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1. Introduction

The Cremona group Crk(n) over a field k is the group of birational automorphisms of
the projective space Pn

k . The Cremona group Crk(1) is the group of automorphisms of
the projective line, and hence is isomorphic to PSLk(2). In this paper we consider the
Cremona group over the field of complex numbers, denoted by Cr(n). Even for n = 2,
the group Cr(n) is not well understood. Finite subgroups of Cr(2) were classified by
Dolgachev and Iskovskikh (see [8]). Very little is known about the Cremona group in
higher-dimensional space. Serre [12] posed the problem: does there exist a finite group
that is not embeddable in Cr(3)? In [11], Prokhorov gave an affirmative answer to this
question.

Theorem 1.1 (Prokhorov [11, Theorem 1.3]). Let G ⊂ Cr(3) be a non-abelian
simple finite subgroup. Then, G is isomorphic to one of the following groups:

A5, A6, A7, PSL2(7), SL2(8), PSp4(3).

All the possibilities occur.

Moreover, in [11], Prokhorov found all conjugacy classes of the subgroups A7, SL2(8),
PSp4(3) in Cr(3). But his method does not work for A5, A6, PSL2(7).

In [7], Cheltsov and Shramov describe some non-conjugate embeddings of A6. More-
over, Prokhorov proved the following theorem.
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Theorem 1.2 (Cheltsov and Shramov [7, Theorem B.1]). Let X be a 3-fold
with at worst terminal singularities such that the group Aut(X) has a subgroup G ∼= A6,
and let π : X → P1 be a G-Mori fibration. Then, X ∼= P1 × P2, and π is the projection
to the first factor.

On the other hand, there are some non-isomorphic examples of G-Mori fibration with
G ∼= PSL2(7).∗

Example 1.3 (Cheltsov and Shramov). Let X ∼= P1 × P2 and G = PSL2(7).
Assume that G acts on second factors (see [8]). There is an invariant quartic, the so-
called Klein quartic C := {x3y + y3z + z3x = 0}. Set D = R+F1 +F2 + · · ·+F2n, where
R = C × P1 and Fi � P2 is a fibre of natural projection X → P1. Set Ci = R ∩ Fi. Let
π : Y → X be a double cover ramified along D and let F̄i = π−1(Fi), C̄i = π−1(Ci). Note
that the singular locus of Y is C̄1 ∪ C̄2 ∪ · · · ∪ C̄2n. Let g : Y ′ → Y be the resolution of
the singular locus of Y and let F̃i be the strict transforms of F̄i. Let φ : Y → Z be the
contraction of F̃i. Then, Z admits a G-action.

Conjecture 1.4 (Cheltsov and Shramov). Let X be a 3-fold with at worst terminal
singularities such that the group Aut(X) has a subgroup G ∼= PSL2(7), and let π : X →
P1 be a G-Mori fibration. Then, X ∼= P1 × P2, and π is the projection to the first factor,
or X is isomorphic to Z from Example 1.3.

Let X be a 3-fold with at worst terminal singularities, let G ∼= PSL2(7) and let
π : X → P1 be a G-Mori fibration. Since G is a simple group, we see that G acts on
a fibre of π. Note that every fibre of π is a del Pezzo surface with at worst rational
singularities.

In this paper we consider del Pezzo surfaces with only log terminal singularities admit-
ting an action of a finite simple group G. Any del Pezzo surface with log terminal singu-
larities is rational (see, for example, [3]). Hence, such a group G is contained in Cr(2),
the plane Cremona group. Finite subgroups of Cr(2) are classified (see [8]). By [8], there
are only three finite simple subgroups of Cr(2): A5, A6 and PSL2(7), where PSL2(7) is
the simple group of order 168 and An is the alternating group. The groups PSL2(7), A6

and A5 are referred to as Klein’s simple group, the Valentiner group and the icosahe-
dral group, respectively. In this paper we classify del Pezzo surfaces with log terminal
singularities admitting an action of one of these groups.

Example 1.5 (Dolgachev and Iskovskikh [8]). The Klein group G = PSL2(7)
has an irreducible three-dimensional representation, so G acts on the projective plane.
There exists an invariant quartic, the so-called Klein quartic C := {x3y+y3z+z3x = 0}.
Consider the double cover S2 → P2 ramified along C. Then, S2 is a smooth del Pezzo
surface of degree 2. The action of G lifts naturally to S2. A smooth del Pezzo surface of
degree 2 with a PSL2(7)-action is unique up to isomorphism and ρ(S2)G = 1.

Example 1.6. Let n be a positive integer and let k ∈ {12, 20, 30, 60}. The group
G = A5 acts naturally on the Hirzebruch surface F2n. Thus, G acts naturally on

∗ Example 1.3 and Conjecture 1.4 were shown to the author by Cheltsov and Shramov at a workshop
in China. They are currently unpublished.
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P(1, 1, 2n). Note that there exists an embedding f : P(1, 1, 2n) → P2n+1. Hence, G acts
naturally on P2n+1 with the invariant point. Then, G has an invariant hyperplane. There-
fore, there exists an invariant section M with M2 = 2n. Let M and D be disjoint
sections with M2 = 2n, D2 = −2n. Let p1 : Z1 → F2n be the blow-up of an orbit con-
sisting of k points on M . Let p2 : Z2 → Z1 be the blow-up of an orbit consisting of
k points on the proper transform of M , and so on. After a steps we obtain the surface Za

with one (−(ka − 2n))-curve, one (−2n)-curve and k chains of a − 1 (−2)-curves. Let
r : Za → F2n,ak−2n,a be the contraction of the curves with self-intersection number less
than −1. Then, F2n,ak−2n,a is a del Pezzo surface admitting a non-trivial action of G, and
ρ(F2n,ak−2n,a)G = 1. Note that F2n,ak−2n,a has two singular points of types (1/2n)(1, 1),
(1/(ak−2n))(1, 1) and k Du Val singularities of type Aa−1. It is possible that a = 1, and
then the singular locus of F2n,k−2n,1 consists of two points.

Example 1.7. Let k ∈ {12, 20, 30, 60}. The group G = A5 acts naturally on P2. Let C

be a (unique) G-invariant conic on P2. Let p0 : Z0 → P2 be the blow-up of an orbit consist-
ing of k points P1, . . . , Pk on C, and let C0 be the proper transform of C. Let p1 : Z1 → Z0

be the blow-up of an orbit of points on C0 that correspond to P1, . . . , Pk. Repeating this
procedure s + 1 times we obtain a smooth surface Zs with one (−(k(s + 1) − 4))-curve
and k chains of s (−2)-curves. Let r : Zs → P̃2

k,s be the contraction of all rational curves
whose self-intersection number is at most −2. Then, P̃2

k,s is a del Pezzo surface admitting
a non-trivial action of G, and ρ(P̃2

k,s)G = 1. The singular locus of P̃2
k,s consists of one

(fixed) point of type (1/(k(s + 1) − 4))(1, 1) and k Du Val singular points of type As. It
is possible that s = 0, and then the singular locus of P̃2

k,0 consists of one (fixed) point.

The main result of this paper is the following.

Theorem 1.8. Let X be a del Pezzo surface with log terminal singularities and let
G ⊂ Aut(X) be a finite simple group.

(i) If G � A5 and ρ(X)G = 1, then the following cases hold:

• X � P2;

• X � S5, where S5 is a smooth del Pezzo surface of degree 5;

• X � P(1, 1, 2n), a cone over a rational normal curve of degree 2n;

• X � F2n,ak−2n,a (see Example 1.6);

• X � P̃2
k,s (see Example 1.7).

(ii) If G is the Klein group, then X � P2 or X � S2.

(iii) If G is the Valentiner group, then X � P2.

Remark 1.9. Unfortunately, this theorem does not hold if we consider del Pezzo
surfaces with rational singularities (see Example 1.3). So, the hope is that by classi-
fying del Pezzo surfaces with rational singularities this theorem can be used to prove
Conjecture 1.4.

Note that there is no classification of finite subgroups of Cr(3). Our main theorem
gives some modern approaches to studying Cr(3).
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2. Preliminaries

Notation 2.1. We work over C. Throughout this paper G is one of the groups A5,
A6 or PSL2(7). X denotes a del Pezzo surface with at worst log terminal singularities
admitting a non-trivial action of G. We also employ the following notation.

• Fn denotes the Hirzebruch surface, F0 � P1 × P1.

• P(a, b, c) denotes a weighted projective plane.

• Sd denotes a del Pezzo surface of degree d.

• ρ(X) denotes the Picard number.

• A G-surface is a surface V with a given embedding G ⊂ Aut(V ).

• ρ(X)G denotes the G-invariant Picard number.

• An (n)-curve is a smooth rational curve whose self-intersection number is equal
to n.

Definition 2.2. Let S be a normal projective surface and let f : S̃ → S be a reso-
lution. Let D =

∑
i Di be the exceptional divisor. There then exists a unique Q-divisor

D� =
∑

i αiDi such that f∗KS ≡ KS̃ +D�. The numbers αi are called the codiscrepancy
of Di.

Lemma 2.3. Let V be a G-surface with at worst log terminal singularities, and let
P ∈ V be a fixed point. Then, P is singular and G � A5. Moreover, P has type (1/r)(1, 1),
where r is even.

Proof. Assume that P is a smooth point. Then, G acts on the Zariski tangent space
TP,V . Since G is a finite simple group, we see that G has no non-trivial two-dimensional
representations. Hence, P is singular. Let Ṽ → V be the minimal resolution of P , and let
D =

∑
Di be the exceptional divisor. Then, G acts on D. Since G does not admit any

embeddings to Sk, where k � 4, we see that D consists of one irreducible component.
Hence, P has type (1/r)(1, 1). On the other hand, the Klein group and the Valentiner
group do not admit a non-trivial action on a smooth rational curve. Hence, G � A5.

Finally, the action of A5 on Ṽ induces an action of A5 on the total space of the conormal
bundle N∨

D/Ṽ
� OP1(r). In particular, the group A5 naturally acts on

H0(D, N∨
D/Ṽ

) � H0(P1, OP1(r)) � SrH0(P1, OP1(1)).

This is possible if and only if r is even. �

Lemma 2.4 (Cheltsov [6, Theorem B.12]). Let G � A5 and let f : S → P1 be a
smooth relatively minimal conic bundle with an action of G. Then S � F2n. Moreover,
there are two possibilities:

• S = P1 × P1 with non-trivial action on each factor,

• S = F2n, n � 0, there is an invariant section and this case occurs for every n � 0.
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Proof. Let
α : G → O(Pic(S)), g → (g∗)−1

be the natural representation of G in the orthogonal group of Pic(S). By [8, Theorem 5.7]
we have that ker(α) 
= {e}. Since G is a simple group, we see that ker(α) = G. Hence, f

has no singular fibres. Then, S = Fr.
Since the case r = 0 is trivial, we assume that r > 0. Consider the contraction

ϕ : Fr → Vr of the negative section. Here, Vr is a cone in Pr+1 over a rational nor-
mal curve Cr ⊂ Pr of degree r or, equivalently, the weighted projective plane P(1, 1, r).
Clearly, ϕ is A5 equivariant, so A5 acts non-trivially on Vr. By Lemma 2.3, r is even. On
the other hand, one can write down an action of A5 on P(1, 1, 2n) explicitly. �

Lemma 2.5. Let P ∈ X be a log terminal singularity and let f : X̃ → X be its
minimal resolution. Let

∑
αiDi be a Q-divisor such that

f∗KX ≡ KX̃ +
∑

αiDi.

Assume that αi < 2
5 for every i. Then, P is either a Du Val singularity or P has

type 1
3 (1, 1), i.e. the exceptional divisor of f consists of a single (−3)-curve.

Proof. Assume that there is a component Dj of
∑

Di such that D2
j � −4. Then,

by [2, Lemma 2.17] we have αj � 1
2 , a contradiction.

Hence, D2
i � −3 for every i. Assume that there exist a component Dj with D2

j = −3
and a component Dk with Dj ·Dk = 1. Then, by [2, Lemma 2.17] we have αj � 2

5 . Again
we have a contradiction.

Therefore, P is either a Du Val singularity or the exceptional divisor
∑

Di has only
one component D1 with D2

1 = −3. �

The following lemma is a consequence of the classification of log terminal singularities
(see [5]).

Lemma 2.6. Let X be a projective normal surface. Let P ∈ X be a log terminal
non-Du Val singularity and let f : X̃ → X be its minimal resolution. Let

∑
αiDi be a

codiscrepancy Q-divisor over P . Assume that there exist a (−1)-curve E and a morphism
g : X̃ → Z such that g(E +

∑
Di) is a smooth point. Then, E ·

∑
αiDi � 2

11 .

Proof. Consider minimal resolution of log terminal singularities [5] case by case. For
example, if P ∈ X has type 1

7 (1, 3), then E ·
∑

αiDi = 2
7 . �

Proposition 2.7. In Notation 2.1, assume that X has at worst Du Val singularities.
We then have one of the following cases.

(i) G is the Valentiner group and X � P2.

(ii) G is the Klein group and X � P2 or X � S2.

(iii) G � A5 and either X is smooth or X � P(1, 1, 2). If, moreover, ρ(X)G = 1, then
X is isomorphic to P2, S5 or P(1, 1, 2).
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Proof. We use some elementary facts on del Pezzo surfaces with Du Val singularities
(see, for example, [10]). Recall that 9 � K2

X � 1 and

dim H0(X, O(−KX)) = K2
X + 1.

So, we have the following cases.

Case 1 (K2
X = 1). In this case, dim |−KX | = 1 and there exists a non-singular fixed

point {p} = Bs |−KX |. On the other hand, by Lemma 2.3, every fixed point is singular,
a contradiction.

Case 2 (K2
X = 2). In this case, dim |−KX | = 2. The linear system |−KX | defines a

double cover φ = φ|−KX | : X → P2. Let B ⊂ P2 be the ramification divisor of φ. We have
deg B = 4. Since G is simple, we see that B is irreducible. Since the number of singular
points of B is at most 3, we see that B is smooth. So is X. By [8] we have G � PSL2(7)
and X � Sk

2 .

Case 3 (K2
X = 3). In this case, dim |−KX | = 3 and X = X3 ⊂ P3 is a cubic

surface. Here, G has a faithful representation in H0(X, −KX) = C4. Assume that G is
the Klein group or the Valentiner group. Then, G has no irreducible four-dimensional
representations. So, the representation on H0(X, −KX) is reducible. Hence, there exists
a G-invariant hyperplane H. The intersection H ∩ X is a (G-invariant) smooth elliptic
curve, because otherwise we get a fixed point P ∈ H ∩ X, which is impossible. Since a
simple group cannot act on an elliptic curve, we get a contradiction. Hence, G � A5.

We claim that the natural representation of G on H0(X, −KX) = C4 is irreducible.
Indeed, otherwise there exists an invariant hyperplane H ⊂ P3 and, as above, we get
a fixed point P ∈ H ∩ X. Consider the representation of G on the Zariski tangent
space TP,X . Since A5 has no irreducible two-dimensional representations, dimTP,X = 3,
i.e. the point P ∈ X is singular (and Du Val). Take a G-equivariant local embedding
(X, P ) ↪→ C3 = TP,X into the corresponding affine chart. Let f = f2 + f3 be the local
equation of X at P , where fi is a homogeneous polynomial of degree i. We have fi 
= 0,
and A5 acts on C3 so that fi are invariants. Therefore, A5 acts on P2 so that the locus
{f2 = 0} is an invariant conic and {f2 = 0}∩{f3 = 0} is an invariant subset consisting of
six points or less. On the other hand, any orbit of A5 on a smooth rational curve contains
at least 12 points. The contradiction proves our claim. Hence, there are no fixed points
of G on X.

Thus, the representation of G on H0(X, −KX) = C4 is irreducible. This representation
can be regarded as an invariant hyperplane

∑
xi = 0 in C5, where A5 acts on C5

by permutations of coordinates. The ring of invariants C[x1, . . . , x5]A5 is generated by
σ1, . . . , σ5, δ, where σi is the symmetric polynomial of degree i and δ is the discriminant.
Therefore, the equation of our cubic surface X ⊂ P3 ⊂ P4 can be written as σ3 = σ3

1 = 0.
This surface is smooth.

Case 4 (K2
X � 4). In this case, the linear system |−KX | defines an embedding

X ↪→ PK2
X . Let π : X0 → X be the minimal resolution. Then, ρ(X0) = 10 − K2

X0
=

10 − K2
X � 6. So, the number of singular points of X is at most 5. Moreover, if X has
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exactly five singular points, then K2
X = 4 and ρ(X) = 1. On the other hand, such a

surface X does not exist (see, for example, [4,9]). Hence, X has at most four singular
points.

Assume that G is the Klein group or the Valentiner group. Run the G-equivariant
minimal model program (MMP) on X0. We finally obtain a del Pezzo surface S with
ρ(S)G = 1 and K2

S � 4. So, S � P2 [8]. Let s := ρ(X/X0), the number of exceptional
curves of X → S. Since the Klein group and the Valentiner group do not admit any
embeddings to S5 and do not act non-trivially on a rational curve, we see that s � 6.
Therefore,

K2
X = K2

X0
= K2

S − s � 9 − s < 4,

a contradiction.
Thus, G � A5. Assume that X is singular and X 
� P(1, 1, 2). Since X has at most

four singular points, there exists a singular fixed point P of G on X. Note that there is
a line E1 ⊂ X ⊂ Pd passing through P , an image of a (−1)-curve 
 ⊂ X0. Therefore,
there is an orbit of lines E1, . . . , Ep passing through P , where p � 5. On the other hand,
X ⊂ PK2

X is an intersection of quadrics (see, for example, [10]). Hence, there are at most
four lines on X ⊂ Pd passing through P , a contradiction.

The last assertion follows by [8]. �

Definition 2.8. Let S be a normal projective surface and let Δ be an effective
Q-divisor on S. We say that (S, Δ) is a weak log del Pezzo surface if the pair (S, Δ)
is Kawamata log terminal (klt) and the divisor −(KS + Δ) is nef and big.

Remark 2.9.

(i) Let (S, Δ) be a weak log del Pezzo surface and let ϕ : S → S′ be a birational
contraction to a normal surface S′. Then, (S′, ϕ∗Δ) is also a weak log del Pezzo
surface.

(ii) For any weak log del Pezzo surface (S, Δ), the Mori cone NE(S) is polyhedral and
generated by contractible extremal rays.

Construction 2.10. Under Notation 2.1, let π : X0 → X be the minimal resolution.
Run the G-equivariant MMP on X0. We obtain a sequence of birational contractions of
smooth surfaces φi : Xi → Xi+1. At the last step φp : Xp → Xp+1, we have either a conic
bundle over Xp+1 � P1 or a contraction to a del Pezzo surface Xp+1 with ρ(Xp+1)G = 1
(see [8]). Write π∗KX ≡ KX0 +Δ0, where Δ0 is an effective π-exceptional Q-divisor. Note
that (X0, Δ0) is a weak log del Pezzo surface. Define, by induction, Δi = φi−1∗Δi−1.
On each step of the MMP the above property is preserved: (Xi, Δi) is also a weak log
del Pezzo surface. Since ρ(Xp)G = 2, we see that there exists a G-equivariant extremal
contraction g : Xp → Y such that g is different from φp. Thus, we get the following
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sequence of G-equivariant contractions:

X0
φ0 �� X1

φ1 �� · · ·
φp−1 �� Xp

φp ��

g

��

Xp+1

Y

We distinguish the following cases.

(i) Y is a curve. Then, Y � P1 and g is a conic bundle with ρ(Xp/Y )G = 1. Moreover,
in this case Xp is a smooth del Pezzo surface with ρ(Xp)G = 2. Since the groups
A6 and PSL2(7) cannot act non-trivially on a rational curve, we have G � A5.

(ii) Y is a smooth surface. The contraction g is then K-negative. In this case both
Y and Xp are smooth del Pezzo surfaces with ρ(Xp)G = 2 and ρ(Y )G = 1. By
Proposition 2.7 we have G � A5.

(iii) Y is a singular surface. Then, (Y, g∗Δp) is a weak log del Pezzo surface. In particular,
Y is a del Pezzo surface with log terminal singularities. The group G transitively
acts on Sing(Y ).

Assume that both contractions g and φp are birational. Let D =
∑m

i=1 Di be the
g-exceptional divisor, let Bi = φp(Di) and let B =

∑m
i=1 Bi. Since ρ(Xp)G = 2, we see

that the group G acts transitively on {Di} and on {Bi}, so the curves Bi have the same
anti-canonical degrees and self-intersection numbers. Since ρ(Xp+1)G = 1, the divisor B

is ample and proportional to −KXp+1 . Hence, B is connected. Assume that Sing(B) = ∅.
Then, B is an irreducible curve. Since B is rational, by the genus formula KXp+1 + B is
negative. This is possible only if Xp+1 � P2. Thus, we have the following.

Claim 2.11. In the above notation, either

(i) Sing(B) 
= ∅ or

(ii) Xp+1 � P2 and B is a smooth irreducible curve of degree less than or equal to 2.

Construction 2.12. Under Notation 2.1, let ρ(X)G = 1. Assume that X is singular.
Consider the minimal resolution μ : Y → X and let R =

∑n
i=1 Ri be the exceptional

divisor. The action of G lifts naturally to Y . Write

μ∗KX = KY +
∑

αiRi,

where 0 � αi < 1. Fix a component, say R1 ⊂ R, and let R′ = R1 + · · · + Rk be its
G-orbit. We can contract all the curves in R − R′ over X:

μ : Y
η−→ X̄

φ−→ X.

Then, ρ(X̄)G = 2 and

φ∗KX = η∗KY = KX̄ + Δ, where Δ := η∗
∑

αiRi.
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Therefore, (X̄, Δ) is a weak log del Pezzo surface. Let ψ : X̄ → X ′ be a (unique)
KX̄ + Δ-negative contraction. Clearly, ψ 
= φ, ψ does not contract any component of Δ,
and ψ is also KX̄ -negative. We get the following G-equivariant diagram:

X̄
φ

����
��

��
�

ψ

���
��

��
��

�

X X ′

where X ′ is either a smooth rational curve or a del Pezzo surface with at worst log
terminal singularities and ρ(X ′)G = 1.

For a normal surface V , denote by d(V ) the Picard number of its minimal resolution.
In our situation, ψ ◦ η is a non-minimal resolution of singularities (because −KX̄ is
ψ-ample). Hence, d(X ′) < d(X).

The following procedure is well known. It is called the ‘2-ray game’.

Construction 2.13. Apply Construction 2.12 several times. We get the following
sequence of G-equivariant birational morphisms:

X̄0
φ0

�����������
ψ0

���
��

��
��

� X̄d

φd

����
��

��
�� ψd

����
��

��
��

X = X0 X1 . . . Xd Xd+1

Since d(Xi) > d(Xi+1), the process terminates. Thus, we end up with Xd+1, which
is either a smooth curve or a smooth del Pezzo surface with ρ(Xd+1)G = 1. Recall
that each Xi for i = 1, . . . , d is a del Pezzo surface with log terminal singularities and
ρ(Xi)G = 1.

Note that at each step the extraction φi is not unique; this obviously depends on the
choice of R′ (as in Notation 2.12). For our purposes it is convenient to choose R′ in one
of the following ways.

(1) R′ is the orbit of exceptional curves over non-fixed points with maximal codiscrep-
ancy.

(2) φi(R′) is a fixed point P ∈ Xi. By Lemma 2.3, R′ is a unique exceptional curve
over P .

3. The Valentiner and Klein groups

In this section we prove our main theorem in the case where G = A6 or PSL2(7) (i.e. G is
the Valentiner or Klein group).

Proposition 3.1. Assume that the surface X is singular and that G is either the
Klein group or the Valentiner group. Then, Xp has only cyclic quotient singularities of
type 1

3 (1, 1).
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Proof. Apply Construction 2.10. By our assumption we get the case (iii), i.e. the
contraction g is birational and Y is a singular del Pezzo surface (with log terminal
singularities and ρ(Y )G = 1). Moreover, the contraction φp+1 is also birational and the
exceptional loci of g and φp are reducible (because G cannot act non-trivially on a rational
curve). Write

g∗KY = KXp +
m∑

i=1

αiDi and D =
m∑

i=1

Di,

where, as above, the Di are g-exceptional curves. Since the group G acts transitively on
{Di}, we have

α1 = · · · = αm := α and − D2
1 = · · · = −D2

m := n.

Furthermore, by the classification of log terminal singularities [5], the exceptional divisor
over every singular point is either a pair of (−n)-curves or a single (−n)-curve (otherwise,
G cannot interchange the Di).

We claim that n � 3. Indeed, assume, on the contrary, that n > 3. Note that φp is the
blow-up of points in Sing(B). Let E be a φp-exceptional curve on Xp. Then,

0 > KY · g∗E = g∗KY · E =
(

KXp +
m∑

i=1

αDi

)
· E � −1 + 2α.

Therefore, α < 1
2 . On the other hand,

0 = g∗KY · Dj =
(

KXp +
m∑

i=1

αDi

)
· Dj � n − 2 − αn, nα � n − 2.

Hence, n � 3. Moreover, if n = 3, then αDj ·
∑

Di = −1, and so Dj ·
∑

i �=j Di < 1. This
means that Di ∩ Dj = 0 for i 
= j. Hence, every singular point on Y is either Du Val of
type Al, l � 2, or a cyclic quotient singularity of type 1

3 (1, 1). By Proposition 2.7 we are
done. �

By Proposition 2.7 we may assume that the singularities of X are worse than Du
Val. Apply Construction 2.10. We get the case (iii). In particular, Sing(Y ) 
= ∅ and is a
del Pezzo surface with log terminal singularities and ρ(Y )G = 1. Moreover, Xp+1 � P2

or Sk
2 , and the latter is possible only for G = PSL2(7) (see [8]). As in the proof of

Proposition 3.1, let D =
∑

Di be the g-exceptional divisor and let Bi := φp(Di). By
Proposition 3.1, every singular point on Y is of type 1

3 (1, 1), i.e. D consists of disjoint
(−3)-curves.

We first consider the case X � P2. Then, Bi ∩ Bj 
= ∅, and so φp is a blow-up of
points in Bi ∩ Bj , i 
= j. We claim that every curve Bi is smooth and there are at most
two components of B passing through every point P ∈ P2. Indeed, assume the converse.
Then,

0 > g∗KY · E =
(
KXp + 1

3

∑
Di

)
· E � −1 + 3 · 1

3 = 0.
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Therefore, every Bi is smooth. Furthermore, since the curves Bi are rational, k � 2. If
k = 1, then the Bi are lines, and on every line we blow up four points. Hence, there are
five of these lines, a contradiction.

Finally, consider the case k = 2. The Bi are then smooth conics, and on every conic
we blow up seven points. It is easy to see that the number of points of intersection of
conics is divisible by four, a contradiction.

Now consider the case Xp+1 � Sk
2 . Then, G is the Klein group. Let r := ρ(Xp/Xp+1).

Recall that m is the number of the Di. Then, by Noether’s formula,

0 < K2
Y = g∗K2

Y = K2
Xp

− D3 = 10 − ρ(Xp) +
m

3
= 2 − r +

m

3
.

Since m � r + 7 = ρ(Xp) − 1, we see that

0 < 2 − r +
m

3
� −2m + 1

3
< 0,

a contradiction.

4. The icosahedral group

It remains to consider the case G � A5. In addition to 2.1 we assume that ρ(X)G = 1. By
Proposition 2.7 we may assume also that the singularities of X are worse than Du Val.

By [8], there are three cases: Xd+1 � P1, Xd+1 � P2 or Xd+1 is a del Pezzo surface S5

of degree 5.

Lemma 4.1. Let V be a normal surface and let C ⊂ V be a smooth curve such that
(KV + C) · C < 0. Then, V has at most three singular points on C.

Proof. By the adjunction formula [13] we have that

(KV + C)|C = KC + DiffC ,

where DiffC is the difference, an effective Q-divisor supported in singular points of V

lying on C. Moreover, the coefficients of DiffC are � 1/2. Since, by our conditions,
deg DiffC < − deg KC � 2, we get that DiffC is supported in at most three points. �

Lemma 4.2. For any i, the exceptional divisor of ψi has at least five connected
components.

Proof. Let E be the ψi-exceptional divisor. Since ρ(X̄i)G = 2 and G = A5 is a simple
group, E is either connected or the number of connected components of ψi is greater
than or equal to 5. Assume that E is connected. Since E is a tree of rational curves,
it is irreducible. So, E � P1. By Lemma 2.3 the action of G on E is non-trivial. If
X̄i is smooth along E, then E is a (−1)-curve and ψi(E) is a G-fixed smooth point.
This contradicts Lemma 2.3. Therefore, X̄i has at least five singular points on E. This
contradicts Lemma 4.1. �
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Corollary 4.3. If there exists a G-fixed point on Xi for some i, then there exists a
fixed point of G on Xj for any j � i.

Proof. Assume that Xi has a fixed point of G, say P . By Lemma 4.2, ψi−1 is an
isomorphism over P . So, φi−1(ψi−1(P )) is a fixed point of G on Xi−1. �

Lemma 4.4. Suppose that ρ(X)G = 1 and G has no fixed points on X. Then, Xd+1

is not a curve.

Proof. Assume that Xd+1 � P1. By Corollary 4.3, the group G has no fixed points
on Xd. We now choose φi according to Construction 2.13 (1). By Lemma 2.4, the surface
X̄d is singular. Since A5 is a simple group and G has no fixed points on Xd, we see that
the exceptional divisor of φd consists of at least five curves D1, . . . , Dk, where k � 5. Let
f be a general fibre of ψd. Then,

0 > f ·
(

π′∗KX̄d
+ α

k∑
i=1

Di

)
� −2 + kα,

where α is the codiscrepancy of Di. By Lemma 2.5 and Proposition 2.7 we see that
α = 1

3 and k = 5. By [1, Theorems 1–5] there exists an irreducible non-singular curve
C ∈ |−3KXd

| 
= ∅. Set C̄ = φ∗
dC −

∑
riDi, where ri � 0. Since C is not a rational curve,

we see that C is not a section of ψd. Then,

KX̄d
+

1
3
C̄ +

k∑
i=1

(
α +

ri

3

)
Di ≡ 0.

Hence

0 = f ·
(

KX̄d
+

1
3
C̄ +

k∑
i=1

(
α +

ri

3

)
Di

)
� −2 +

2
3

+
5
3

=
1
3
,

a contradiction. �

Claim 4.5. A smooth del Pezzo surface of degree 5 contains exactly five pencils of
conics.

Proof. Each pencil of conics |C| has exactly three degenerate members that are pairs
of meeting lines. Since a del Pezzo surface of degree 5 contains 15 such pair of lines, we
are done. �

Lemma 4.6. Suppose that ρ(X)G = 1 and G has no fixed points on X. Then, X � P2

or X is a del Pezzo surface S5 of degree 5.

Proof. By Lemma 4.4 and [8] we have Xd+1 � P2 or Xd+1 � S5. We now choose φi

according to Construction 2.13 (1). By Proposition 2.7 we see that Xd has at least one
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non-Du Val singularity. Hence, the exceptional divisor of φd is one orbit D1, . . . , Dk,
where k � 5. Let D =

∑k
i=1 Di and m := −D2

i . Since the divisor

−φ∗
dKXd

≡ −KX̄d
−

k∑
i=1

αDi

is nef and big, so is

−ψd∗φ
∗
dKXd

≡ −KXd+1 −
k∑

i=1

αψd(Di). (∗)

By Lemma 2.5, α � 1
3 . Consider the following two cases.

Case 1 (Xd+1 � P2). By the above the divisor, 3H −
∑

αψd(Di) is nef and big,
where H is a line. Assume that deg ψd(Di) � 2. Then, 3 > 2kα. Since k � 5 and α � 1

3 ,
we see that 2kα � 10

3 , a contradiction.
Hence, ψd(Di) are lines. Then, k = 5 or 6. Assume that k = 5. There then exists an

orbit of five lines on P2. Note that there exists an invariant conic C ⊂ P2. The divisor∑
ψd(Di) meets C in at most 10 points. Hence, there exists an orbit on C consisting of at

most 10 points. However, the order of any orbit on C � P1 is at least 12, a contradiction.
Thus, k = 6. Hence, the lines ψd(Di) are in general position, i.e. every line contains

five points of intersection. Therefore, m � 4, and so 3 > kα � 3. Again, we have a
contradiction.

Case 2 (Xd+1 is a del Pezzo surface S5 of degree 5). Assume that ψd(Di) are
(−1)-curves. Then, k = 10 and, by (∗),

1 = −KS5 · Ei > 3α − α = 2α.

Thus, α < 1
2 . It is well known that on a del Pezzo surface of degree 5 every (−1)-curve

meets three other (−1)-curves. Hence, m � 4, a contradiction.
Assume that (ψd(Di))2 � 1. Then 5 = K2

S5
> 3kα. Since k � 5 and α � 1

3 , we see
that 3kα � 5, a contradiction.

Therefore, (ψd(Di))2 = 0, i.e. ψd(Di) is a conic. Then 2kα < 5. Therefore, m = 3 and
k = 5 or 6. By Claim 4.5, there exist only five linear systems of conics. If ψd(D) con-
tains two conics of one pencil, then ψd(D) has at least 10 components, a contradiction.
Therefore, ψd(D) consists of five conics contained in different linear systems. Every com-
ponent of ψd(D) meets four other components. Then, ψd extracts four points on every
component of ψd(D). Hence, m = 4, a contradiction. �

Lemma 4.7. Suppose that ρ(X)G = 1. Assume that G has a fixed point P on X.
Choose φ0 as in Construction 2.13 (2). Assume that X1 = P1. Then, X̄0 is smooth.
Moreover, X̄0 � Fn and X � P(1, 1, n).

Proof. In our case, ψ0 : X̄0 → X1 = P1 is a rational curve fibration. Let D0 be a
unique exceptional curve of φ0. Note that D0 is contained in the smooth locus of X̄0.
Assume that D0 is a section. There then exist no singular fibres. Hence, by Lemma 2.4,
we see that X̄0 � Fn. So, we may assume that D0 is not a section of ψ0.
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Assume that P is not a Du Val singularity. Let m � 2 be the degree of the restric-
tion ψ0|D0 : D0 → P1. Then, by the Hurwitz formula, −2 = −2m + deg B, where B is
the ramification divisor. Thus, deg B = 2m − 2. The divisor B is G-invariant. Hence,
deg B � 12 and m � 7. Let f be a general fibre of ψ0. Then,

0 < −φ∗
0KX · f = −(KX̄ + αD0) · f = 2 − mα,

where α is the codiscrepancy of D0. Hence, m < 2/α. By Lemma 2.5, α � 1
3 , a contra-

diction.
Therefore, P is a Du Val singularity. By Proposition 2.7, X also has a non-Du Val

singular point. Apply Construction 2.13 (1) to X̄0 over the base P1:

X̃0
ξ0

����
��

��
�� η0

���
��

��
��

� X̃e

ξe

����
��

��
�� ηe

				
		

		
		

X̄0 X̄1
. . . X̄e X̄e+1

Here, X̄e+1 is smooth and X̄e is singular. We claim that X̄e+1 has no section M with
M2 = −p, where p � 2. Indeed, let π : Y → X0 be the minimal resolution and let D0 be
a unique exceptional curve over P . Note that η0 contracts curves meeting D0. Therefore,
X̄e+1 has no invariant (−p)-curves M such that M is a section, where p � 2.

By Lemma 2.4 we have that X̄e+1 � P1 × P1. By Proposition 2.7, the singularities of
X̄e are worse than Du Val. Let D1, . . . , Dk be the exceptional curves of ξe, where k � 5.
Then,

0 < −
(
KX̃e

+ α
∑

Dk

)
· f = 2 − kα,

where f is a fibre of the projection X̄e � P1 ×P1 → P1 and α is the codiscrepancy of Di.
By Lemma 2.5 we have α = 1

3 , every non-Du Val singularity on X̄e has type 1
3 (1, 1),

and k = 5. According to [1, Theorems 1–5] there exists an irreducible non-singular curve
C ∈ |−3KX̄e

| 
= ∅. Set C̃ = ξ∗
eC −

∑
riDi, where ri � 0. Since C is not rational, C is not

a section. Then,

KX̃e
+

1
3
C̃ +

∑ (
α +

ri

3

)
Di ≡ 0.

Hence,

0 = f ·
(

KX̃e
+

1
3
C̃ +

∑ (
α +

ri

3

)
Di

)
� −2 +

2
3

+
5
3

=
1
3
,

a contradiction. �

Lemma 4.8. Suppose that ρ(X)G = 1 and G has exactly one fixed point on X. Then
either X � P(1, 1, 2n) or X � P̃2

k,s.

Proof. Let P ∈ X be the fixed point of G. Then, by Lemma 2.3, P ∈ X is of
type (1/r)(1, 1) for some r � 2. Consider the following two cases.
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Case 1 (r � 11). We choose φ0 as in Construction 2.13 (2). Then, X1 has no fixed
points. By Lemmas 4.6, 4.7 and 2.4, we may assume that X1 � P2 or X1 � S5. Assume
that curves of the exceptional divisor of ψ0 contain two singular points or one non-Du Val
singular point. Let π : Y → X be the minimal resolution, let D =

∑
Di be the exceptional

divisor and let D0 be a unique invariant curve of the exceptional divisor. We have that
D2

0 = −r � −11 and there exists a morphism π′ : Y → X̄0 such that π = φ0 ◦ π′. Hence,
by Lemma 2.6,

0 < −KX · π∗Ei = −Ei · (KY + D�) � 0,

where Ei is a (−1)-curve contracted by ψ0 ◦ π′ and D� is the codiscrepancy divisor
(see 2.2), a contradiction.

Therefore, every contracted curve contains at most one Du Val singular point of
type Ap. Assume that X1 is a del Pezzo surface of degree 5. Let k := ρ(X̄0/X1) and
let l = (ψ∗D0)2. Then,

K2
X = 10 − ρ(Y ) + k(p + 1) − l − 4 +

4
k(p + 1) − l

= 1 − l +
4

k(p + 1) − l
.

So, l = −1, 0 or 1. On the other hand, S5 has no invariant curves with self-intersection
number −1, 0 or 1, a contradiction. Therefore, X1 � P2. In this case ψ∗D0 is a conic.
Hence, X � P̃2

k,s.

Case 2 (r � 10). Assume that X has a singular fixed point and other singular points
that are Du Val singular points. We then choose φ0 as in Construction 2.13 (2). Then,
X1 � P2 or X1 � S5 and all non-fixed singular points have type Ap. Hence,

0 < K2
X = 10 − ρ(X1) − (p + 1)k + m − 4 +

4
m

,

where k ∈ {12, 20, 30, 60}. Therefore, k = 12, p = 0 and X1 � P2. As above, we have
X � P̃2

k,0.
We may now assume that X has a fixed singular point and at least one non-Du Val

non-fixed singular point.
Apply Construction 2.13. We may construct φi as in (1) therein. Then, Xd is a surface

with one fixed point of G. Since r � 10, we see that every ψi does not contract curves
containing the fixed point of G.

Consider the case where Xd � P(1, 1, 2n). Assume that there exist non-Du Val singu-
larities on Xd−1 other than P . Let D1, . . . , Dk be the exceptional curves of φd−1. Then,

−KP(1,1,2n) = (2n + 2)l > αψd−1∗
∑

Di,

where l is a generator of the Weil divisor class group and α is the codiscrepancy of Di.
Since ψi does not contract curves containing the fixed point of G, we see that ψd(Di)
also does not contain the fixed point of G. Then l · ψd−1(Di) � 1. We obtain n = 1,
m = 3 and α = 1

3 . Hence, ψd−1(Di) � 2l, a contradiction. Therefore, Xd−1 has exactly
one non-Du Val singularity. Denote it by P .
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We now choose φ′
d−1 according to Construction 2.13 (2). By Proposition 2.7, X ′

d is a
smooth del Pezzo surface. We obtain n = 1, 2 or 3. Assume that n = 2 or 3. Then,

0 < K2
Xd−1

� 10 − ρ(Y ) + 8
3 � −15 + 8

3 < 0,

a contradiction. Hence, n = 1. Then,

0 < K2
Xd−1

= 10 − ρ(Y ) � 0,

a contradiction.
Consider the case where Xd 
= P(1, 1, 2n). Let φd : X̄d → Xd be the minimal resolution

of Xd and let D be the exceptional curve. Let ψd : X̄d → Xd+1 be the contraction of
another G-equivariant extremal ray. Suppose that Xd+1 � S5. Then,

0 < K2
Xd

= 10 − ρ(X̄d) + l − 4 +
4
l
.

Assume that l � 4. Then, (ψd(D))2 is equal to −1, 0 or 1. On the other hand, S5 has no
invariant curves whose self-intersection number is equal to −1, 0 or 1, a contradiction.

Suppose that l = 3. Then,

0 < K2
Xd

= 10 − ρ(X̄d) + 1
3 .

We see that every exceptional curve of ψd meets D in at most two points. Note that
there exists some orbit P1, . . . , Pj consisting of points of intersections of exceptional
curves with D. Since the order of any orbit on P1 is at least 12, we see that the number
of exceptional curves is at least six. Then, ρ(X̄d) � 11, a contradiction.

Assume that l = 2. Then, 0 < K2
Xd

= 10 − ρ(X̄d). We have that ρ(X̄d) � 5 + r, where
r = ρ(X̄d/Xd+1) � 5, a contradiction.

Therefore, Xd+1 � P2. Suppose that l � 4. Then, ψd(D) is a conic. On the other hand,
ψd is a blow-up of at least twelve points on ψd(D), a contradiction.

Finally, if ψd(D) is singular, then ψd is the blow-up of singular points P1, . . . , Pk of
the curve ψd(D). Let q := multPi

(ψd(D)) � 2 and ψd(D) ≡ tH, where H is a line on P2.
Then, D2 = t2 − kq. By the genus formula, we have that

k
q(q − 1)

2
=

(t − 1)(t − 2)
2

.

Hence, t2 = kq2 + 3t − kq − 2, and so D2 = kq(q − 2) + 3t − 2 > 0, a contradiction. �

Lemma 4.9. Assume that ρ(X)G = 1 and X has exactly two singular points. Then,
X � F2n+k,k−2n,1.

Proof. Since G is a simple group, we see that both singular points are fixed points.
By Lemma 2.3 there exist exactly two fixed points P1 and P2 on X, and these points
have types (1/r1)(1, 1) and (1/r2)(1, 1) for some r1, r2. We may assume that r1 � r2.
Apply Construction 2.13, choosing φ0 as in (2) therein with P = P1. By Lemma 4.8 we
may assume that X1 � P(1, 1, 2n) or X1 � P̃2

k,0. Let N be a unique exceptional curve
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of φ0. If the exceptional curves of ψ0 contain P2, then r2 � 5. Since r1 � r2, we see that
ψ0(N) does not contain the singular point. Assume that X1 � P̃2

k,0. Let m = −N2. Since
−φ∗

0(KX) = −KX̄0
+ (m − 2)N/m is nef and big, we see that −KX1 > (m−2)ψ0(N)/m.

Since ψ0(N) does not contain a singular point, we see that ψ0(N) · E′
i � 1, where E′

i is
the image of the (−1)-curve. Then,

−KX1 · E′
i = 1 − k − 6

k − 4
>

m − 2
m

.

On the other hand, m � k − 4 � 8, a contradiction.
Therefore, X1 � P(1, 1, 2n). Since ψ0 is the blow-up of one orbit, we see that

N2 = 2n − k, where k = 12, 20, 30 or 60. Hence, X � F2n,k−2n,1. �

Lemma 4.10. Assume that ρ(X)G = 1. Then, G has at most two fixed points on X.

Proof. Assume that G has three fixed points P1, P2, P3 ∈ X. Apply Construction 2.13,
choosing φi as in (1) therein. By Lemma 2.3 we obtain a surface Xd−1 with exactly three
singular points. Let π : Y → Xd−1 be the minimal resolution and let D1, D2, D3 be the
exceptional curves. Set ni := D2

i .
By Lemma 2.3 all ni are even. On the other hand, there exists a rational curve fibration

Φ : Y → P1 such that D1, D2, D3 are horizontal curves. Assume that Xd−1 has no Du Val
singularities. Then,

0 < −f ·
(

KY +
n1 − 2

n1
D1 +

n2 − 2
n2

D2 +
n3 − 2

n3
D3

)
= −f · π∗(KXd−1),

where f is a generic fibre of Φ. Hence,

n1 − 2
n1

+
n2 − 2

n2
+

n3 − 2
n3

< 2.

We obtain n1 = 4 and n2 � 6.
We now apply Construction 2.13, choosing φd−1 as in (2) therein with P = P3. We see

that the exceptional divisor of ψd−1 does not contain any singular point. Then, Xd is a
del Pezzo surface with two fixed points of G. Since n1 = 4 and n2 � 6, we see that Xd is
not isomorphic to F2n,k−2n,1, a contradiction.

Therefore, n1 = 2. Assume that n2 = 2. We now choose φd−1 as in Construction 2.13 (2)
with P = P3. We see that the exceptional divisor of ψd−1 is contained in the smooth
locus. Hence, Xd is a del Pezzo surface with two Du Val singular points, a contradiction
with Proposition 2.7. Therefore, n3 � n2 � 4.

We now choose φd−1 as in Construction 2.13 (2) with P = P2. We claim that the
components of the exceptional divisor of ψd−1 do not contain singular points. Indeed,
assume that the exceptional divisor of ψd−1 contains P1. Then, Xd is a del Pezzo surface
with a fixed smooth point, a contradiction.
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Assume that the exceptional divisor of ψd−1 contains P3. Hence, there exists a
(−1)-curve E on Y meeting both D2 and D3. Therefore,

E · π∗KXd−1 = E ·
(

KY +
n2 − 2

n2
D2 +

n3 − 2
n3

D3

)

� −1 +
n2 − 2

n2
+

n3 − 2
n3

� 0,

a contradiction.
Thus, if we choose φd−1 as in Construction 2.13 (2) with P = P2, then the exceptional

divisor of ψd−1 does not contain the singular points. The same holds for P3. Note that,
after the contraction of another G-equivariant extremal ray, we obtain F2n,k−2n,1. Hence,
n2, n3 ∈ {10, 18, 28, 58}. We now choose φd−1 as in Construction 2.13 (2) with P = P1.
Then, Xd � F2n,k−2n,1. Assume that the exceptional divisor of ψd−1 contains a singular
point. Then, 2n = n2 − h and k − 2n = n3 or 2n = n2 and k − 2n = n3 − h, where
h ∈ {12, 20, 30, 60}. Since k ∈ {12, 20, 30, 60} and 29 � n � 1, this case is impossible.
Hence, the exceptional divisor of ψd−1 does not contain any singular point. We obtain
F2n,k−2n,1, where 2n = 10, 18, 28 or 58. Hence, n2 = n3 = 10. Then,

K2
Xd−1

= K2
Y +

(n2 − 2)2

n2
+

(n3 − 2)2

n3
= 22 − ρ(Y ) +

4
5
.

We now compute ρ(Y ). We have that ρ(F10,10,1) = 20. Then, ρ(X̄d−1) = 20 + s, where
s = ρ(X̄d−1/F10,10,1) � 5 is the number of components of the exceptional divisor of ψd−1.
Then, ρ(Y ) = 22 + s. Hence, K2

Xd−1
< 0, a contradiction. �

Lemma 4.11. Assume that ρ(X)G = 1 and G has at least two fixed points on X.
Then, X � F2n,ak−2n,a.

Proof. By Lemma 4.10 the group G has exactly two fixed points P1, P2 ∈ X, and by
Lemma 4.9 we may assume that X also has a non-fixed singular point, say Q.

First, we consider the case where Q is not Du Val. Apply Construction 2.13, choos-
ing φi as in (1) therein. Then, Xd � F2n,k−2n,1. Let D0,0, . . . , D0,l be the exceptional
curves of φ0. Then, −(KX̄0

+ α
∑l

j=1 Dj) is nef and big, where α � 1
3 and l � 5.

Let D̃i,0, . . . , D̃i,l be the proper transform of D0,0, . . . , D0,l on Xi. Hence, the divisor
−(KXi + α

∑l
j=1 D̃i,j) is nef and big. Assume that a curve of the exceptional divisor

of ψi contains a fixed point P and meets Di−1,j . Since the exceptional curves of ψi are
contained in one orbit, we see that every curve of the exceptional divisor of ψi contains
a fixed point P . Hence, P has type (1/m)(1, 1), where m � 7. Let πi : Yi → Xi be the
minimal resolution. The divisor −(KY + ((m − 2)/m)D + α

∑
D̄i,j) is then nef and big,

where D is a unique exceptional curve over P and D̄i,j is the proper transform of D̃i,j .
On the other hand, there exists a (−1)-curve E on Yi such that E meets D and D̄i,j .
Hence, 0 < 1− (m−2)/m−α < 0, a contradiction. Therefore, D̃d,0, . . . , D̃d,l do not con-
tain a fixed point. Let πd : Yd → F2n,k−2n,1 be the minimal resolution. Let D1 and D2 be
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exceptional divisors over fixed points of G and let D̄d,0, . . . , D̄d,l be the proper transform
of D̃d,0, . . . , D̃d,l. There exists a G-equivariant rational curve fibration Φ : Yd → P1 such
that D1 and D2 are sections. Since the curves D̃d,0, . . . , D̃d,l do not contain fixed points,
we see that D̄d,0, . . . , D̄d,l are horizontal curves. Hence,

0 < −f ·
(

KYd
+

2n − 2
2n

D1 +
k − 2n − 2

k − 2n
D2 + α

l∑
j=1

D̄d,j

)

� 2 − 2n − 2
2n

− k − 2n − 2
k − 2n

− lα

< 0,

a contradiction.
Therefore, the singularities of X \ {P1, P2} are Du Val. By Lemma 2.3, points P1 and

P2 are types (1/m1)(1, 1) and (1/m2)(1, 1), respectively. We may assume that m1 � m2.
If we apply Construction 2.13, choosing φi as in (1) therein, we obtain Xd � F2n,k−2n,1.
Hence, m1 + m2 � 12. We now choose φ0 as in Construction 2.13 (2) with P = P1. By
Lemma 4.8 we have two possibilities.

(1) (X1 � P̃2
k,s.) Since m1 � m2 � 8, we see that the exceptional curves of ψ0 do

not contain the fixed point P2. We now choose φ1 as in Construction 2.13 (2) with
P = P2. We obtain X2 � P2. Let D2 be a unique exceptional curve over P2. Let
π : Y → X be the minimal resolution and let D1 be the proper transform of a
unique exceptional curve over P1. If an exceptional curve of ψ1 meets D1, then
there exists a (−1)-curve E on Y such that E meets D̄1 and D̄2. Hence,

0 < −E ·
(

KY +
m1 − 2

m1
D̄1 +

m2 − 2
m2

D̄2

)
= 1 − m1 − 2

m1
− m2 − 2

m2
< 0,

a contradiction. Therefore, the exceptional curves of ψ1 do not meet D1. Then,
ψ1(D1) does not meet ψ1(D2), a contradiction.

(2) (X1 � P(1, 1, 2n).) As above, we see that the exceptional curves of ψ0 do not
contain the fixed point P2. Note that every exceptional curve is a rational curve
with one Du Val singular point of type As. Let π : F2n → P(1, 1, 2n) be the minimal
resolution and let D2 be a unique exceptional curve. Then, D2 does not meet D1,
where D1 is the proper transform of a unique exceptional curve of φ0. Hence,
D2

2 = −2n and D2
1 = 2n. Therefore, X � F2n,ak−2n,a.

�

Theorem 1.8 now follows from Lemmas 4.6, 4.8 and 4.11.
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