBGNPC and GNPC performed better than GBNPC and GNPC for high-quality items. For low-10 

quality items, GBGNPC and GBNPC performed better. Based on these results, GBGNPC 11 

appears the optimal choice for attribute mastery estimation. If the DINA type item response 12 

mechanism is confirmed, GBNPC is the optimal choice among the four estimation methods from 13 

the perspective of attribute recovery. 14 

The possible reason for the superiority of the GBGNPC over the GNPC is prior 15 

settings. In our simulation setting, sample sizes were relatively small in the situations in which 16 

the nonparametric methods were employed. Under such conditions, estimation of weight 17 

parameters might be difficult for the GNPC, especially in the low-item-quality conditions. The 18 

GBGNPC, on the other hand, assumed priors for the weight parameters, and the prior conveyed 19 

information of item characteristics and succeeded in estimating attribute mastery patterns. 20 

Another reason may be that the GBGNPC can deal with uncertainty in parameter estimation. 21 

This means that the GNPC uses parameter estimates to minimize the loss function, which simply 22 

selects the attribute mastery pattern that provides the minimum value of loss function without 23 

considering the second or third best attribute mastery patterns. By contrast, the GBGNPC can 24 

consider and use the second-best attribute mastery pattern for estimating attribute mastery 25 

probabilities. If these considerations are correct, even if we use non-information priors for the 26 
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GNPC method, the GBGNPC may remain superior. The effects of prior settings are also an 1 

important topic for detailed research in future studies. 2 

In addition, the effects of manipulated factors are discussed here. First, attribute 3 

correlation affected attribute mastery recovery. The GB method provided better attribute mastery 4 

recovery than the nonparametric methods. The nonparametric loss could not include such 5 

information, but the generalized posteriors have such information based on the data. The 6 

attributes generally correlate with each other, making the GB methods generally better than the 7 

nonparametric methods. We did not explicitly include a loss related to the attribute correlations, 8 

but the GB method allows us to include a loss term of the attribute correlations or attribute 9 

structure. This may be a good extension for constructing a loss function for the GB method. 10 

Second, item quality also affected attribute mastery recovery results. The GB methods 11 

showed better results than the nonparametric methods, especially under low-item-quality 12 

conditions. In such conditions, prior information might help to improve attribute recovery. This 13 

means the GB method can utilize not only the loss function but also prior information. This 14 

makes the GB method the preferred method compared to the current nonparametric methods, 15 

which cannot do this. Thus, based on the simulation study, the GB methods are always better 16 

than the nonparametric methods from the perspective of attribute mastery recovery. 17 

6. Real Data Example 18 

The real data example aimed to compare the four estimation methods used in the 19 

simulation study and examine how these estimation methods provide different attribute mastery 20 

results. This real data comparison provided an example of the behavior of the proposed 21 

generalized Bayesian method for DCMs. 22 

To show the superiority of their proposed methods, W. Ma and Jiang (2021) used 𝑘-fold 23 

cross validation with the log marginal likelihood. From our understanding, the log marginal 24 

likelihood does not contain individual parameters that are attribute mastery patterns. In the cross-25 

validation procedure, model parameters estimated with a training data set are plugged in to 26 

calculate the log marginal likelihood of the test data set. In our context, the loss functions in the 27 
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GB method and nonparametric methods do not contain model parameters and only estimate 1 

attribute mastery patterns that relate to individuals. Therefore, the attribute mastery patterns in a 2 

training data set are not contained in a test data set. Exploring the appropriate quantitative 3 

evaluation for the GB method in the DCMs is an important direction for future research. 4 

6.1. Data Analysis Settings 5 

The Examination of the Certificate of Proficiency in English (ECPE) data were 6 

selected as an example. ECPE data have been analyzed in various previous studies, such as 7 

Templin and Hoffman (2013) and Templin and Bradshaw (2014). The ECPE data contained 8 

2,922 responses for 28 items. Table 4 presents a 28 × 3 Q-matrix that assumes three attributes: 9 

Morphosyntactic (αଵ), cohesive (αଶ), and lexical rules (αଷ). The settings of the GB methods 10 

were the same as those used in previous simulations. One difference was that we employed 11 

GNPC and NPC estimates as initial values for GBGNPC and GBNPC. The data analysis code 12 

can be obtained from the OSF webpage https://osf.io/sau6j/. 13 

5.2. Results  14 

The same correlations as in the simulation study were calculated. Again, the 15 

correlations of the three attributes with the GBNPC and GBGNPC methods were all greater than 16 

0.99. This indicated that the MCMC iterations for attribute mastery were stable. 17 

Table 6 lists the frequencies and ratios of the attribute mastery patterns for the four 18 

estimation methods. Several differences are observed in Table 6. First, GBGNPC and GBNPC 19 

estimated the pattern (001) to be lower than GNPC and NPC estimates. Second, as pattern (011) 20 

indicates, the frequency of pattern (011) for GBGNPC was the highest (1203), that for the GNPC 21 

was the second (955), that for the NPC was the third (522), and that for the GBNPC was the last 22 

(386). The GBGNPC and GBNPC produced lower frequencies than the GNPC and NPC for 23 

patterns (100), (101), and (110). The final difference is indicated in pattern (111). GBGNPC and 24 

GNPC had relatively smaller numbers than GBNPC and NPC. 25 

Table 5 shows the means and SDs of the attribute mastery probabilities for the 26 

GBGNPC and GBNPC methods. The attribute mastery probability for the first attribute 27 
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(Morphosyntactic rules) of GBGNPC was Mean = .551(𝑆𝐷 = .388) and that of GBNPC was 1 

Mean = .807(𝑆𝐷 = .326). The discrepancy was the largest among the three attributes. The 2 

attribute mastery probabilities for the second (cohesive rules) and third (lexical rules) attributes 3 

using the GBGNPC and GBNPC methods were higher than 0.90 so these attributes tended to be 4 

mastered. 5 

Table 7 shows the estimated attribute mastery patterns of GBGNPC and GNPC. A 6 

large portion of the GBGNPC pattern (011) corresponds to patterns (001), (001), and (010) of the 7 

GNPC. Furthermore, patterns (011), (100), (101), and (110) of the GNPC correspond to pattern 8 

(111) of the GBGNPC. From these results, the GBGNPC tended to overestimate the number of 9 

attributes compared with the GNPC. 10 

Table 8 presents the GBNPC's and NPC's estimated attribute mastery patterns. The 11 

results in Table 8 are similar to those of GBGNPC and GNPC. For example, patterns (000), 12 

(001), (010), and (010) with the NPC are sometimes estimated as pattern (011) in GBGNPC. 13 

Furthermore, patterns (000) to (110) in the NPC were classified as pattern (111) in the 14 

GBGNPC. Therefore, the GBNPC overestimates the number of attributes compared with the 15 

NPC. 16 

We checked individual differences between the GBGNPC and GNPC methods. Table 17 

9 shows that some individuals indicated the largest pattern discrepancy of attribute mastery 18 

between GBGNPC and GNPC methods. The GBGNPC and the GNPC provided 𝛂 = (0,1,1) 19 

and 𝛂 = (1,0,0), respectively. The response patterns did not indicate systematic tendency but 20 

the sum scores of the individuals ranged from 11-15, which meant they could answer more than 21 

half of the test items. The maximum sub-scores for attributes one, two, and three were 13, 6, and 22 

18, respectively, so the individuals in Table 9 received half points out of the maximum total sub-23 

scores. In addition, the sum scores of the individuals ranged from 11 − 15, which is about half 24 

the maximum sum-score of 28. Thus, the pattern (1,0,0) might saliently underestimate the 25 

latent attributes, making the pattern (0,1,1) possibly more likely. Furthermore, some attribute 26 

mastery probabilities were close to the cut-off value 0.5. For example, the mastery probability of 27 
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the third attribute for the ID 813 individual was 0.516. Additionally, the mastery probabilities of 1 

the first attribute for the ID 1060 and 2378 individuals were 0.418 and 0.420. Furthermore, the 2 

attribute mastery probability of the third attribute for the ID 2607 individual was 0.556. These 3 

values might indicate the mastery of corresponding attributes was not strongly supported. The 4 

posterior probabilities for the proposed GBGNPC and GBNPC methods can be used in such 5 

cases. However, this is not possible if we use typical nonparametric methods. 6 

The attribute mastery probabilities information provides estimation uncertainty of 7 

mastery and non-mastery of an attribute for an individual. It may be better to empathize even if 8 

we judge an individual to have mastered an attribute as the mastery might be just slightly over 9 

the cutoff value. The nonparametric methods cannot provide such information. Therefore, it may 10 

be better to introduce the third category representing the midpoint between mastery and non-11 

mastery in DCM applications. 12 

In addition to each attribute mastery probability, we also added posterior attribute 13 

mastery pattern probabilities with the GBGNPC and GBNPC methods in Table 10. The 14 

individual's posterior attribute pattern probabilities represent the relative possibilities of attribute 15 

mastery patterns. From Table 10, we can see that some attribute patterns showed almost the same 16 

posterior probabilities. For example, individual ID 2378 indicated relatively high posterior 17 

probabilities 0.574 and 0.406 for (011) and (111) according to the GBGNPC method. A similar 18 

tendency was shown by the ID 1060 students with the GBGNPC method. The posterior based on 19 

the GBNPC method provided more nuanced estimates for the ID 813 student. This individual 20 

had similar posterior probabilities for (000), (010), and (110), with values of 0.282, 0.316, and 21 

0.250, respectively. It may not be better to provide diagnostic feedback with such unstable 22 

posterior probabilities. Previous nonparametric methods cannot provide such uncertainty 23 

information, which can be used for careful diagnosis of attribute mastery. 24 

7. Discussions and Future Directions 25 

This study extends the loss function-based estimation method proposed by C. Ma, de la 26 

Torre, et al. (2023) to the GB method, which considers estimation uncertainty and prior 27 
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knowledge. The proposed estimation method can be used for any type of loss function and has 1 

great flexibility. This study's contribution is that the proposed method provides a novel approach 2 

for estimating the DCMs' parameters. The GB method is flexible because we can select any type 3 

of loss function and consider the uncertainty of the parameter estimation. Furthermore, the 4 

proposed method relaxes the assumption of the typical Bayesian method, which requires a 5 

likelihood function. The theoretical analysis revealed consistent results for the proposed GB 6 

method under mild regularity conditions. Additionally, the simulation study revealed that the GB 7 

method improved attribute mastery recoveries compared to previous nonparametric methods. 8 

The real data example indicated that the proposed GB method with the nonparametric loss 9 

function tended to overestimate attribute mastery compared to the nonparametric methods. 10 

The theoretical results not only guarantee the consistency of the MAP estimation 11 

results, but also give convergence rate results, which is helpful in characterizing the finite sample 12 

estimate errors. All these results are new to the literature and provide theoretical justification for 13 

using the nonparametric methods and the proposed GB approach. Moreover, the theoretical 14 

results in the paper are established for the general loss function under the proposed assumptions. 15 

It covers popular loss functions, such as the GNPC and log-likelihood loss functions, which are 16 

used in C. Ma, de la Torre, et al. (2023). 17 

One interesting future research problem is to establish consistent results for other 18 

Bayesian estimators, such as expected a posteriori (EAP). However, this is a more challenging 19 

question as it involves deriving the limiting distribution of the Bayesian posterior distribution. 20 

Intuitively, given our theoretical results of MAP, EAP would also be consistent, but technically 21 

this is not easy to determine and needs the development of new mathematical tools. Moreover, 22 

Assumption 2 may be further relaxed to allow for some latent attribute mastery patterns that do 23 

not exist in the population. In particular, if we know which attribute mastery patterns have zero 24 

probability, such as in hierarchical DCMs, then our theoretical results would still apply. 25 

However, if this information is unknown, while some latent attribute mastery patterns have zero 26 
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probability, the model itself may have some identifiability issues under the nonparametric DCMs 1 

setting. This is another interesting topic for future study. 2 

Another future research direction is to explore how to determine the learning rate from 3 

data, especially under the ℳ-open setting. Intuitively, the learning rate controls the relative 4 

importance between prior information and the loss function. We can set a relatively small value 5 

for the learning rate if we have enough prior information about the attribute mastery distribution 6 

and use several new items whose nature we do not know. In this case, we put relatively great 7 

importance on the prior information rather than the obtained data. However, it may not be 8 

realistic to set the learning rate greater than one. Such a high learning rate would amplify the 9 

effect of the loss function but might indicate an overreliance on the data. It may not be suitable 10 

for the ℳ-open setting that the data-generating process is unknown. Therefore, we need to 11 

explore how to determine the learning rate from data. 12 

As mentioned previously, no scholarly agreement exists regarding how to determine 13 

the learning rate, which is an important topic for future research especially in the DCM context. 14 

In particular, data-driven learning rate determination procedures were studied in Wu and Martin 15 

(2023), where several selection methods such as the SafeBayes algorithm based on the 16 

cumulative log-loss (Grünwald & van Ommen, 2017), information gain perspective (Holmes & 17 

Walker, 2017), modified weighted likelihood bootstrap approach (Lyddon et al., 2019), and the 18 

approximate achievement of nominal frequentist coverage probability (Syring & Martin, 2019) 19 

were compared. However, all of these methods have different foundations, and we need to 20 

explore which one is most appropriate for the DCM context. 21 

Another topic that requires further investigation is model data fit evaluation. From our 22 

understanding, the GB method avoids explicit model representation in the framework. Therefore, 23 

the model evaluation scheme is not included in the procedure of the GB method. This is also true 24 

for the GBGNPC method proposed in this study. Therefore, future research needs to explore 25 

what kind of statistics can be used for model data fit. In particular, previously developed 26 

methods of model data fit assessment in psychometrics and Bayesian data analysis could be 27 
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employed in our setting. Following Sinharay et al. (2006), discrepancy measures such as 1 

observed score distribution, point biserial correlation, and statistical measures of association 2 

among the item pairs could be used for posterior predictive model checking (PPMC). For further 3 

details on PPMC methods for Bayesian networks and IRT models, see also Sinharay (2006) and 4 

Sinharay (2016). Moreover, PPMC for person fit (Sinharay, 2015) would also provide an 5 

important measure to assess the model fit for the attribute mastery patterns at the personal level, 6 

which is often of interest in cognitive diagnosis. 7 

As a final note about the choice of estimation methods, it is necessary to consider 8 

estimation time. The GB method employs an MCMC procedure, so it has a longer estimation 9 

time than that of the nonparametric methods. In our simulation, the estimation times were less 10 

than ten seconds, so it is not irritatingly time consuming. However, if we need immediate 11 

feedback, the time difference between the two kinds of methods may be crucial. We also need to 12 

consider estimation time for the requirement of real data analysis. 13 

 14 
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Table 1.  

The four-attribute 𝑄-matrix 

Item 
Attribute 

1 2 3 4 

1 1 0 0 0 

2 0 1 0 0 

3 0 0 1 0 

4 0 0 0 1 

5 1 0 0 0 

6 0 1 0 0 

7 0 0 1 0 

8 0 0 0 1 

9 1 1 0 0 

10 1 0 1 0 

11 1 0 0 1 

12 0 1 1 0 

13 0 1 0 1 

14 0 0 1 1 

15 1 1 1 0 

16 1 1 0 1 

17 1 0 1 1 

18 0 1 1 1 

19 1 1 1 1 

https://doi.org/10.1017/psy.2024.20 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.20


 39 

 

 1 

Table 2.  

The five-attribute 𝑄-matrix  

Item 
Attribute 

Item 
Attribute 

1 2 3 4 5 1 2 3 4 5 

1 1 0 0 0 0 16 0 1 0 1 0 

2 0 1 0 0 0 17 0 1 0 0 1 

3 0 0 1 0 0 18 0 0 1 1 0 

4 0 0 0 1 0 19 0 0 1 0 1 

5 0 0 0 0 1 20 0 0 0 1 1 

6 1 0 0 0 0 21 1 1 1 0 0 

7 0 1 0 0 0 22 1 1 0 1 0 

8 0 0 1 0 0 23 1 1 0 0 1 

9 0 0 0 1 0 24 1 0 1 1 0 

10 0 0 0 0 1 25 1 0 1 0 1 

11 1 1 0 0 0 26 1 0 0 1 1 

12 1 0 1 0 0 27 0 1 1 1 0 

13 1 0 0 1 0 28 0 1 1 0 1 

14 1 0 0 0 1 29 0 1 0 1 1 

15 0 1 1 0 0 30 0 0 1 1 1 

 2 

  3 

https://doi.org/10.1017/psy.2024.20 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.20


 40 

 

 1 

 2 

Table 3.  

The average correlations of attribute mastery probabilities estimated by first and second 

halves of MCMC iterations after the burn-in period 

Data 

generating 

model 

Sample 

size 

Attribute 

correlation 

Item 

quality 

GBGNPC GBNPC 

Three 

attributes 

Four 

attributes 

Three 

attributes 

Four 

attributes 

DINA 

30 

0 
High . 994 . 994 . 998 .998 

Low . 984 . 983 . 993 . 994 

0.8 
High .996 .995 .998 .998 

Low . 984 . 983 .995 .995 

300 

0 
High . 997 .998 .998 . 999 

Low . 992 . 993 . 993 .995 

0.8 
High . 999 .999 .999 .999 

Low .992 .993 .995 .996 

General 

30 

0 
High .990 .989 .996 .997 

Low . 981 . 980 . 994 . 995 

0.8 
High . 994 . 994 . 998 . 998 

Low . 982 . 982 .995 .995 

300 

0 
High . 997 .997 . 997 . 997 

Low . 992 . 993 . 994 . 995 

0.8 
High . 999 . 999 . 999 . 999 

Low . 991 .993 . 996 . 996 

Note: GBGNPC: generalized Bayesian method with generalized nonparametric loss function, 

GBNPC: generalized Bayesian method with nonparametric loss function. 
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Table 4.  

The 𝑄-matrix of ECPE data  

Item 

Attribute 

Item 

Attribute 

Morphosyntactic 

rules: 𝛼ଵ 

Cohesive 

rules: 𝛼ଶ 

Lexical 

rules: 

𝛼ଷ 

Morphosyntactic 

rules: 𝛼ଵ 

Cohesive 

rules: 𝛼ଶ 

Lexical 

rules: 𝛼ଷ 

1 1 1 0 15 0 0 1 

2 0 1 0 16 1 0 1 

3 1 0 1 17 0 1 1 

4 0 0 1 18 0 0 1 

5 0 0 1 19 0 0 1 

6 0 0 1 20 1 0 1 

7 1 0 1 21 1 0 1 

8 0 1 0 22 0 0 1 

9 0 0 1 23 0 1 0 

10 1 0 0 24 0 1 0 

11 1 0 1 25 1 0 0 

12 1 0 1 26 0 0 1 

13 1 0 0 27 1 0 0 

14 1 0 0 28 0 0 1 

 3 

  4 

https://doi.org/10.1017/psy.2024.20 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.20


 42 

 

 1 

Table 5.  

Means and SDs of posterior attribute mastery probabilities 

for GBGNPC and GBNPC methods 

Estimation method Attribute Mean SD 

GBGNPC 

Morphosyntactic rules: αଵ .551 .388 

Cohesive rules: αଶ .985 .077 

Lexical rules: αଷ .939 .198 

GBNPC 

Morphosyntactic rules: αଵ .807 .326 

Cohesive rules: αଶ .978 .103 

Lexical rules: αଷ .949 .187 

 2 

  3 
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Table 6.  

Frequencies and ratios of the estimated attribute mastery patterns with the four estimation 

methods 

Pattern 
GBGNPC GBNPC GNPC NPC 

Frequency Ratio Frequency Ratio Frequency Ratio Frequency Ratio 

000 24 .008 35 .012 29 .010 44 .015 

001 2 .001 3 .001 155 .053 91 .031 

010 88 .030 64 .022 88 .030 82 .028 

011 1201 .411 384 .131 955 .327 522 .179 

100 3 .001 3 .001 38 .013 27 .009 

101 0 .000 0 .000 82 .028 87 .030 

110 45 .015 36 .012 157 .054 96 .033 

111 1559 .534 2397 .820 1418 .485 1973 .675 

Note: GBGNPC: generalized Bayesian method with generalized nonparametric loss function, 

GB-NPC: generalized Bayesian method with nonparametric loss function, GNPC: generalized 

nonparametric method, NPC: nonparametric method. 

 3 
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Table 7.  

Contingency table of the estimated attribute mastery patterns by GBGNPC and GNPC 

GBGNPC 
GNPC 

000 001 010 011 100 101 110 111 

000 18 1 0 0 5 0 0 0 

001 0 1 0 0 1 0 0 0 

010 7 1 54 0 9 0 17 0 

011 4 152 34 924 11 6 41 29 

100 0 0 0 0 3 0 0 0 

101 0 0 0 0 0 0 0 0 

110 0 0 0 0 5 0 40 0 

111 0 0 0 31 4 76 59 1389 

Note: GBGNPC: generalized Bayesian method with generalized nonparametric loss function, 

GNPC: generalized nonparametric method. 
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Table 8.  

Contingency table of the estimated attribute mastery patterns by GBNPC and NPC 

GBNPC 
NPC 

000 001 010 011 100 101 110 111 

000 26 5 1 0 3 0 0 0 

001 0 3 0 0 0 0 0 0 

010 10 0 37 0 8 0 9 0 

011 7 54 32 278 3 0 10 0 

100 0 0 0 0 3 0 0 0 

101 0 0 0 0 0 0 0 0 

110 0 0 2 0 3 0 31 0 

111 1 29 10 244 7 87 46 1973 

Note: GBNPC: generalized Bayesian method with nonparametric loss function, NPC: 

nonparametric method. 

 3 

 4 
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Table 9.  

Individual differences in estimated patterns for GBGNPC and GNPC methods, response patterns, 

sum- and sub-scores, and attribute mastery probabilities 

ID 

Attribute mastery 

pattern Response pattern 
Sum-

score 

Sub-score 
Attribute mastery 

probability 

GBGNPC GNPC α1 α2 α3 α1 α2 α3 

813 011 100 1000100110100100000011101100 11 5 3 6 .130 .882 .516 

1060 011 100 1000011101011000111010001101 14 7 3 9 .418 .956 .864 

2378 011 100 1110110111110010010000001011 15 7 3 9 .420 .996 .982 

2607 011 100 1000110000101000110010101100 11 5 3 7 .110 .874 .556 

Note: GBGNPC: generalized Bayesian method with a generalized nonparametric loss function, GBNPC: 

generalized Bayesian method with a nonparametric loss function. 
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Table 10.  

Generalized posterior of attribute mastery pattern by GBNPC and NPC 

Estimation 

method 
ID 

Attribute mastery pattern 

000 100 010 110 001 101 011 111 

GBGNPC 

813 .102 .016 .264 .102 0 0 .504 .012 

1060 .008 .022 .020 .086 .006 .008 .548 .302 

2378 .002 0 .004 .012 0 .002 .574 .406 

2607 .104 .012 .246 .082 .010 0 .530 .016 

GBNPC 

813 .282 .012 .316 .250 .006 0 .106 .028 

1060 .022 .008 .004 .016 0 .004 .066 .880 

2378 .006 .002 .004 .016 .002 .002 .072 .896 

2607 .520 .028 .082 .054 .022 0 .244 .050 

Note: GBGNPC: generalized Bayesian method with a generalized nonparametric loss function, 

GBNPC: generalized Bayesian method with a nonparametric loss function. 
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Figure 1.  

Simulation results of the DINA data generation with four-attribute 𝑄-matrix 

conditions  
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Figure 2.  

Simulation results of the DINA data generation with five-attribute 𝑄-

matrix conditions 

https://doi.org/10.1017/psy.2024.20 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.20


 50 

 

 1 

 2 

 3 

 4 

 5 

  6 

Figure 3.  

Simulation results of the general DCM data generation with four-

attribute Q-matrix conditions  
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Figure 4.  

Simulation results of the general DCM data generation with five-

attribute Q-matrix conditions  
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Figure 5.  

Box plots of attribute mastery probabilities of the DINA data generation with four-attribute Q-

matrix conditions 
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Figure 6.  

Box plots of attribute mastery probabilities of the DINA data generation with five-attribute Q-

matrix conditions 
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Figure 7.  

Box plots of attribute mastery probabilities of the general data generation with four-attribute 𝑄-

matrix conditions  
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Figure 8.  

Box plots of attribute mastery probabilities of the general data generation with five-attribute Q-

matrix conditions 
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Appendix 1 

Proofs of Theorems 1 and 2 2 

Preparation for the Proofs 3 

In this Appendix, we provide some basic tools and introduce helpful notations for the 4 

proofs of Theorems 1 and 2. The proofs are presented in the subsequent sections. 5 

Motivated by the constraint (34), we introduce the concept of a "local" latent class at the 6 

item level. Considering item 𝑗 with q-vector 𝒒௝, the constraint (34) divides the collection of 7 

attribute mastery profiles 𝛂, which is {0,1}௄, based on an equivalence relationship where 8 

𝛂௟ ∼௝ 𝛂௟ᇲ is defined by 𝛂௟ ∘ 𝒒௝ = 𝛂௟ᇲ ∘ 𝒒௝; here the subscript ∼௝ emphasizes that the 9 

equivalence relationship is determined by the 𝑗-th item 𝒒௝. On this basis, we introduce a 10 

function ξ: {0,1}௄ × {0,1}௄ → ℕ where ξ൫𝒒௝ , 𝛂௟൯ = ξ൫𝒒௝ , 𝛂௟ᇲ൯ is equivalent to 𝛂௟ ∘ 𝒒௝ = 𝛂௟ᇲ ∘11 

𝒒௝. This function assigns numbers to the equivalent classes induced by item 𝑗 based on specific 12 

rules. In the following context, we refer to ξ൫𝒒௝
଴, 𝛂൯ as the local latent class of 𝛂 induced by 13 

item 𝑗. It is straightforward to verify that the number of local latent classes induced by item 𝑗, 14 

denoted by หξ൫𝒒௝ , {0,1}௄൯ห, is equal to 𝐿௝ = 2௄ೕ . Here, 𝐾௝ = ∑௞ୀଵ
௄  𝑞௝௞

଴  represents the number of 15 

latent attributes required for item 𝑗; consequently, the range of function ξ satisfies 16 

ξ൫𝒒௝ , {0,1}௄൯ = ൣ𝐿௝൧: = ൛1, … , 𝐿௝ൟ. As the local latent classes are identified up to permutations on 17 

ൣ𝐿௝൧, owing to their categorical nature, the mapping rules between ξ൫𝒒௝ , {0,1}௄൯ and ൣ𝐿௝൧ need 18 

not be completely specified in our discussion. 19 

For brevity, we use the general notation 𝐙 = ൫𝑧௜௝൯ to denote the collection of local 20 

latent classes for all items 𝑗 ∈ [𝐽] and subjects 𝑖 ∈ [𝐼], where 𝑧௜௝  represents ξ൫𝒒௝
଴, 𝛂௜൯. Given 21 

that ξ൫𝒒௝
଴, 𝛂௟൯ = ξ൫𝒒௝

଴, 𝛂௟ᇲ൯ implies θ௝,𝛂೗
= θ௝,𝛂

೗ᇲ  by the definition of ξ, we express θ௝,𝛂೔
 as 22 

θ௝,௭೔ೕ
 to directly incorporate the constraint (34) into the loss function (31). For notational 23 

simplicity, we may write θ௝,௭೔ೕ
 as θ௝,௭೔

. Consequently, we define 24 

 
𝑃௜௝ = 𝑃൫𝑋௜௝ = 1൯ = θ

௝,௭೔
బ

଴ . 
(A.1) 

Then, the loss function (31) can be rewritten as: 25 
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 ℒ( 𝒜, Θ, 𝛑 ∣ 𝑋 ) = ෍  

ூ

௜ୀଵ

 ൮ℎ൫π𝛂೔
൯ + ෍  

௃

௝ୀଵ

 ℓ൫𝑋௜௝ , θ௝,௭೔
൯൲ + ෍  

௝௔

  log 𝑓௝௔൫θ௝௔൯ + ෍  

𝛂

  log 𝑔𝛂(π𝛂), (A.2) 

where 𝑎 ∈ ൣ𝐿௝൧. Observe that 𝑋௜௝
ଶ = 𝑋௜௝ , and 𝔼ൣ𝑋௜௝൧ = 𝑃௜௝ , we denote the expectation of the 1 

above ℒ(𝒜, Θ, 𝛑 ∣ 𝑋) by ℒ̅(𝒜, Θ, 𝛑): = 𝔼[ℒ(𝒜, Θ, 𝛑 ∣ 𝑋)]. 2 

Notably, 𝐙 = ൫𝑧௜௝൯ is determined only by 𝒜 because 𝐐଴ is known. In the subsequent 3 

context, the quantities determined by the latent attribute profiles 𝒜 are sometimes denoted by 4 

the superscript 𝒜 to emphasize their relationships with 𝒜. Considering an arbitrary 𝒜, we 5 

denote it as 6 

 
ℒ(𝒜) = inf

஀,஠
 ℒ൫𝒜, Θ, 𝛑(𝒜) ∣ 𝑋൯ = ℒ൫𝒜, Θ෡(𝒜), 𝛑ෝ(𝒜) ∣ 𝑋൯, 

(A.3) 

 ℒ̅(𝒜) = ℒ̅൫𝒜, Θ⃐ሬሬ(𝒜), 𝛑ෝ(𝒜)൯, (A.4) 

where ൫Θ෡(𝒜), 𝛑ෝ(𝒜)൯ ∶= argmin஀,஠  ℒ(𝒜, Θ, 𝛑 ∣ 𝑋) and the definition of Θ⃐ሬሬ(𝒜) is provided later. 7 

Notably, ൫Θ⃐ሬሬ(𝒜), 𝛑ෝ(𝒜)൯ may not minimize ℒ̅(𝒜, Θ, 𝛑) for a given 𝒜. Then, under any 8 

realization of 𝒜, if the prior distribution of Θ is uniform, the following equations hold for any 9 

local latent class 𝑎 ∈ ൣ𝐿௝൧: 10 

 θ෠௝௔
(𝒜)

=
∑  ூ

௜ୀଵ  ℐቄ𝑧௜௝
(𝒜)

= 𝑎ቅ𝑋௜௝

∑  ூ
௜ୀଵ  ℐ ቄ𝑧௜௝

(𝒜)
= 𝑎ቅ

,  θ⃐ሬ௝௔
(𝒜)

=
∑  ூ

௜ୀଵ  ℐቄ𝑧௜௝
(𝒜)

= 𝑎ቅ𝑃௜௝

∑  ூ
௜ୀଵ  ℐ ቄ𝑧௜௝

(𝒜)
= 𝑎ቅ

. (A.5) 

To derive (A.5), note the sum ∑௝ୀଵ
௃

 ∑௜ୀଵ
ூ  ℓ൫𝑋௜௝ , θ௝,௭೔

൯ equals the sum 11 

∑௝ୀଵ
௃

 ∑௔ୀଵ

௅ೕ  ∑௭೔ୀ௔  ℓ൫𝑋௜௝ , θ௝௔൯. When estimating θ෠௝௔, we focus on minimizing ∑௭೔ୀ௔  ℓ൫𝑋௜௝ , θ௝௔൯. 12 

By substituting 𝔼ൣ𝑋௜௝൧ = 𝑃௜௝  into (A.5), we find that 𝔼ൣθሗ௝௔൧ = θ⃐ሬ௝௔ holds for any (𝑗, 𝑎). In the 13 

following section, we use the second formula in (A.5) to define Θ⃐ሬሬ(𝒜) given in (A.4). When the 14 

prior distribution is not a uniform distribution, θ෠௝௔ is obtained from minimizing 15 

∑௭೔ୀ௔  ℓ൫𝑋௜௝ , θ௝௔൯ + log 𝑓௝௔൫θ௝௔൯, where 𝑓௝௔൫θ௝௔൯ is the prior density of θ௝௔. To avoid 16 
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ambiguity, we denote θሗ௝௔: = argmin஘  ∑௭೔ୀ௔  ℓ൫𝑋௜௝ , θ௝௔൯ + log 𝑓௝௔൫θ௝௔൯, and θሗ௝௔: =1 

argmin஘  ∑௭೔ୀ௔  ℓ൫𝑋௜௝ , θ௝௔൯. It is clear that 𝔼ൣθሗ௝௔൧ = θ⃐ሬ௝௔. 2 

Before discussing the details of our proof, we provide technical remarks to simplify the 3 

discussion. Notably, although we assume that the latent attributes have proportion parameters 4 

𝛑଴, they are still treated as unknown but fixed parameters that need to be estimated. As all the 5 

proportion parameters π𝛂
଴  are strictly greater than zero, with the probability converging to 6 

1, ϵଵ > 0 exists such that min𝛂  ∑௜ୀଵ
ூ  ℐ{𝛂௜

଴ = 𝛂} ≥ 𝐼ϵଵ. Subsequently, we use this fact 7 

interchangeably with the first condition in Assumption 2. 8 

 The second point concerns the compact parameter space specified in Assumptions 2 and 9 

3. Some loss functions may exhibit unusual behavior near the boundary of the parameter space. 10 

Although Assumption 2 confines the true item parameters to a compact subset within (0,1), the 11 

estimated item responses can still approach zero or one, making theoretical analysis more 12 

difficult. For any pair (𝑗, 𝑎), θ௝௔  lies within [δଶ, 1 − δଶ]. We add a condition to 𝒜ሗ , stating that 13 

there exists an ϵଶ > 0 such that for each 𝛂, the sum ∑௜ୀଵ
ூ  ℐ{𝛂ෝ௜ = 𝛂} is at least 𝐼ϵଶ. With a 14 

probability approaching one, this constraint is satisfied by the true latent attribute mastery 15 

patterns 𝒜଴. With this constraint, for any pair (𝑗, 𝑎), the probability that หθሗ௝௔ − θ௝௔ห exceeds 𝑡 16 

can be bounded by 2exp (−𝐼ϵଶ𝑡ଶ) using Hoeffding's inequality. Thus, the probability that 17 

max௝,௔  หθሗ௝௔ − θ௝௔ห exceeds 𝑡 is less than 𝐽2௄ାଵexp (−𝐼ϵଶ𝑡ଶ). Based on the scaling condition in 18 

Theorem 1, max௝,௔  หθሗ௝௔ − θ௝௔ห = 𝑜௣(1), implying that with probability converging to 1, all the 19 

θሗ௝௔ values fall within [δଶ/2,1 − δଶ/2]. Based on this result, we assume that in the later content, 20 

the estimators (𝒜መ, Θ෡) are obtained by minimizing the total loss (A.2), under the constraints that 21 

min𝛂  ∑௜  ℐ{𝛂ෝ௜ = 𝛂} ≥ 𝐼ϵଶ and Θ෡ ⊂ [δଷ, 1 − δଷ], for two small positive constants ϵଶ, δଷ > 0. 22 

 The third comment concerns how to quantify the effect of prior density 𝑓௝௔ on the 23 

corresponding estimator θ෠௝௔. Actually, under the smoothness and shape constraints given in 24 

Assumption 5 and Assumption 3, the additional term log 𝑓௝௔൫θ௝௔൯ might cause the estimator 25 

θሗ௝௔ to have a 𝑂௣(1/√𝐼) level drift from the sample average form θሗ௝௔ given in (A.6). By 26 

considering the Taylor expansion formula, we have 27 
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log 𝑓௝௔൫θ௝௔൯ + ෍  

௭೔ೕୀ௔

 ℓ൫𝑋௜௝ , θ௝௔൯ 

= log 𝑓௝௔൫θ௝௔൯ + ෍  

௭೔ೕୀ௔

 ℓ൫𝑋௜௝ , θሗ௝௔൯ + ൮ ෍  

௭೔ೕୀ௔

 ∂஘ℓ൫𝑋௜௝ , θሗ௝௔൯൲ ൫θ௝௔ − θሗ௝௔൯ +
1

2
∂஘మℓ൫𝑋௜௝ , θሗ௝௔൯൫θ௝௔ − θሗ௝௔൯

ଶ
 

= log 𝑓௝௔൫θ௝௔൯ + ෍  

௭೔ೕୀ௔

 ℓ൫𝑋௜௝ , θሗ௝௔൯ +
1

2
෍  

௭೔ೕୀ௔

 ∂஘మℓ൫𝑋௜௝, θሗ௝௔൯൫θ௝௔ − θሗ௝௔൯
ଶ

, 

where θሗ௝௔ is between θሗ௝௔ and θ௝௔ according to the mean value theorem; the second equality 1 

holds owing to Assumption 3. According to the above equation, we can find that θ෠௝௔ =2 

argmin஘∈[ஔయ,ଵିஔయ]   log 𝑓௝௔(θ) + ∑௭೔ೕୀ௔  ∂஘మ ℓ൫𝑋௜௝ , θሗ௝௔൯൫θ − θሗ ௝௔൯
ଶ

/2. Note that if we take θ =3 

θሗ௝௔ , log 𝑓௝௔(θ) + ∑௭೔ೕୀ௔  ∂஘మℓ൫𝑋௜௝, θሗ௝௔൯൫θ − θሗ௝௔൯
ଶ

/2 = log 𝑓௝௔൫θሗ௝௔൯. Based on Assumption 5, 4 

there exists a constant 𝐶 > 0 such that หlog 𝑓௝௔൫θሗ௝௔൯ห ≤ sup஘∈[ஔయ,ଵିஔయ]  หlog 𝑓௝௔(θ)ห < 𝐶, 5 

implying the following: 6 

2𝐶 ≥
1

2
෍  

௭೔ೕୀ௔

 ∂஘మ ℓ൫𝑋௜௝ , θሗ ௝௔൯൫θ෠௝௔ − θሗ௝௔൯
ଶ

 ≥
𝑏௅

2
෍ ൫θ෠௝௔ − θሗ௝௔൯

ଶ
 

௭೔ೕୀ௔

=
𝑏௅𝑖௝௔

2
൫θ෠௝௔ − θሗ௝௔൯

ଶ
,

 

where 𝑖௝௔: = ∑௜ୀଵ
ூ  ℐቄ𝑧௜௝

(𝒜)
= 𝑎ቅ. Thus, a constant 𝐶ሗ > 0 exists such that for any pair (𝑗, 𝑎), we 7 

have 8 

൫θ෠௝௔ − θሗ௝௔൯
ଶ

≤ 𝐶ሗ 𝑖௝௔
ିଵ. 

This inequality will be used several times afterwards. In the theoretical analysis of the estimators 9 

above, uniform bounds related to the quantities of element-wise loss ℓ(⋅,⋅) and prior densities 10 

𝑓௝௔ are frequently used. The existence of these uniform bounds requires restricting the parameter 11 

space of the item response parameters to a compact subspace. Therefore, discussing the compact 12 

parameter subspace of the item parameters is necessary. 13 

Outline of the first half of the proof 14 
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Step 1: Express the upper bound of |ℒ̅(𝒜) − ℒ(𝒜)| in terms of (𝑏/2) ⋅ ቀ∑௝ୀଵ
௃

 ∑௔ୀଵ

௅ೕ  𝑖௝௔൫θሗ௝௔ −1 

θ⃐ሬ௝௔൯
ଶ

ቁ + |𝔼[𝑌] − 𝑌| + 𝑂௣(𝐽), where 𝑌: = ∑௜  ∑௝  ℓ ቀ𝑋௜௝ , θ⃐ሬ௝,௭೔

(𝒜)
ቁ depending on 𝑌 and Θ⃐ሬሬ(𝒜) under 2 

𝒜, 𝑏 is the upper bound of the second order derivative of the ℓ(⋅,⋅). 3 

Step 2: Bound ∑௝  ∑௜  𝑖௝௔൫θሗ௝௔ − θ⃐ሬ௝௔൯
ଶ
 and |𝑌 − 𝔼[𝑌]| separately to obtain a uniform 4 

convergence rate sup𝒜  |ℒ̅(𝒜) − ℒ(𝒜)| = 𝑜௣൫δூ௃൯ 5 

Step 3: Based on the definition of 𝒜ሗ , it follows that 0 ≤ ℒ̅(𝒜መ) − ℒ̅(𝒜଴) ≤ 2sup𝒜  |ℒ̅(𝒜) −6 

ℒ(𝒜)| = 𝑜௣൫δூ௃൯, which controls the deviation ℒ̅(𝒜መ) − ℒ̅(𝒜଴). 7 

 In some classical statistical inference contexts, consistent results for the parameters of 8 

interest are typically established through the uniform convergence of random functions 9 

associated with these parameters. For instance, if sup𝛉∈஀  |ℓ෠(𝛉) − ℓ(𝛉)| →
௉

0, and if we further 10 

assume that ℓ has a unique minimum 𝛉ሗ  on Θ, argmin஀  ℓ෠(𝛉) =: 𝛉෡ →
௉

𝛉ሗ  under some regularity 11 

conditions. The regular conditions may vary across settings. Considering 𝒜 as the parameter to 12 

be estimated, the primary aim of the first three steps is to demonstrate that 𝒜 minimizes the 13 

expected loss and establishes a uniform convergence result for its random loss function of 𝒜. 14 

Outline of the second half of the proof 15 

Step 4: Define 𝐼௔,௕
௝

= ∑௜ୀଵ
ூ  ℐ൛𝑧௜௝

଴ = 𝑎ൟℐ൛𝑧̂௜௝ = 𝑏ൟ, 𝑎, 𝑏 ∈ ൣ𝐿௝൧ to represent the samples with the 16 

wrong local latent class assignments. Derive some upper bounds for the quantities based on 𝐼௔,௕
௝  17 

using ℒ̅(𝒜መ) − ℒ̅(𝒜଴) with the help of the identification assumptions.  18 

Step 5: Bound the ∑௜ୀଵ
ூ  ℐ{𝛂ෝ௜ ≠ 𝛂଴} using the quantities based on 𝐼௔,௕

௝  with the help of the 19 

discrete structure of the Q-matrix, then obtain the desired classification error rate. 20 

Assumptions 1-5 are the regularity conditions for achieving clustering consistency based 21 

on the uniform convergence results established in the first half of the proof. We have provided 22 

further details regarding the assumptions in later proofs. 23 

 24 

First Half of the Proof of Theorem 1 25 
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Step 1. The idea of decomposing ℒ̅(𝒜) − ℒ(𝒜) is to consider 1 

ℓ൫𝑋௜௝ , θሗ௝,௭೔
൯ − 𝔼ൣℓ൫𝑋௜௝ , θ⃐ሬ௝,௭೔

൯൧ = ቀℓ൫𝑋௜௝ , θ෠௝,௭೔
൯ − ℓ൫𝑋௜௝ , θ⃐ሬ௝,௭೔

൯ቁ + ൫ℓ൫𝑋௜௝ , θ⃐ሬ௝,௭೔
൯ − 𝔼ൣℓ൫𝑋௜௝ , θ⃐ሬ௝,௭೔

൯൧൯. 

The variability in the first term of the right-hand side mainly emerges from the fluctuation in 2 

หθ෠௝௔ − θ⃐ሬ௝௔ห, while the randomness in the second term is attributable to the stochastic nature of 3 

𝑋௜௝ . 4 

Lemma 1. Let ൫𝑋௜௝; 1 ≤ 𝑖 ≤ 𝐼, 1 ≤ 𝑗 ≤ 𝐽൯ denote independent Bernoulli trials with parameters 5 

൫𝑃௜௝ ; 1 ≤ 𝑖 ≤ 𝐼, 1 ≤ 𝑗 ≤ 𝐽൯. In a general latent class model, given arbitrary latent attribute 6 

mastery patterns 𝒜, 7 

 |ℒ̅(𝒜) − ℒ(𝒜)| ≤
𝑏

2
⋅ ቌ෍ ෍ 𝑖௝ೌ

൫θ෠௝௔ − θത௝௔൯
ଶ

௅ೕ

௔ୀଵ

௃

௝ୀଵ

ቍ + |𝑌 − 𝔼(𝑌)| + 𝑂௣(௃), (A.6) 

where 𝑌 = ∑௝ୀଵ
௃

 ∑௜ୀଵ
ூ  ℓ൫𝑋௜௝ , θ⃐ሬ௝,௭೔

൯ is a random variable depending on 𝒜 and 𝐿௝ denotes the 8 

number of the distinct local latent classes induced by 𝒒௝ for item 𝑗. 9 

Proof. By noting the decomposition that we mentioned at the beginning of Step 1, |𝑌 − 𝔼[𝑌]| is 10 

easy to check. It is sufficient for us to prove that 11 

0 ≤ ∑  ௜ ∑  ௝ ቀℓ൫𝑋௜௝ , θ⃐ሬ௝,௭೔
൯ − ℓ൫𝑋௜௝ , θ෠௝,௭೔

൯ቁ ≤
௕

ଶ
⋅ ቀ∑  ௃

௝ୀଵ  ∑  
௅ೕ

௔ୀଵ   𝑖௝௔൫θሗ௝௔ − θ⃐ሬ௝௔൯
ଶ

ቁ + 𝑂௣(𝐽). 

The first inequality is clear by the definition of θሗ௝,௭೔
 (minimizing the loss). For the second part, 12 

using the mean-value theorem for second-order derivatives, we obtain 13 
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 ෍  

௜

 ෍  

௝

  ቀℓ൫𝑋௜௝ , θ⃐ሬ௝,௭೔
൯ − ℓ൫𝑋௜௝ , θሗ௝,௭೔

൯ቁ

= ෍  

௃

௝ୀଵ

 ෍  

௅ೕ

௔ୀଵ

  ෍  

௭೔ୀ௔

 ቀℓ൫𝑋௜௝ , θ⃐ሬ௝௔൯ − ℓ൫𝑋௜௝ , θሗ௝௔൯ቁ

= ෍  

௃

௝ୀଵ

 ෍  

௅ೕ

௔ୀଵ

  ෍  

௭೔ୀ௔

 ൬∂஘ℓ൫𝑋௜௝ , θሗ௝௔൯൫θ⃐ሬ௝௔ − θሗ௝௔൯ +
1

2
∂஘మ൫𝑋௜௝ , θሗ௝௔൯൫θሗ௝௔ − θ෠௝௔൯

ଶ
൰

= ෍  

௃

௝ୀଵ

 ෍  

௅ೕ

௔ୀଵ

  ෍  

௭೔ୀ௔

 ൬
1

2
∂஘మ൫𝑋௜௝ , θሗ௝௔൯൫θ⃐ሬ௝௔ − θሗ௝௔൯

ଶ
൰

≤ ෍  

௃

௝ୀଵ

 ෍  

௅ೕ

௔ୀଵ

  ෍  

௭೔ୀ௔

 ൬
𝑏௎

2
൫θ⃐ሬ௝௔ − θሗ ௝௔൯

ଶ
൰

. (A.7) 

where θሗ௝௔ is between θሗ௝௔ and θ⃐ሬ௝௔ according to the mean value theorem. The third equality 1 

holds true since by Assumption 3, we have 2 

෍  

௭೔ୀ௔

∂஘ℓ൫𝑋௜௝ , θሗ௝௔൯ = 0. 

Similarly, using ൫θ෠௝௔ − θሗ ௝௔൯
ଶ

≤ 𝐶ሗ 𝑖௝௔
ିଵ, we have 3 

 ෍  

௜

 ෍  

௝

  ቀℓ൫𝑋௜௝ , θ෠௝,௭೔
൯ − ℓ൫𝑋௜௝ , θሗ௝,௭೔

൯ቁ

 = ෍  

௃

௝ୀଵ

 ෍  

௅ೕ

௔ୀଵ

  ෍  

௭೔ୀ௔

  ቀℓ൫𝑋௜௝ , θ෠௝௔൯ − ℓ൫𝑋௜௝ , θሗ ௝௔൯ቁ

 = ෍  

௃

௝ୀଵ

 ෍  

௅ೕ

௔ୀଵ

  ෍  

௭೔ୀ௔

  ൬∂ఏℓ൫𝑋௜௝ , θሗ௝௔൯൫θ෠௝௔ − θሗ௝௔൯ +
1

2
∂ఏమ൫𝑋௜௝ , θሗ௝௔൯൫θሗ௝௔ − θ෠௝௔൯

ଶ
൰

 = ෍  

௃

௝ୀଵ

 ෍  

௅ೕ

௔ୀଵ

  ෍  

௭೔ୀ௔

  ൬
1

2
∂஘మ൫𝑋௜௝ , θሗ௝௔൯൫θ෠௝௔ − θሗ ௝௔൯

ଶ
൰

 ≤ ෍  

௃

௝ୀଵ

 ෍  

௅ೕ

௔ୀଵ

  ෍  

௭೔ୀ௔

  ൬
𝑏௎

2
൫θ෠௝௔ − θሗ௝௔൯

ଶ
൰ = ෍  

௃

௝ୀଵ

 ෍  

௅ೕ

௔ୀଵ

 
𝑏௎𝐶ሗ

2
≤ ൫𝑏௎𝐶ሗ 2௄൯𝐽,
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which concludes the proof of this lemma.              ∎ 1 

Lemma 2. The following event happens with a probability of at least 1 − δ, 2 

max
𝒜

 ቐ෍  

௃

௝ୀଵ

 ෍  

௅ೕ

௔ୀଵ

  𝑖௝௔൫θሗ௝௔ − θ⃐ሬ௝௔൯
ଶ

ቑ <
1

2
൬𝐼 log 2௄ + 𝐽2௄ log ൬

𝐼

2௄
+ 1൰ − log δ൰. 

Proof. Under any realization of 𝒜, each θሗ௝௔ is an average of 𝑖௝௔ independent Bernoulli 3 

random variables 𝑥ଵ௝ , … , 𝑥ூ௝  with mean θ⃐ሬ௝௔. By applying the Hoeffding inequality, we have 4 

 𝑃൫θሗ௝௔ ≥ θ⃐ሬ௝௔ + 𝑡൯ ≤ exp ൫−2𝑖௝௔𝑡ଶ൯,  𝑃൫θሗ௝௔ ≤ θ⃐ሬ௝௔ − 𝑡൯ ≤ exp ൫−2𝑖௝௔𝑡ଶ൯. (A.8) 

Notably, considering a fixed 𝒜, each θሗ௝௔ can take values only in the finite set 5 

൛0,1/𝑖௝௔ , 2/𝑖௝௔ , … ,1ൟ of cardinality 𝑖௝௔ + 1. We denote this range of θሗ௝௔ by Θሗ ௝௔ and the range 6 

of the matrix Θሗ = ൫θሗ௝௔൯ by Θሗ . Subsequently, 𝑃൫θሗ௝௔ = 𝑣൯ ≤ exp ቀ−2𝑖௝௔൫𝑣 − θ⃐ሬ௝௔൯
ଶ

ቁ for any 7 

𝑣 ∈ Θሗ ௝,௔. As each of the 𝐽 × 2௄ entries in Θሗ , θሗ௝௔ can independently take on 𝑖௝௔ + 1 different 8 

values, there is |Θሗ | = ∏௝  ∏௔ୀଵ

௅ೕ  ൫𝑖௝௔ + 1൯ with constraint ∑௔ୀଵ

௅ೕ  𝑖௝௔ = 𝐼. As 𝐿௝ = 2௄ೕ ≤ 2௄, we 9 

have ∏௔ୀଵ

௅ೕ  ൫𝑖௝௔ + 1൯ ≤ (1 + 𝐼/2௄)ଶ಼
. Denote Θሗ ఢ = ቄΘሗ ∈ Θሗ : ∑௝  ∑௔  𝑖௝௔൫θሗ௝௔ − θ⃐ሬ௝௔൯

ଶ
≥ 𝜖ቅ , Θሗ ఢ ⊆10 

Θሗ , and 11 

 

𝑃 ቌ෍  

௝

 ෍  

௅ೕ

௔ୀଵ

  𝑖௝௔൫θሗ௝௔ − θ⃐ሬ௝௔൯
ଶ

≥ 𝜖ቍ = ෍  

஀ሗ ∈஀ሗ ച

 𝑃(Θሗ = Θሗ )

≤ ෍  

஀ሗ ∈஀ሗ ച

 ෑ  

௝

 ෑ  

௔

 exp ቀ−2𝑖௝௔൫θሗ௝௔ − θ⃐ሬ௝௔൯
ଶ

ቁ

= ෍  

஀ሗ ∈஀ሗ ച

 exp ቌ−2𝑖௝௔ ෍  

௝

 ෍  

௔

  ൫θሗ௝௔ − θ⃐ሬ௝௔൯
ଶ

ቍ

 (A.9) 

 
≤ ෍  

஀ሗ ∈஀ሗ ಣ

  exp(−2𝜖) ≤ หΘሗ ห𝑒ିଶ஫. 
 

The above result holds for any fixed 𝒜 when we apply a union bound over all the (2௄)ூ 12 

possible assignments of 𝒜 to obtain 13 
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 𝑃 ቌmax
𝒜

 ቐ෍  

௝

 ෍  

௔

  𝑖௝௔൫θሗ௝௔ − θ⃐ሬ௝௔൯
ଶ

ቑ ≥ ϵቍ ≤ 2௄ூ ൬
𝐼

2௄
+ 1൰

௃ଶ಼

𝑒ିଶ஫. (A.10) 

Take δ = 2௄ூ ቀ
ூ

ଶ಼ + 1ቁ
௃ଶ಼

𝑒ିଶ஫; then, 2𝜖 = 𝐼 log 2௄ + 𝐽2௄ log(1 + 𝐼/2௄) − log δ. This 1 

concludes the proof of lemma 2.               ∎ 2 

Lemma 3. Define the random variable 𝑌 = ∑௜  ∑௝  ℓ ቀ𝑋௜௝ , θ⃐ሬ௝,௭೔

(𝒜)
ቁ, and denote 𝑌௜௝ = ℓ൫𝑋௜௝ , 𝜃⃐௝,௭೔

൯. 3 

Note that θ⃐ሬ௝௔ ∈ [δଶ, 1 − δଶ] and ℓ(⋅,⋅) are continuous on 𝜃 in (0,1). Since continuous 4 

functions on the compact set are bounded, a constant 𝑈 > 0 exists such that หℓ൫𝑋௜௝ , θ⃐ሬ௝,௭೔
൯ห ≤5 

𝑈, ∀(𝑖, 𝑗). By applying Hoeffding's inequality to bound |𝑌 − 𝔼[𝑌]| for any realization of 𝒜, we 6 

have: 7 

 𝑃(|𝑌 − 𝔼[𝑌]| ≥ ϵ) ≤ 2exp ቊ−
𝜖ଶ

(4𝑈ଶ)𝐼𝐽
ቋ. (A.11) 

With the help of Lemma 2 and Lemma 3, subsequently, we prove the following proposition: 8 

Proposition 1. Under the following scaling for some small positive constant 𝑐 > 0, 9 

 ඥ𝐽 = 𝑂(𝐼ଵି௖)  

we have 𝑚𝑎𝑥𝒜  |ℒ̅(𝒜) − ℒ(𝒜)| = 𝑜௣൫δூ௃൯ where 𝛿ூ௃ = 𝐼ඥ𝐽(log 𝐽)஫̀ for a small positive ϵ̀ >10 

0. 11 

Proof. First, note that under the given scaling condition, 𝐽 = 𝑜(𝐼ඥ𝐽). Combining the results of 12 

Lemma 2 and Lemma 3, since there are (2௄)ூ possible assignments of 𝒜, we apply the union 13 

bound to obtain 14 

 15 

 16 

 17 
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𝑃 ቀmax
𝒜

 |ℒ̅(𝒜) − ℒ(𝒜)| ≥ 3ϵδூ௃ቁ 

≤ (2௄)ூ𝑃 ቎ቐ෍  

௝

 ෍  

௔

  𝑖௝௔൫θሗ௝௔ − θ⃐ሬ௝௔൯
ଶ

≥ ϵδூ௃ቑ ∪ ൛|𝑌 − 𝔼[𝑌]| ≥ ϵδூ௃ൟ቏ 

 +𝑃 ቌmax
𝒜

 ෍  

௜

 ෍  

௝

 ቀℓ൫𝑋௜௝ , θ෠௝,௭೔
൯ − ℓ൫𝑋௜௝ , θሗ௝,௭೔

൯ቁ ≥ 𝐽(log)஫̀ቍ 

≤ exp ൬𝐼 log(2௄) + 𝐽2௄ log ൬
𝐼

2௄
+ 1൰ − 2ϵδூ௃൰ + 2 exp ቆ𝐼 log(2௄) −

ϵଶ𝛿ூ௃
ଶ

4𝑈ଶ𝐼𝐽
ቇ 

 +𝑃 ቌmax
𝒜

 ෍  

௜

 ෍  

௝

 ቀℓ൫𝑋௜௝ , θሗ௝,௭೔
൯ − ℓ൫𝑋௜௝ , θሗ௝,௭೔

൯ቁ ≥ 𝐽(log)஫̀ቍ. 

(A.12) 

For the third term, note that the following inequality holds for any given 𝒜: 1 

 ෍  

௜

෍  

௝

ቀℓ൫𝑋௜௝ , θሗ௝,௭೔
൯ − ℓ൫𝑋௜௝ , θሗ௝,௭೔

൯ቁ ≤ ൫𝑏௎𝐶ሗ 2௄൯𝐽  

For the second term on the right-hand side of the aforementioned display to converge to zero, we 2 

set δூ௃ = 𝐼ඥ𝐽(log 𝐽)ఢ̀ for a small positive constant ϵ̀. Moreover, under this δூ௃, for the first 3 

term to converge to zero as 𝐼, 𝐽 increase, the scaling ඥ𝐽 = 𝑂(𝐼ଵି௖) given in the theorem results 4 

in 𝑃൫max𝒜  |ℒ̅(𝒜) − ℒ(𝒜)| ≥ ϵδூ௃൯ = 𝑜(1), which implies the result in Proposition 1. 5 

              ∎ 6 

Step 3. (A.5) implies that θ⃐ሬ௝,௭೔

൫𝒜బ൯
= 𝑃௜௝, which means that if we plug into the true latent attribute 7 

mastery pattern 𝒜଴, the estimators will be the corresponding true parameters. According to this 8 

property, the following lemma indicates that 𝒜଴ minimizes expected loss. 9 

Lemma 4. By Assumption 4, 𝔼ൣℓ൫𝑋௜௝ , θ⃐ሬ௝,௭೔
൯൧ − 𝔼 ቂℓ ቀ𝑋௜௝ , θ

௝,௭೔
బ

଴ ቁቃ ≥ 𝑐 ቀ𝜃⃐௝,௭೔
− θ

௝,௭೔
బ

଴ ቁ
஗

 for some 10 

η ≥ 2, 𝑐 > 0, then we have 11 
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 ℒ̅(𝒜) − ℒ̅(𝒜଴) ≥ 𝑐 ⋅ ቌ෍  

௜

 ෍  

௝

  ൫𝑃௜௝ − θ⃐ሬ௝,௭೔
൯

஗
ቍ ≥ 0. (A.13) 

Notably, while Lemma 4 holds for any 𝒜, it also holds for the estimator 𝒜መ , then 1 

 0 ≤ ℒ̅൫𝒜መ൯ − ℒ̅(𝒜଴) = ൣℒ̅൫𝒜መ൯ − ℒ൫𝒜መ൯൧ + ൣℒ൫𝒜መ൯ − ℒ(𝒜଴)൧ + [ℒ(𝒜଴) − ℒ̅(𝒜଴)]. (A.14) 

As 𝒜መ = argmin𝒜  ℒ(𝒜), we have ℒ(𝒜መ) − ℒ(𝒜଴) ≤ 0. Substituting this into A.14, we can 2 

derive that 3 

 
0 ≤ ℒ̅(𝒜መ) − ℒ̅(𝒜଴) ≤ 2sup

𝒜
 |ℒ̅(𝒜) − ℒ(𝒜)| = 𝑜௣൫δூ௃൯ 

 

Second Half of the Proof of Theorem 1 4 

By applying Hölder's inequality, we have 5 

 (𝐼𝐽)ଵି
஗
ଶ ቌ෍  

௜

 ෍  

௝

  ൫𝑃௜௝ − θ⃐ሬ௝,௭೔
൯

ଶ
ቍ

஗
ଶ

≤ ෍  

௜

෍  

௝

൫𝑃௜௝ − θ⃐ሬ௝,௭೔
൯

஗
= 𝑜௣൫δூ௃൯.  

By letting (𝐼𝐽)ଵିఎ/ଶ(𝑆)஗/ଶ = δூ௃, we can check that ∑௜  ∑௝  ൫𝑃௜௝ − θ⃐ሬ௝,௭ഢෝ ൯
ଶ

= 𝑜௣(𝑆) where 𝑆: =6 

𝐼(𝐽)ଵିଵ/ఎ(log 𝐽)ଶ஫̀/஗. In the following, we derive a lower bound for ∑௜  ∑௝  ൫𝑃௜௝ − θ⃐ሬ௝,௭೔
൯

ଶ
 because 7 

it is easier to work with than ൫𝑃௜௝ − θ⃐ሬ௝,௭೔
൯

஗
. 8 

Step 4. Motivated by Assumption 2, we define 𝒥: = {𝑗 ∈ [𝐽]; ∃𝑘 ∈ [𝐾] s.t. 𝒒௝
଴ = 𝒆௞ൟ, which 9 

represents the set of all items 𝑗 that depend on only one latent attribute. Notably, ∀𝑗 ∈10 

𝒥, ห൛𝛂 ∘ 𝒒௝
଴; 𝛂 ∈ {0,1}௄ൟห = 2, as 𝒒௝ only contains one required latent attribute, then ξ൫𝒒௝

଴, 𝛂൯ ∈11 

{1,2} for all 𝑗 ∈ 𝒥. Without loss of generality, we assume that if 𝛂 ∘ 𝒒௝
଴ ≠ 𝟎, then let 12 

ξ൫𝒒௝
଴, 𝛂൯ = 2, otherwise, let ξ൫𝒒௝

଴, 𝛂൯ = 1. Further, we assume that θ௝,ଶ
଴ > θ௝,ଵ

଴ , ∀𝑗 ∈ 𝒥, which 13 

aligns with the concept that subjects possessing the required latent attribute tend to perform 14 

better. For any 𝑗 ∈ 𝒥, define 15 
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 𝐼௔,௕
௝

: = ෍  

ூ

௜ୀଵ

 ℐ൛𝑧௜௝
଴ = 𝑎ൟℐ൛𝑧̂௜௝ = 𝑏ൟ,  (𝑎, 𝑏) ∈ {1,2}ଶ. (A.15) 

Note 𝑃௜௝ = ℐ൛𝑧௜௝
଴ = 2ൟθ௝,ଶ

଴ + ℐ൛𝑧௜௝
଴ = 1ൟθ௝,ଵ

଴  and 𝐼ଶ,ଶ
௝

+ 𝐼ଵ,ଶ
௝

= ∑௜ୀଵ
ூ  ℐ൛𝑧̂௜௝ = 2ൟ, 𝐼ଶ,ଵ

௝
+ 𝐼ଵ,ଵ

௝
=1 

∑௜ୀଵ
ூ  ℐ൛𝑧̂௜௝ = 1ൟ. By using (A.5), there are 2 

 

𝜃⃐௝,ଶ

൫𝒜መ൯
 =

∑  ூ
௜ୀଵ  ℐ൛𝑧̂௜௝ = 2ൟ𝑃௜௝

∑  ூ
௜ୀଵ  ℐ൛𝑧̂௜௝ = 2ൟ

 

=
∑  ூ

௜ୀଵ  ℐ൛𝑧̂௜௝ = 2ൟ൫ℐ൛𝑧௜௝
଴ = 2ൟθ௝,ଶ

଴ + ℐ൛𝑧௜௝
଴ = 1ൟθ௝,ଵ

଴ ൯

∑  ூ
௜ୀଵ  ℐ൛𝑧̂௜௝ = 2ൟ

 

=
𝐼ଶ,ଶ

௝
θ௝,ଶ

଴ + 𝐼ଵ,ଶ
௝

θ௝,ଵ
଴

𝐼ଶ,ଶ
௝

+ 𝐼ଵ,ଶ
௝

; 

θ⃐ሬ௝,ଵ

൫𝒜መ൯
 =

𝐼ଶ,ଵ
௝

θ௝,ଶ
଴ + 𝐼ଵ,ଵ

௝
θ௝,ଵ

଴

𝐼ଶ,ଵ
௝

+ 𝐼ଵ,ଵ
௝

. 

(A.16) 

Under 𝒜መ , we impose a natural constraint θ⃐ሬ௝,ଶ
(𝒜መ)

> θ⃐ሬ௝,ଵ
(𝒜መ)

, ∀𝑗 ∈ 𝒥 on 𝒜መ  for identifiability 3 

purpose. This constraint does not change the previous results as θ௝,ଶ
଴ > θ௝,ଵ

଴  allows ℒ(𝒜መ) −4 

ℒ(𝒜଴) ≤ 0 in (A.14) still holds; thus, ℒ̅(𝒜መ) − ℒ̅(𝒜଴) = 𝑜௣൫δூ௃൯ still holds under this 5 

constraint. Combining θ⃐ሬ௝,ଶ
(𝒜መ)

> θ⃐ሬ௝,ଵ
(𝒜መ) and θ௝,ଶ

଴ > θ௝,ଵ
଴ , there is 6 

 
θ⃐ሬ௝,ଶ

൫𝒜መ൯
> θ⃐ሬ௝,ଵ

൫𝒜መ൯
⟺ ൫𝐼ଶ,ଶ

௝
𝐼ଵ,ଵ

௝
− 𝐼ଵ,଴

௝
𝐼଴,ଵ

௝
൯θ௝,ଶ

଴ > ൫𝐼ଶ,ଶ
௝

𝐼ଵ,ଵ
௝

− 𝐼ଵ,଴
௝

𝐼଴,ଵ
௝

൯θ௝,ଵ
଴  

⟺ 𝐼ଶ,ଶ
௝

𝐼ଵ,ଵ
௝

> 𝐼ଶ,ଵ
௝

𝐼ଵ,ଶ
௝

. 
(A.17) 

From (A.15), we can obtain 7 

 ቚθ௝,ଵ
଴ − θ⃐ሬ௝,ଵ

(𝒜መ)
ቚ =

𝐼ଶ,ଵ
௝

൫θ௝,ଶ
଴ − θ௝,ଵ

଴ ൯

𝐼ଶ,ଵ
௝

+ 𝐼ଵ,ଵ
௝

, ቚθ௝,ଶ
଴ − θ⃐ሬ௝,ଶ

(𝒜መ)
ቚ =

𝐼ଵ,ଶ
௝

൫θ௝,ଶ
଴ − θ௝,ଵ

଴ ൯

𝐼ଶ,ଶ
௝

+ 𝐼ଵ,ଶ
௝

,  

 ቚθ௝,ଶ
଴ − θ⃐ሬ௝,ଵ

(𝒜መ)
ቚ =

𝐼ଵ,ଵ
௝ ൫θ௝,ଶ

଴ − θ௝,ଵ
଴ ൯

𝐼ଶ,ଵ
௝

+ 𝐼ଵ,ଵ
௝

,  ቚ𝜃௝,ଵ
଴ − 𝜃⃐௝,ଶ

(𝒜መ)
ቚ =

𝐼ଶ,ଶ
௝ ൫θ௝,ଶ

଴ − θ௝,ଵ
଴ ൯

𝐼ଶ,ଶ
௝

+ 𝐼ଵ,ଶ
௝

.  
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Therefore, 1 

 

 ෍  

௃

௝ୀଵ

 ෍  

ூ

௜ୀଵ

 ൫𝑃௜௝ − θ⃐ሬ௝,௭ഢෝ ൯
ଶ

≥ ෍  

௝∈𝒥

 ෍  

ூ

௜ୀଵ

  ൫𝑃௜௝ − θ⃐ሬ௝,௭ഢෝ ൯
ଶ

= ෍  

௝∈𝒥

  ൬𝐼ଵ,ଵ
௝

ቀθ௝,ଵ
଴ − θ⃐ሬ௝,ଵ

൫𝒜መ൯
ቁ

ଶ

+ 𝐼ଶ,ଵ
௝

ቀθ௝,ଶ
଴ − θ⃐ሬ௝,ଵ

൫𝒜መ൯
ቁ

ଶ

+ 𝐼ଵ,ଶ
௝

ቀθ௝,ଵ
଴ − θ⃐ሬ௝,ଶ

൫𝒜መ൯
ቁ

ଶ

+ 𝐼ଶ,ଶ
௝

ቀθ௝,ଶ
଴ − θ⃐ሬ௝,ଶ

൫𝒜መ൯
ቁ

ଶ

൰

= ෍  

௝∈𝒥

 ቌ
𝐼ଵ,ଵ

௝
൫𝐼ଶ,ଵ൯

ଶ
+ 𝐼ଶ,ଵ

௝
൫𝐼ଵ,ଵ൯

ଶ

൫𝐼ଶ,ଵ
௝

+ 𝐼ଵ,ଵ
௝

൯
ଶ +

𝐼ଵ,ଶ
௝

൫𝐼ଶ,ଶ൯
ଶ

+ 𝐼ଶ,ଶ
௝

൫𝐼ଵ,ଶ൯
ଶ

൫𝐼ଶ,ଶ
௝

+ 𝐼ଵ,ଶ
௝

൯
ଶ ቍ ൫θ௝,ଶ

଴ − θ௝,ଵ
଴ ൯

ଶ

= ෍  

௝∈𝒥

 ൭
𝐼ଶ,ଵ

௝
𝐼ଵ,ଵ

௝

𝐼ଶ,ଵ
௝

+ 𝐼ଵ,ଵ
௝

+
𝐼ଶ,ଶ

௝
𝐼ଵ,ଶ

௝

𝐼ଶ,ଶ
௝

+ 𝐼ଵ,ଶ
௝

൱ ൫θ௝,ଶ
଴ − θ௝,ଵ

଴ ൯
ଶ

≥δ ෍  

௝∈𝒥

 ൭
𝐼ଶ,ଵ

௝
𝐼ଵ,ଵ

௝

𝐼ଶ,ଵ
௝

+ 𝐼ଵ,ଵ
௝

+
𝐼ଶ,ଶ

௝
𝐼ଵ,ଶ

௝

𝐼ଶ,ଶ
௝

+ 𝐼ଵ,ଶ
௝

൱

 

≥
1

2
δ ෍  

௝∈𝒥

  ൫min൛𝐼ଶ,ଵ
௝

, 𝐼ଵ,ଵ
௝ ൟ + min൛𝐼ଶ,ଶ

௝
, 𝐼ଵ,ଶ

௝ ൟ൯. 

(A.18)  

The second inequality holds since by Assumption 1, ൫θ௝,ଶ
଴ − θ௝,ଵ

଴ ൯
ଶ

≥ δ. One ideal scenario is 2 

that for most 𝑗 ∈ 𝒥, min൛𝐼ଶ,ଵ
௝

, 𝐼ଵ,ଵ
௝

ൟ + min൛𝐼ଶ,ଶ
௝

, 𝐼ଵ,ଶ
௝

ൟ = 𝐼ଶ,ଵ
௝

+ 𝐼ଵ,ଶ
௝

= ∑௜ୀଵ
ூ  ℐ൛𝑧௜௝

଴ ≠ 𝑧̂௜௝ൟ; thus the 3 

misclassification error for the local latent classes could be bounded relatively tight. The 4 

following result confirms this intuition. 5 

Lemma 5. Define the following random set depending on the estimated latent attribute mastery 6 

patterns 𝒜ሗ  under constraint θ⃐ሬ௝,ଶ
(𝒜)

> θ⃐ሬ௝,ଵ
(𝒜)

, ∀𝑗 ∈ 𝒥: 7 

 

𝒥଴ = ൛𝑗 ∈ 𝒥; 𝐼ଶ,ଵ
௝

< 𝐼ଵ,ଵ
௝

, 𝐼ଵ,ଶ
௝

< 𝐼ଶ,ଶ
௝

ൟ; 

𝒥ଵ = ൛𝑗 ∈ 𝒥; 𝐼ଶ,ଵ
௝

< 𝐼ଵ,ଵ
௝

, 𝐼ଵ,ଶ
௝

> 𝐼ଶ,ଶ
௝

ൟ; 

𝒥ଶ = ൛𝑗 ∈ 𝒥; 𝐼ଶ,ଵ
௝

> 𝐼ଵ,ଵ
௝

, 𝐼ଵ,ଶ
௝

< 𝐼ଶ,ଶ
௝

ൟ, 

 

then under Assumption 1 and Assumption 2, there are |𝒥ଵ| = 𝑜௣(𝑆/𝐼), |𝒥ଶ| = 𝑜௣(𝑆/𝐼). 8 

Proof. If 𝑗 ∈ 𝒥ଵ, min൛𝐼ଶ,ଵ
௝

, 𝐼ଵ,ଵ
௝

ൟ + min൛𝐼ଶ,ଶ
௝

, 𝐼ଵ,ଶ
௝

ൟ = 𝐼ଶ,ଵ
௝

+ 𝐼ଶ,ଶ
௝

= ∑௜ୀଵ
ூ  ℐ൛𝑧௜௝

଴ = 2ൟ. Under 9 

Assumption 2, 10 
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 ෍  

ூ

௜ୀଵ

ℐ൛𝑧௜௝
଴ = 2ൟ ≥ 𝐼𝜖  

then 1 

 

𝑃 ൬|𝒥ଵ| ≥
𝑆

δ𝐼
൰

≤𝑃 ቌ ෍  

௝∈𝒥భ

  𝐼ଶ,ଵ
௝

+ 𝐼ଶ,ଶ
௝

≥
𝑆

δ𝐼
⋅ 𝐼ϵቍ

≤𝑃 ቌ෍  

௜

 ෍  

௝

  ൫𝑃௜௝ − θ⃐ሬ௝,௭̂೔
൯

ଶ
≥

ϵ𝑆

2
ቍ .

  

By noting ∑௜  ∑௝  ൫𝑃௜௝ − θ⃐ሬ௝,௭ഢෝ ൯
ଶ

= 𝑜௣(𝑆), then |𝒥ଵ| = 𝑜௣(𝑆/𝐼). Similar arguments yield |𝒥ଶ| =2 

𝑜௣(𝑆/𝐼), which concludes the proof of Lemma 5.                                    ∎ 3 

Note (A.17) implies that min൛𝐼ଶ,ଵ
௝

, 𝐼ଵ,ଵ
௝

ൟ + min൛𝐼ଶ,ଶ
௝

, 𝐼ଵ,ଶ
௝

ൟ ≠ 𝐼ଵ,ଵ
௝

+ 𝐼ଶ,ଶ
௝

, ∀𝑗 ∈ 𝒥, thus 𝒥 =4 

𝒥଴ ∪ 𝒥ଵ ∪ 𝒥ଶ. Lemma 5 implies that when δ௃ goes to 0 with a mild rate, the number of elements 5 

in 𝒥଴ dominates the number of elements in 𝒥ଵ ∪ 𝒥ଶ; thus for most 𝑗 ∈ 𝒥, min൛𝐼ଶ,ଵ
௝

, 𝐼ଵ,ଵ
௝

ൟ +6 

min൛𝐼ଶ,ଶ
௝

, 𝐼ଵ,ଶ
௝

ൟ should be 𝐼ଶ,ଵ
௝

+ 𝐼ଵ,ଶ
௝

= ∑௜ୀଵ
ூ  ℐ൛𝑧௜௝

଴ ≠ 𝑧̂௜௝ൟ, which represents the number of subjects 7 

with the incorrectly assigned local latent classes. 8 

Step 5. (A.18) implies that ∑௜  ∑௝  ൫𝑃௜௝ − θ⃐ሬ௝,௭ഢෝ ൯
ଶ

≥ δ∑௝∈𝒥బ
 ∑௜ୀଵ

ூ  ℐ൛𝑧௜௝
଴ ≠ 𝑧̂௜௝ൟ/2. Next we focus on 9 

obtaining a lower bound of ∑௝∈𝒥బ
 ∑௜ୀଵ

ூ  ℐ൛𝑧௜௝
଴ ≠ 𝑧̂௜௝ൟ to control the classification error rate 10 

𝐼ିଵ∑௜ୀଵ
ூ  ℐ{𝛂௜

଴ ≠ 𝛂ෝ௜}. 11 

 Motivated by Assumption 2, for each latent attribute 𝑘, denote 𝑗௞
ଵ as the smallest 12 

integer 𝑗 such that item 𝑗 has a 𝒒-vector 𝒆௞, and denote 𝑗௞
ଶ as the second smallest integer 𝑗 13 

such that 𝒒௝ = 𝒆௞, etc. For positive integer 𝑚, denote 14 

 ℬ௠ = {𝑗ଵ
௠, … , 𝑗௄

௠}. (A.19) 
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For each 𝑘 ∈ {1, … , 𝐾}, denote 1 

 
𝐽୫୧୬ = min

ଵஸ௞ஸ௄
 ห൛𝑗 ∈ 𝒥଴; 𝒒௝

଴ = 𝒆௞ൟห,  𝐽ሗ୫୧୬ = min
ଵஸ௞ஸ௄

 ห൛𝑗 ∈ 𝒥; 𝒒௝
଴ = 𝒆௞ൟห. 

(A.20) 

Then, we have that ℬ௠ ∩ ℬ௟ = ∅ for any 𝑚 ≠ 𝑙, thus 2 

 

 ෍  

ூ

௜ୀଵ

  ෍  

௝∈𝒥బ

 ℐ൛ξ൫𝒒௝
଴, 𝜶௜

଴൯ ≠ ξ൫𝒒௝
଴, 𝜶ෝ௜൯ൟ

≥ ෍  

ூ

௜ୀଵ

  ෍  

௃ౣ౟౤

௠ୀଵ

  ෍  

௝∈ℬ೘

 ℐ൛ξ൫𝒒௝
଴, 𝜶௜

଴൯ ≠ ξ൫𝒒௝
଴, 𝜶ෝ௜൯ൟ

=𝐽୫୧୬ ෍  

ூ

௜ୀଵ

 ෍  

௄

௞ୀଵ

 ℐ{ξ(𝒆௞ , 𝜶௜
଴) ≠ ξ(𝒆௞ , 𝜶ෝ௜)}.

 (A.21) 

The last inequality holds since ∑௞ୀଵ
௄  ℐ{ξ(𝒆௞ , 𝛂௜

଴) ≠ 𝜉(𝒆௞ , 𝛂ෝ௜)} ≥ ℐ{𝛂௜
଴ ≠ 𝛂ෝ௜}. Note (A.21) 3 

implies 𝑜௣(𝑆/𝐼) ≥ 𝐽୫୧୬𝐼ିଵ∑௜ୀଵ
ூ  ℐ{𝛂௜

଴ ≠ 𝛂ෝ௜}. For simplicity, 4 

 γ௃ =
𝑆

𝐼𝐽
= 𝐽

ି
ଵ
஗(log 𝐽)

஫̀
஗.  

Note that (32) in Assumption 2 implies that |𝒥|/𝐽 ≥ 𝐽ሗmin /𝐽 ≥ 𝛿௃ and 𝐽min ≥ 𝐽ሗmin − |𝒥ଵ ∪ 𝒥ଶ|; 5 

by plugging these results into 𝑜௣(𝑆/𝐼) ≥ 𝐽min 𝐼
ିଵ∑௜ୀଵ

ூ  ℐ{𝛂௜
଴ ≠ 𝛂ෝ௜}, we can obtain 6 

 𝑜௣ ൬
𝑆

𝐼
൰ + |𝒥ଵ ∪ 𝒥ଶ| ≥

𝐽ሗmin 

𝐼
෍  

ூ

௜ୀଵ

ℐ{𝛂௜
଴ ≠ 𝛂ෝ௜} ≥

𝐽δ௃

𝐼
෍  

ூ

௜ୀଵ

ℐ{𝛂௜
଴ ≠ 𝛂ෝ௜}.  

From Lemma 5, we have |𝒥௜| = 𝑜௣(𝑆/𝐼) for 𝑖 = 1,2, which implies that |𝒥ଵ ∪ 𝒥ଶ| = 𝑜௣(𝑆/𝐼). 7 

By substituting this into the above inequality, we can conclude that 8 

 𝑜௣ ൬
𝑆

𝐼
൰ ≥

𝐽δ௃

𝐼
෍  

ூ

௜ୀଵ

ℐ{𝛂௜
଴ ≠ 𝛂ෝ௜},  

which is equivalent to 𝐼ିଵ∑௜ୀଵ
ூ  ℐ{𝛂௜

଴ ≠ 𝛂ෝ௜} = 𝑜௣൫γ௃/δ௃൯. The proof of this theorem is complete. 9 
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The inequality (32) in Assumption 2 bridges between the misclassification error for the 1 

local latent classes and the misclassification error for the latent attribute mastery patterns 𝒜መ  by 2 

using the inequality ∑௞ୀଵ
௄  ℐ{𝜉(𝒆௞ , 𝛂௜

଴) ≠ 𝜉(𝒆௞ , 𝛂ෝ௜)} ≥ ℐ{𝛂௜
଴ ≠ 𝛂ෝ௜}. 3 

Proof of Theorem 2 4 

For notational simplicity, denote 𝑖௝௔
଴ = ∑௜ୀଵ

ூ  ℐ൛𝑧௜௝
଴ = 𝑎ൟ. Thus, Assumption 2 implies that ∀𝛂 ∈5 

{0,1}௄ , ∑௜ୀଵ
ூ  ℐ{𝛂௜

଴ = 𝛂} ≥ ϵ𝐼 and 6 

 𝑖௝௔
଴ ≥

2௄

2௄ೕ
𝐼ϵ ≥ 𝐼ϵ. (A.22) 

Recall that 7 

 θሗ ௝௔ =
∑  ூ

௜ୀଵ  ℐ൛𝑧̂௜௝ = 𝑎ൟ𝑋௜௝

∑  ூ
௜ୀଵ  ℐ൛𝑧̂௜௝ = 𝑎ൟ

.  

Rewrite θ௝௔
଴  as similar form 8 

 θ௝௔
଴ =

∑  ூ
௜ୀଵ  ℐ൛𝑧௜௝

଴ = 𝑎ൟθ௝௔
଴

∑  ூ
௜ୀଵ  ℐ൛𝑧௜௝

଴ = 𝑎ൟ
=

∑  ூ
௜ୀଵ  ℐ൛𝑧௜௝

଴ = 𝑎ൟ𝑃௜௝

∑  ூ
௜ୀଵ  ℐ൛𝑧௜௝

଴ = 𝑎ൟ
.  

By triangle inequality, we have 9 

 

 max
௝,௔

 หθሗ௝௔ − θ௝௔
଴ ห

= max
௝,௔

  ቤ
∑  ூ

௜ୀଵ  ℐ൛𝑧̂௜௝ = 𝑎ൟ𝑋௜௝

∑  ூ
௜ୀଵ  ℐ൛𝑧̂௜௝ = 𝑎ൟ

−
∑  ூ

௜ୀଵ  ℐ൛𝑧௜௝
଴ = 𝑎ൟ𝑃௜௝

∑  ூ
௜ୀଵ  ℐ൛𝑧௜௝

଴ = 𝑎ൟ
ቤ

≤ max
௝,௔

  ቤ
∑  ூ

௜ୀଵ  ℐ൛𝑧̂௜௝ = 𝑎ൟ𝑋௜௝

∑  ூ
௜ୀଵ  ℐ൛𝑧̂௜௝ = 𝑎ൟ

−
∑  ூ

௜ୀଵ  ℐ൛𝑧̂௜௝ = 𝑎ൟ𝑋௜௝

∑  ூ
௜ୀଵ  ℐ൛𝑧௜௝

଴ = 𝑎ൟ
ቤ

 +max
௝,௔

  ቤ
∑  ூ

௜ୀଵ  ℐ൛𝑧̂௜௝ = 𝑎ൟ𝑋௜௝

∑  ூ
௜ୀଵ  ℐ൛𝑧௜௝

଴ = 𝑎ൟ
−

∑  ூ
௜ୀଵ  ℐ൛𝑧௜௝

଴ = 𝑎ൟ𝑋௜௝

∑  ூ
௜ୀଵ  ℐ൛𝑧௜௝

଴ = 𝑎ൟ
ቤ

 +max
௝,௔

  ቤ
∑  ூ

௜ୀଵ  ℐ൛𝑧௜௝
଴ = 𝑎ൟ𝑋௜௝

∑  ூ
௜ୀଵ  ℐ൛𝑧௜௝

଴ = 𝑎ൟ
−

∑  ூ
௜ୀଵ  ℐ൛𝑧௜௝

଴ = 𝑎ൟ𝑃௜௝

∑  ூ
௜ୀଵ  ℐ൛𝑧௜௝

଴ = 𝑎ൟ
ቤ

≡ℐଵ + ℐଶ + ℐଷ.

  

Thereafter, we analyze these three terms separately. For the first term, 10 
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ℐଵ ≤ max
௝,௔

 ൭෍  

௜

 ℐ൛𝑧̂௜௝ = 𝑎ൟ𝑋௜௝൱ ⋅
∑  ௜   หℐ൛𝑧̂௜௝ = 𝑎ൟ − ℐ൛𝑧௜௝

଴ = 𝑎ൟห

𝑖௝௔
଴ ∑  ௜  ℐ൛𝑧̂௜௝ = 𝑎ൟ

 ≤ max
௝,௔

 
∑  ௜   หℐ൛𝑧̂௜௝ = 𝑎ൟ − ℐ൛𝑧௜௝

଴ = 𝑎ൟห

𝑖௝௔
଴

 ≤
1

ϵ𝐼
෍  

௜

 ℐ{𝛂௜
଴ ≠ 𝛂ෝ௜} = 𝑜௣ ቆ

γ௃

δ௃
ቇ .

  

The last inequality holds since ∀𝑗 ∈ [𝐽], 𝑗 ∈ ൣ𝐿௝൧, ∑௜  หℐ൛𝑧̂௜௝ = 𝑎ൟ − ℐ൛𝑧௜௝
଴ = 𝑎ൟห ≤ ∑௜  ℐ{𝛂௜

଴ ≠ 𝛂ෝ௜}. 1 

For the second term, we have 2 

 ℐଶ = max
௝,௔

 
∑  ௜   ห𝑋௜௝൫ℐ൛𝑧̂௜௝ = 𝑎ൟ − ℐ൛𝑧௜௝

଴ = 𝑎ൟ൯ห

𝑖௝௔
଴ ≤ max

௝,௔
 
∑  ௜   หℐ൛𝑧̂௜௝ = 𝑎ൟ − ℐ൛𝑧௜௝

଴ = 𝑎ൟห

𝑖௝௔
଴ .  

For the same reason as ℐଵ →
௉

0, we can also conclude that ℐଶ = 𝑜௣൫γ௃/δ୎൯; thus, ℐଵ + ℐଶ =3 

𝑜௣൫γ௃/δ௃൯. For the third term, we apply Hoeffding's inequality for bounded random variables 4 

and obtain 5 

 𝑃 ቆ
∑  ௜  ℐ൛𝑧௜௝

଴ = 𝑎ൟ൫𝑋௜௝ − 𝑃௜௝൯

𝑖௝௔
଴ ≥ 𝑡ቇ ≤ 2exp ൫−2𝑖௝௔

଴ 𝑡ଶ൯ ≤ 2exp (−2ϵ𝐼𝑡ଶ).  

Note the number of (𝑗, 𝑎) pairs less than or equal to 𝐽2௄ under Assumption 2, we have for 6 

∀𝑡 > 0, 7 

 𝑃(ℐଷ ≥ 𝑡) ≤ 𝐽2௄ାଵ exp(−2ϵ𝐼𝑡ଶ). (A.23) 

Notably, 2௄ାଵ remains a constant as 𝐾 is fixed. By choosing 𝑡 = 1/√𝐼ଵି௖̀ for a small 𝑐̀ > 0, 8 

the tail probability in A.23 converges to zero when the scaling condition ඥ𝐽 = 𝑂(𝐼ଵି௖) holds. 9 

This implies that ℐଷ = 𝑜௣ቀ1/√𝐼ଵି௖̀ቁ. Bringing together the preceding results, we have 10 

 max
௝,௔

 หθሗ௝௔ − θ௝௔
଴ ห = 𝑜௣ ቆ

γ௃

δ௃
ቇ + 𝑜௣ ൬

1

√𝐼ଵି௖̀
൰.  

Note for any (𝑗, 𝑎), we have ൫θሗ௝௔ − θ෠௝௔൯
ଶ

≤ 𝐶ሗ 𝑖௝௔
ିଵ and 𝑖௝௔ ≥ 𝐼ϵଶ with the probability 11 

approaching 1 ; thus max௝,௔  หθሗ௝௔ − θ෠௝௔ห = 𝑂௣൫𝐼ିଵ/ଶ൯. Therefore 12 
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 max
௝,௔

 หθ෠௝௔ − θ௝௔
଴ ห ≤ max

௝,௔
 หθሗ௝௔ − θ௝௔

଴ ห + max
௝,௔

 หθሗ௝௔ − θሗ௝௔ห = 𝑜௣ ቆ
γ௃

δ௃
ቇ + 𝑜௣ ൬

1

√𝐼ଵି௖̀
൰.  

∎ 1 

https://doi.org/10.1017/psy.2024.20 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.20

