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Abstract

Let X be a continuous-time strongly mixing or weakly dependent process and let T be
a renewal process independent of X. We show general conditions under which the sam-
pled process (XTi , Ti − Ti−1)� is strongly mixing or weakly dependent. Moreover, we
explicitly compute the strong mixing or weak dependence coefficients of the renewal
sampled process and show that exponential or power decay of the coefficients of X is
preserved (at least asymptotically). Our results imply that essentially all central limit
theorems available in the literature for strongly mixing or weakly dependent processes
can be applied when renewal sampled observations of the process X are at our disposal.
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1. Introduction

Time series are ubiquitous in many applications, and it is often the case that the time interval
separating two successive observations of the time series is itself random. We approach the
study of such time series by using a continuous-time stationary process X = (Xt)t∈R and a
renewal process T = (Ti)i∈Z which models the sampling scheme applied to X. We assume that
X is strongly mixing or weakly dependent as defined in [39] and [20] respectively, and that T
is a process independent of X with inter-arrival time sequence τ = (τi)i∈Z\{0}. In this general
model set-up, we show under which assumptions the renewal sampled process Y = (Yi)i∈Z
defined as Yi = (XTi , Ti − Ti−1)� inherits strong mixing and weak dependence.

In the literature, the statistical inference methodologies based on renewal sampled data sel-
dom employ a strongly mixing or weakly dependent process Y . To the best of our knowledge,
the only existing example of this approach can be found in [1], where it is shown that Y is
ρ-strongly mixing, and this property is used to study the consistency of maximum likelihood
estimators for continuous-time diffusion processes. In contrast, there exist several statistical
estimators whose asymptotic properties rely heavily on ad hoc tailor-made arguments for spe-
cific models X. Examples of this kind appear in spectral density estimation theory. In [33],
[35], [36], and [37], Lii and Masry studied non-parametric and parametric estimators of the
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spectral density of X via an aliasing-free sampling scheme defined through a renewal process;
see [33] for a general definition of this set-up. Schemes such as the Poisson scheme allow
us to overcome the aliasing problem, typically observed when working with a process that
is not band-limited. Moreover, the spectral density estimators determined via renewal sam-
pled data are consistent and asymptotically normally distributed once we assume that X has
finite moments of all orders. Renewal sampled data are also used to define a spectral density
estimator for Gaussian processes [4], kernel density estimators for strongly mixing processes
[38], non-parametric estimators of volatility and drift for scalar diffusion [15], and paramet-
ric estimators of the covariance function of X as in [7] and [34]. In [34], McDunnough and
Wolfson analyzed an estimator of the covariance function of a Gauss–Markov process and a
continuous-time Lévy-driven moving average. In [7], in particular, the asymptotic properties
of the estimator are obtained by an opportune truncation of a Lévy-driven moving average
process X that is proved to be strongly mixing.

Determining conditions under which the process Y inherits the asymptotic dependence of
X significantly widens the applicability of renewal sampled data. Just as indicative examples,
our analysis should enable the use of renewal sampled data to study spectral density estimators,
Whittle estimators, and generalized method of moments estimators as defined in [5], [16], [22],
and [40], Moreover, knowledge of the asymptotic dependence of Y allows us to apply well-
established asymptotic results for α-mixing processes such as those in [6, Chapter 10], [21],
and [32]. These are functional and triangular array central limit theorems. The same argument
applies to central limit theorems for weakly dependent processes such as those presented in
[10], [19], and [26]. In brief, understanding the dependence structure of the process Y allows us
to obtain joint asymptotic results for (XTi , Ti − Ti−1)i∈Z which enable inference on the process
X even when the distribution of the sequence τ is not known, i.e. when the sampling scheme
is not designed by an experimenter but just observed from the data. An example of the latter
application appears in [7, Theorem 5.2].

In this paper we study the inheritance of η, λ, κ , ζ , θ -weak dependence and α-mixing, which
are extensively analyzed in the monographs [6], [20], and [23]. Covariance inequalities play
an important role in the analysis of such dependence notions. The first covariance inequalities
satisfied by α-mixing processes and associated processes (which under opportune assump-
tions are equivalent to ζ -weakly dependent processes: see Remark 2.3) can be traced back to
[30, Theorem 17.2.1] and [9]. In general, for any positive integer u, v, indexes i1 ≤ · · · ≤ iu <

iu + r ≤ j1 · · · ≤ jv with r > 0, and functions F and G belonging to specific functional spaces
(i.e. F and G are bounded Lipschitz or bounded measurable functions), weakly dependent and
α-mixing processes both satisfy covariance inequalities of the following type:

|Cov(F(Xi1, . . . , Xiu ), G(Xj1, . . . , Xjv))| ≤ c 
(‖F‖∞, ‖G‖∞, Lip(F), Lip(G), u, v) ε(r),
(1.1)

where the sequence of coefficients ε = (ε(r))r∈R+ converges to zero at infinity, c is a con-
stant independent of r, and the function 
(·) has different shapes depending on the functional
spaces where F and G are defined. A formal definition of the latter is given in Definition 2.2.
Hence we introduce a unified formulation of weak dependence and α-mixing. We call a process

-weakly dependent if it satisfies such a covariance inequality, and we call ε the sequence of
the 
-coefficients. Note that such a sequence of coefficients corresponds to weak dependence
or α-mixing coefficients – as defined in [20, Section 2.2] and [6, Definition 3.5] – depending
on the function 
(·).
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Charlot and Rachdi [14] obtained formulae for α, β, φ, and ρ-mixing coefficients for the
process (XTi)i∈Z, but their line of proof does not automatically extend to weak dependence; see
Remark 3.2 for more details. Moreover, they do not show when the convergence to zero of the
coefficients is attained and that (XTi)i∈Z actually inherits strong mixing of X. In Theorem 3.1
we give a general proof for the computation of the 
-coefficients related to the renewal process
Y , which applies to weakly dependent and α-mixing processes alike. Moreover, we present
several sampling schemes for which the convergence to zero of the 
-coefficients is realized,
and then the renewal process Y inherits the dependence structure of X. In particular, under the
additional condition that X admits exponential or power decaying coefficients, we show that the

-coefficients related to Y preserve the exponential or power decay (at least asymptotically).

The paper is organized as follows. In Section 2 we present the definition of 
-weakly depen-
dent processes, which encompasses weakly dependent and α-mixing processes. In Section 3
we explicitly compute the 
-coefficients of the process Y . Moreover, we present data sets for
which the independence between a process T , modeling the random sampling scheme, and X
is realistic. Finally, in Section 4, we show that if the underlying process X admits exponential
or power decaying 
-coefficients, then the process Y is 
-weakly dependent and has coeffi-
cients with (at least asymptotically) the same decay. This section includes several examples of
renewal sampling. In particular, Poisson sampling times are discussed. Section 5 concludes the
paper.

2. Weak dependence and strong mixing conditions

We assume that all random variables and processes are defined on a given probability space
(�,A, P).

We let N∗ refer to the set of positive integers, N the set of the non-negative integers, Z the
set of all integers, and R+ the set of non-negative real numbers. We denote the Euclidean norm
by ‖·‖. However, due to the equivalence of all norms, none of our results depend on the chosen
norm.

Although the theory developed below is most relevant for sampling processes defined in
continuous time, we work with a general index set I, as this makes no difference and also
covers other cases, such as a sampling of discrete-time processes or random fields.

Definition 2.1. The index set I denotes either Z, R, Zm, or Rm. Given H and J ⊆ I, we define
d(H, J) = min{‖i − j‖, i ∈ H, j ∈ J}.

Even if our theory extends to random fields, we always refer to X as a process for simplicity.
Moreover, we consider

F =
⋃
u∈N

Fu and G =
⋃
v∈N

Gv, (2.1)

where Fu and Gv, respectively, are two classes of measurable functions from (Rd)u to R and
(Rd)v to R that we specify individually later on. Finally, for a function that is unbounded or
not Lipschitz, we set its ‖·‖∞ norm or Lipschitz constant equal to infinity.

Definition 2.2. Let I be an index set as in Definition 2.1, let X = (Xt)t∈I be a process with

values in R
d, and let 
 be a function from R

6+ to R+ non-decreasing in all arguments. The pro-
cess X is called 
-weakly dependent if there exists a sequence of coefficients ε = (ε(r))r∈R+

https://doi.org/10.1017/jpr.2022.50 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.50


438 D.-P. BRANDES ET AL.

converging to 0 and satisfying inequality (1.1) for all⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(u, v) ∈N
∗ ×N

∗,

r ∈R+,

Iu = {i1, . . . , iu} ⊆ I and Jv = { j1, . . . , jv} ⊆ I, such that d(Iu, Jv) ≥ r,

functions F : (Rd)u →R and G : (Rd)v →R belonging to F and G respectively,

where c is a constant independent of r.

Without loss of generality we always consider ε to be a non-increasing sequence of
coefficients.

The first covariance inequality for Lipschitz functions of positively or negatively associated
random fields in the literature appears in [9]. Since this result, other covariance inequali-
ties have been determined for functions F and G being either bounded Lipschitz or bounded
measurable functions of processes and random fields. In the latter set-up, Definition 2.2 encom-
passes the so-called weak dependence conditions as described in [11, Definition 5.12] and
[20, Definition 2.2] for I =Z,Zm. Therefore several sequences of coefficients ε satisfying
Definition 2.2 are already well known.

• Let F = G and Fu be the class of bounded Lipschitz functions from (Rd)u to R with
respect to the distance δ on (Rd)u defined by

δ(x∗, y∗) =
u∑

i=1

‖xi − yi‖, (2.2)

where x∗ = (x1, . . . , xu) and y∗ = (y1, . . . , yu), and xi, yi ∈R
d for all i = 1, . . . , u. Then

Lip(F) = sup
x �=y

|F(x) − F(y)|
‖x1 − y1‖ + ‖x2 − y2‖ + . . . + ‖xd − yd‖ .

For


(‖F‖∞, ‖G‖∞, Lip(F), Lip(G), u, v) = u Lip(F)‖G‖∞ + v Lip(G)‖F‖∞,

ε corresponds to the η-coefficients as defined in [25]. An extension of this definition for
I =Z

m is given in [24]. If, instead,


(‖F‖∞, ‖G‖∞, Lip(F), Lip(G), u, v)

= u Lip(F)‖G‖∞ + v Lip(G)‖F‖∞ + uv Lip(F) Lip(G),

then ε corresponds to the λ-coefficients as defined in [26] for I =Z and in [20, Remark
2.1] for I =Z

m. Moreover, for


(‖F‖∞, ‖G‖∞, Lip(F), Lip(G), u, v) = uv Lip(F) Lip(G),

ε corresponds to the κ-coefficients, and, for


(‖F‖∞, ‖G‖∞, Lip(F), Lip(G), u, v) = min(u, v)Lip(F) Lip(G),

ε corresponds to the ζ -coefficients as defined in [25]. The definition of ζ -weak
dependence for I =Z

m can be found in [12].
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• Let Fu be the class of bounded measurable functions from (Rd)u to R and let Gv be
the class of bounded Lipschitz functions from (Rd)v to R with respect to the distance δ

defined in (2.2). Then, for


(‖F‖∞, ‖G‖∞, Lip(F), Lip(G), u, v) = v‖F‖∞ Lip(G),

ε corresponds to the θ -coefficients as defined in [20]. An extension of this definition for
I =Z

m appears in [20, Remark 2.1]. Moreover, an alternative definition for this notion
of dependence is given in [19] for Fu as above and G1 the class of Lipschitz function
from R

d to R, for I =Z.

The extension to index sets I =R,Rm of the weak dependence notions described above is
straightforward.

Remark 2.1. The weak dependence conditions can all be alternatively formulated by further
assuming that F ∈F and G ∈ G are bounded by one. For more details on this issue, see [25]
and [19]. Therefore an alternative definition of 
-weak dependence exists where the function

 in Definition (1.1) does not depend on ‖F‖∞ and ‖G‖∞. In this case ‖F‖∞ and ‖G‖∞ are
always bounded by one and therefore omitted from the notation.

We now show that Definition 2.2 also encompasses strong mixing. We first define the strong
mixing coefficient [39].

We suppose that A1 and A2 are sub-σ -fields of A and define

α(A1,A2) := sup
A∈A1
B∈A2

|P(A ∩ B) − P(A)P(B)|.

Let I be a set as in Definition 2.1. Then a process X = (Xt)t∈I with values in R
d is said to be

αu,v-mixing for u, v ∈N∪ {∞} if

αu,v(r) := sup{α(A�1 ,B�2 ) : �1, �2 ⊆ I, |�1| ≤ u, |�2| ≤ v, d(�1, �2) ≥ r} (2.3)

converges to zero as r → ∞, where A�1 = σ (Xi : i ∈ �1) and B�2 = σ (Xj : j ∈ �2). If we let
α(r) = α∞,∞(r), it is apparent that αu,v(r) ≤ α(r). If α(r) → 0 as r → ∞, then X is simply
said to be α-mixing. For a comprehensive discussion of the coefficients αu,v(r), α(r) and their
relation to other strong mixing coefficients, we refer to [6], [8], and [18].

Proposition 2.1. Let I be a set as in Definition 2.1 and let X = (Xt)t∈I be a process with values
in R

d and F = G, where Fu is the class of bounded measurable functions from (Rd)u to R. X is
α-mixing if and only if there exists a sequence (ε(r))r∈R+ converging to 0 such that inequality
(1.1) holds with


(‖F‖∞, ‖G‖∞, Lip(F), Lip(G), u, v) = ‖F‖∞‖G‖∞. (2.4)

Proof. Set AIu = σ (Xi : i ∈ Iu) and BJv = σ (Xj : j ∈ Iv). For arbitrary (u, v) ∈N
∗ ×N

∗ and
r ∈R+, let Iu = {i1, . . . , iu} and Jv = {j1, . . . , jv} be arbitrary subsets of I such that
d(Iu, Jv) ≥ r. Moreover, choose arbitrary F ∈Fu and G ∈ Gv. By [30, Theorem 17.2.1],

|Cov(F(Xi1, . . . , Xiu ), G(Xj1 , . . . , Xjv ))| ≤ 4 α(AIu ,BIv ) ‖F‖∞‖G‖∞.

Definition (2.3) immediately implies that the right-hand side of the inequality above is
smaller than or equal to 4α(r) ‖F‖∞ ‖G‖∞. Hence, if X is α-mixing then (1.1) holds with
ε(r) = α(r) and c = 4.
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We assume now that the sequence X is 
-weakly dependent with 
 given by (2.4).
By [30, Theorem 17.2.1] and [6, Remark 3.17(ii)], we can rewrite the definition of the
α-coefficients as

α(r) = sup
�1,�2⊆I

|�1|<∞,|�2|<∞
d(�1,�2)≥r

α(A�1 ,A�2 )

= sup
(u,v)∈N×N

sup
Iu,Jv⊆I

d(Iu,Jv)≥r

sup
F∈Fu
G∈Gv

{
1

4‖F‖∞‖G‖∞
|Cov(F(Xi1, . . . , Xiu ), G(Xj1 , . . . , Xjv ))|

}
.

Hence

α(r) ≤ c

4
ε(r).

If X is 
-weakly dependent, then X is α-mixing. �

Remark 2.2. (θ -lex weak dependence.) The novel definition of θ -lex weak dependence on
I =R

m appearing in [17] can be obtained by a slight modification of Definition 1.2. We use
the notion of lexicographic order on R

m: for distinct elements y = (y1, . . . , ym) ∈R
m and z =

(z1, . . . , zm) ∈R
m, we say that y <lex z if and only if y1 < z1 or yp < zp for some p ∈ {2, . . . , m}

and yq = zq for q = 1, . . . , p − 1.

• Let Fu be the class of bounded measurable functions from (Rd)u to R and let
G1 be the class of bounded Lipschitz functions from R

d to R with respect to the
distance δ defined in (2.2). Moreover, let Iu = {i1, . . . , iu} ⊂R

m, and let j ∈R
m be

such that is <lex j for all s = 1, . . . , u, and dist(Iu, j) ≥ r. Then inequality (1.1) holds
for 
(‖F‖∞, ‖G‖∞, Lip(F), Lip(G), u, 1) = ‖F‖∞ Lip(G), and ε corresponds to the
θ -lex-coefficients.

For I =Z
m, this notion of dependence is more general than α∞,1-mixing as defined in (2.3),

that is, it applies to a broader class of models. Further, for I =Z, θ -lex weak dependence is
more general than the notion of α-mixing. We refer the reader to [17, Section 2] for a complete
introduction to θ -lex weak dependence and its properties.

Remark 2.3. (Association.) Association offers a complementary approach to the analysis of
processes and random fields; see [11] for a comprehensive introduction on this topic. Moreover,
association is equivalent to ζ -weak dependence under the assumptions of [25, Lemma 4].

3. Strong mixing and weak dependence coefficients under renewal sampling

Let X be a strictly stationary R
d-valued process, that is, for all n ∈N and all t1, . . . , tn ∈ I

it holds that the finite-dimensional distributions (indicated by L(·)) are shift-invariant:

L(Xt1+h, . . . , Xtn+h) =L(Xt1 , . . . , Xtn ) for all h ∈ I.

We want to investigate the asymptotic dependence of X sampled at a renewal sequence.
We use a definition of renewal process based on the sequence τ (see [29]) and that agrees

with the definition of a two-sided Lévy process (see [3, page 124]) in the Poisson case. Similar
sampling schemes are used in [1], [14], and [33], for example.
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Definition 3.1. Let I ⊆R
m be a set as in Definition 2.1 and let τ = (τi)i∈Z\{0} be an I-valued

sequence of non-negative (component-wise) independent and identically distributed (i.i.d.) ran-
dom vectors with distribution function μ such that μ{0} < 1. For i ∈Z, we define an I-valued
stochastic process (Ti)i∈Z as

T0 := 0 and Ti :=
⎧⎨
⎩
∑i

j=1 τj, i ∈N,

−∑−1
j=i τj, −i ∈N.

The sequence (Ti)i∈Z is called a renewal sampling sequence. When I ⊂R, we let τ denote the
sequence of inter-arrival times.

Definition 3.2. Let X = (Xt)t∈I be a process with values in R
d and let (Ti)i∈Z be a renewal

sampling sequence independent of X. We define the sequence Y = (Yi)i∈Z as the stochastic
process with values in R

d+1 given by

Yi = (XTi , Ti − Ti−1)�.

We call X the underlying process and Y the renewal sampled process.

Remark 3.1. (Independence of T and X.) The assumption of independence between the
stochastic process T , modeling a random sampling scheme, and X is reasonable when work-
ing with time series whose records are not event-triggered. For example, transaction level data
(see [27] for a survey) are records of trade or transactions occurring when a buyer and a seller
agree on a price for a security (triggering event). Even if these data should not be modeled
by assuming that T and X are independent, this assumption is broadly used in the literature
analyzing financial data; see e.g. [1], [2], and [28]. Time series that are not event-triggered can,
for example, be determined starting from the following data sets.

• Modern health monitoring systems such as smartphones or wearable devices such as
smartwatches enable monitoring of the health conditions of patients by measuring heart
rate, electrocardiogram, and body temperature, among other information; see [43]. These
measurements are records on a discrete-time grid, mostly irregularly distributed. In these
cases, observation times depend on the measuring instrument (typically sensors), i.e. on
a random source independent of the process X, as observed in [4]. In this context, the
hypothesis of independence of T and X is entirely realistic.

• Measurements from spatio-temporal random fields such as temperature, vegetation, or
population are now recorded over a set of moving or fixed locations in space and time,
typically not regularly distributed. These data sets are called point reference or raster
data and are analyzed in earth science, for example. Further, GPS data, e.g. of a taxi,
which periodically transmit the location of an object over time, are an example of spatio-
temporal data sets called trajectory data, which are typically irregularly distributed in
space and time. We refer the reader to the survey [44] and the references therein for an
account of the data sets above and their practical relevance. The hypothesis of indepen-
dence of T and X seems realistic for these data because their sampling in space–time
depends on the instrument used to record them.

In the following theorem, we work with the class of functions defined in (2.1) and

F̃ =
⋃
u∈N

F̃u and G̃ =
⋃
v∈N

G̃v,
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where F̃u and G̃v are respectively two classes of measurable functions from (Rd+1)u to R and
(Rd+1)v to R which can be either bounded or bounded Lipschitz.

Theorem 3.1. Let Y = (Yi)i∈Z be a renewal sampled process with the underlying process X
being strictly stationary and 
-weakly dependent with coefficients ε. Then Y is a strictly
stationary process, and there exists a sequence E such that

|Cov(F̃(Yi1 , . . . , Yiu ), G̃(Yj1 , . . . , Yjv ))| ≤ C 
(‖F̃‖∞, ‖G̃‖∞, Lip(F̃), Lip(G̃), u, v) E(n)

for all

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u, v) ∈N
∗ ×N

∗,

n ∈N,

{i1, . . . , iu} ⊆Z and {j1, . . . , jv} ⊆Z,

with i1 ≤ . . . ≤ iu < iu + n ≤ j1 ≤ . . . ≤ jv,

functions F̃ : (Rd+1)u →R and G̃ : (Rd+1)v →R belonging to F̃ and G̃,

where C is a constant independent of n. Moreover,

E(n) =
∫
I

ε(‖r‖) μ∗n(dr), (3.1)

where μ∗0 is the Dirac delta measure in zero, and μ∗n is the n-fold convolution of μ for n ≥ 1.

Proof of Theorem 3.1. Y is a strictly stationary process by [7, Proposition 2.1]. Consider
arbitrary fixed (u, v) ∈N

∗ ×N
∗, n ∈N, {i1, . . . , iu} ⊆Z and {j1, . . . , jv} ⊆Z with i1 ≤ . . . ≤

iu ≤ iu + n ≤ j1 ≤ . . . ≤ jv, and functions F̃ ∈ F̃ and G̃ ∈ G̃. Without loss of generality, let us
consider throughout that i1 > 0. Then, by conditioning with respect to the sequence τ and
using the law of total covariance (see [13, Proposition A.1]), we obtain

|Cov(F̃(Yi1, . . . , Yiu ), G̃(Yj1 , . . . , Yjv ))|
≤ |E(Cov(F̃(Yi1, . . . , Yiu ), G̃(Yj1 , . . . , Yjv ) | τi : i = 1, . . . , jv))| (3.2)

+ |Cov(E(F̃(Yi1 , . . . , Yiu ) | τi : i = 1, . . . , jv),E(G̃(Yj1 , . . . , Yjv ) | τi : i = 1, . . . , jv))|.
(3.3)

Let us first discuss the summand (3.3). We have

E(F̃(Yi1 , . . . , Yiu ) | τi : i = 1, . . . , jv) =E(F̃(Yi1 , . . . , Yiu ) | τi : i = 1, . . . , iu)

because F̃(Yi1 , . . . , Yiu ) is independent of {τi : i = iu + 1, . . . , jv}. On the other hand,

E(G̃(Yj1 , . . . , Yjv ) | τi : i = 1, . . . , jv)

=E

(
G̃
((

X
Tiu+∑j1

i=iu+1 τi
, τj1

)′
, . . . ,

(
X

Tiu+∑jv
i=iu+1 τi

, τjv

)′) | τi : i = 1, . . . , jv
)
,
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and, by stationarity of the process X and the i.i.d. property of (τi)i∈Z\{0}, it is equal to

E

(
G̃
((

X∑j1
i=iu+1 τi

, τj1

)′
, . . . ,

(
X∑jv

i=iu+1 τi
, τjv

)′) | τi : i = 1, . . . , jv
)

=E

(
G̃
((

X∑j1
i=iu+1 τi

, τj1

)′
, . . . ,

(
X∑jv

i=iu+1 τi
, τjv

)′) | τi : i = iu + 1, . . . , jv
)

because of the independence between

{(
X∑j1

i=iu+1 τi
, τj1

)′
, . . . ,

(
X∑jv

i=iu+1 τi
, τjv

)′}

and {τi : i = 1, . . . , iu}. Thus the summand (3.3) is equal to zero because

E(F̃(Yi1 , . . . , Yiu ) | τi : i = 1, . . . , iu)

and

E

(
G̃
((

X∑j1
i=iu+1 τi

, τj1

)′
, . . . ,

(
X∑jv

i=iu+1 τi
, τjv

)′) | τi : i = iu + 1, . . . , jv
))

are independent.
The summand (3.2) is less than or equal to∫

I jv

∣∣∣Cov
(

F̃
((

X∑i1
i=1 si

, si1

)′
, . . . ,

(
X∑iu

i=1 si
, siu

)′)
,

G̃
((

X∑j1
i=1 si

, sj1

)′
, . . . ,

(
X∑jv

i=1 si
, sjv

)′))∣∣∣ dP{τi : i=1,...,jv}(s1, . . . , sjv),

where P{τ } indicates the joint distribution of the sequence τ . For a given (s1, . . . , sjv ) ∈ I jv ,
we have F̃((·, si1 ), . . . , (·, siu )) ∈F and G̃((·, sj1 ), . . . , (·, sjv)) ∈ G. Since X is a 
-weakly
dependent process, the above inequality is less than or equal to∫
I j1−iu

C 
(‖F̃((·, si1 ), . . . , (·, siu))‖∞, ‖G̃((·, sj1 ), . . . , (·, sjv))‖∞, Lip(F̃((·, si1 ), . . . , (·, siu))),

Lip(G̃((·, sj1 ), . . . , (·, sjv))), u, v) ε

(∥∥∥∥∥
j1∑

i=iu+1

si

∥∥∥∥∥
)

dP{τi : i=1,...,jv}(s1, . . . , sjv),

and, because the sequence {τi : i = iu + 1, . . . , j1} is independent of the sequence {τi : i =
1, . . . , iu, j1 + 1, . . . , jv}, the integral above is less than or equal to∫

I j1−iu
C 
(‖F̃‖∞, ‖G̃‖∞, Lip(F̃), Lip(G̃), u, v)

ε

(∥∥∥∥∥
j1∑

i=iu+1

si

∥∥∥∥∥
)

dP{τi : i=iu+1,...,j1}(siu+1, . . . , sj1 ).
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We see that j1 − iu ≥ n, and without loss of generality the coefficients ε are non-increasing.
Thus we can conclude that the integral above is less than or equal to

C 
(‖F̃‖∞, ‖G̃‖∞, Lip(F̃), Lip(G̃), u, v)
∫
I

ε(‖r‖)μ∗n(dr). �

Corollary 3.1. Let the assumptions of Theorem 3.1 hold. If the coefficients (3.1) are finite, and
converge to zero as n goes to infinity, then Y is 
-weakly dependent with coefficients E .

Proof of Corollary 3.1. The proof directly follows by Definition 2.2. �

Remark 3.2. Charlot and Rachdi [14] obtained α-coefficients related to the process (XTi)i∈Z
equal to E[α(Tn)], for a renewal process T independent of X, which corresponds to (3.1) for
all n ∈N. Their results also extend to renewal processes T having inter-arrival time sequence
τ which is itself α′-mixing with coefficients equal to E[α(Tn)] + α′. However, the techniques
involved in their proof exploit the definition of α-mixing coefficients as given in (2.3) and
are not directly applicable in the case of weakly dependent processes. Moreover, they do not
discuss how to obtain the inheritance of strong mixing, i.e. that the obtained α-coefficients
need to be finite and converge to zero as n goes to infinity.

We further explore this issue in Sections 4.1 and 4.2 by discussing several examples of
sampling schemes for which the assumptions of Corollary 3.1 are satisfied.

Finally, concerning θ -lex weak dependence defined in Remark 2.2, we obtain the following
result.

Corollary 3.2. Let X be a strictly stationary and θ -lex weakly dependent random field defined
on R

m, and let T be a renewal sampling sequence independent of X with values in R
m. Then Y

is a strictly stationary process, and there exists a sequence E such that

|Cov(F̃(Yi1 , . . . , Yiu ), G̃(Yj))| ≤ C ‖F̃‖∞ Lip(G̃) E(n) (3.4)

for all

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u, v) ∈N
∗ ×N

∗,

n ∈N,

{i1, . . . , iu} ⊆Z and j ∈Z,

with i1 ≤ . . . ≤ iu < iu + n ≤ j,

functions F̃ : (Rd+1)u →R and G̃ : Rd+1 →R belonging to F̃ and G̃,

where C is a constant independent of n, and E is defined in (3.1).

Proof of Corollary 3.2. The sequence τ is a sequence of non-negative i.i.d. random vectors,
i.e. Ti1 ≤lex . . . ≤lex Tiu ≤lex Tj. Hence stationarity of Y follows from [7, Proposition 2.1], and
the covariance inequality (3.4) holds by following the line of proof in Theorem 3.1. �

Note that if the inequality (3.4) holds and the coefficients (3.1) are finite and converge to
zero as n goes to infinity, then Y is a θ -weakly dependent process as defined in [19].
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4. Explicit bounds for �-coefficients

In this section we consider renewal sampling of X = (Xt)t∈R. Therefore the inter-arrival
times τ are a sequence of non-negative i.i.d. random variables with values in R.

We first show that if X is 
-weakly dependent and admits exponential or power decaying
coefficients ε, then Y is, in turn, 
-weakly dependent and its coefficients E preserve (at least
asymptotically) the decay behavior of ε. This result directly enables the application of the
limit theory for a vast class of 
-weakly dependent processes Y , of which we present several
examples throughout the section.

In fact central limit theorems for a 
-weakly dependent process X typically hold under
sufficient conditions of the following type: E[‖X0‖δ] < ∞ for some δ > 0 and the coefficients
ε satisfy a condition of the form

∞∑
i=1

ε(n)A(δ) < ∞, (4.1)

where A(δ) is a certain function of δ. If X admits coefficients ε with exponential or sufficiently
fast power decay, then conditions of type (4.1) are satisfied. If, in turn, Y is 
-weakly depen-
dent with coefficients having exponential or sufficiently fast power decay, then conditions of
type (4.1) are also satisfied under renewal sampling.

4.1. Exponential decay

In terms of the Laplace transform of the inter-arrival times, we can obtain a general bound
for the coefficients (E(n))n∈N.

Proposition 4.1. Let X = (Xt)t∈R, Y = (Yi)i∈Z and (Ti)i∈Z be as in Theorem 3.1. Let us
assume that ε(r) ≤ Ce−γ r for γ > 0 and denote the Laplace transform of the distribution
function μ by

Lμ(t) =
∫
R+

e−trμ(dr), t ∈R+.

Then the process Y admits coefficients

E(n) ≤ C

(
1

Lμ(γ )

)−n

,

which converge to zero as n goes to infinity.

Proof of Proposition 4.1. We notice that Lμ(t) < 1 for t > 0 and that Lμ∗n (t) = (Lμ(t))n; see
[41, Proposition 2.6].

Using the result obtained in Theorem 3.1, we have that

E(n) =
∫
R+

ε(r) μ∗n(dr) ≤ C
∫
R+

e−γ r μ∗n(dr) = CLμ∗n (γ ) = C(Lμ(γ ))n. �

As a direct consequence, if X is 
-weakly dependent and admits exponentially decaying
coefficients, the assumptions of Corollary 3.1 hold and Y inherits the asymptotic dependence
structure of X under renewal sampling.

Example 4.1. If we have a renewal sampling with �(α, β)-distributed inter-arrival times for
α, β > 0, then μ∗n is the distribution function of a �(nα, β)-distributed random variable.
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By Proposition 4.1,

E(n) =
∫
R+

ε(r) μ∗n(dr) ≤ C
∫

(0,+∞)
e−γ r βnα

�(nα)
rnα−1e−βr dr = C

(
γ + β

β

)−nα

.

A special case of the coefficients above is obtained for Poisson sampling, i.e. μ = Exp(λ)
with λ > 0. In this case, μ∗n is the distribution function of a �(n, λ)-distributed random
variable, and

E(n) =
∫
R+

ε(r) μ∗n(dr) ≤ C
∫

(0,+∞)
e−γ r λn

�(n)
rn−1e−λr dr = C

(
λ + γ

λ

)−n

.

Remark 4.1. If the process X is 
-weakly dependent with exponentially decaying coeffi-
cients, then the equidistant sampled process (Xi)i∈Z has exponentially decaying coefficients
ε(n) ≤ Ce−γ n for γ > 0 and n ∈N. By using the results in Example 4.1, we can design renewal
sampling schemes such that the process Y has coefficients E with faster decay rate than the
sequence of coefficients ε.

• For �(α, β)-distributed inter-arrival times, we obtain that the process Y has faster-
decaying coefficients than (Xi)i∈Z if the parameters α, β > 0 are chosen such that

(
γ + β

β

)α

≥ eγ .

• In the case of Poisson sampling, the process Y admits faster-decaying coefficients than
(Xi)i∈Z if

λ ≥ γ

eγ − 1
.

The fraction appearing on the right-hand side of the inequality is less than 1 for all
γ > 0. Therefore, because the average length of two adjacent observations is ruled by
E[τ1] = 1/λ, we can design an (on average) lower sampling frequency scheme such that
the coefficients E decay faster than ε, by choosing γ /(eγ − 1) ≤ λ < 1.

4.2. Power decay

We now assume that the underlying process X is 
-weakly dependent with coefficients
ε(r) ≤ Cr−γ for γ > 0.

We start with some concrete examples of inter-arrival time distributions μ (and therefore of
renewal sampling sequences T), preserving the power decay of the coefficients ε.

Example 4.2. Let us consider renewal sampling with �(α, β)-distributed inter-arrival times for
α, β > 0. Then μ∗n is a �(nα, β) distribution. Thus

E(n) =
∫
R+

ε(r) μ∗n(dr) ≤ C
∫

(0,+∞)
r−γ βnα

�(nα)
rnα−1e−βr dr = Cβγ �(nα − γ )

�(nα)
. (4.2)

For n → ∞, and applying Stirling’s series (see [42]), we obtain that (4.2) is equal to Cβγ n−γ +
O(n−γ−1).
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In the particular case of Poisson sampling, μ∗n is a �(n, λ) distribution and

E(n) =
∫
R+

ε(r) μ∗n(dr)

≤ C
∫

(0,+∞)
r−γ λn

�(n)
rn−1e−λr dr

= Cλγ �(n − γ )

�(n)

= Cλγ n−γ (1 + O(n−1))

= Cλγ n−γ + O(n−γ−1),

where the last equality holds as n → ∞.

Example 4.3. We let Levy(0, c) denote a Lévy distribution (see [46, page 28]) with location
parameter 0 and scale parameter c (a completely skewed 1

2 -stable distribution). This distribu-
tion has infinite mean and variance. For Levy(0, c)-distributed inter-arrival times, we find that
μ∗n is Levy(0, cn). Thus

E(n) =
∫
R+

ε(r) μ∗n(dr)

≤ C
∫
R+

r−γ (cn/2)1/2

�(1/2)
r−3/2e−cn/2r dr

= C
�(1/2 + γ )

(cn/2)γ �
(
1/2

)
= C

�(1/2 + γ )

�(1/2)

(
c

2

)−γ

n−γ .

Example 4.4. We now consider the case where μ is an inverse Gaussian distribution with mean
m and shape parameter λ (IG(m, λ) for short). We see that μ∗n is an IG(nm, n2λ) distribution
and

E(n) =
∫
R+

ε(r) μ∗n(dr)

≤ C
∫

(0,+∞)
r−γ

(
n2λ

2πr3

)1/2

exp

(
−n2λ(r − nm)2

2n2m2r

)
dr

= nC

(
λ

2π

)1/2

exp

(
λn

m

) ∫
(0,+∞)

r−γ−3/2 exp

(
− λn

2m

(
r

nm
+ nm

r

))
dr

= C

(
λ

2π

)1/2

m−γ−1/2 n−γ+1/2 exp

(
λn

m

)
2 K−γ−1/2

(
λn

m

)
(4.3)
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after applying the substitution x := r/(nm), and where K−γ−1/2 denotes a modified Bessel
function of the third kind with order −γ − 1

2 . Using the asymptotic expansion for modified
Bessel functions from [31, page 171], we obtain

Kv(x) =
(

π

2

)1/2

x−1/2e−x(1 + O(x−1)).

Thus, for n → ∞, (4.3) is equal to (C/2)m−γ n−γ + O(n−γ−1).

Example 4.5. Let the inter-arrival times follow a Bernoulli distribution with parameter
0 ≤ p ≤ 1. Then μ∗n is a Bin(n, p) distribution. If X admits coefficients ε(r) = C(1 ∧ r−γ ) for
γ > 0, then E(n) satisfies

E(n) =
∫
R+

ε(r) μ∗n(dr) = C

(
(1 − p)n +

n∑
j=1

j−γ

(
n

j

)
pj(1 − p)n−j

)
. (4.4)

For n → ∞, applying the asymptotic expansion proved in [45, Theorem 1], we have that (4.4)
is equal to C(np)−γ + O(n−γ−1).

Example 4.6. Let us consider inter-arrival times such that μ([0, k)) = 0 for a fixed k > 0. Then,
straightforwardly,

E(n) =
∫
R+

ε(r) μ∗n(dr) ≤ C(nk)−γ .

In Examples 4.2, 4.4, and 4.5 we obtain asymptotic bounds for the coefficients E , whereas
we have exact ones in Examples 4.3 and 4.6. For a general inter-arrival time distribution we
can just show that the coefficients E decay at least (asymptotically) with the same power. This
result relies on the following lemma.

Lemma 4.1. Let μ, ν be two probability measures on R
+ such that μ([0, b)) ≤ ν([0, b)) for all

b > 0 and let f : R+ →R
+ be non-increasing. Then∫

R+
f (r)μ∗n(dr) ≤

∫
R+

f (r) ν∗n(dr).

Proof of Lemma 4.1. The proof follows by applying measure-theoretic induction. �

Proposition 4.2. Let X = (Xt)t∈R, Y = (Yi)i∈Z, and (Ti)i∈Z be as in Theorem 3.1. Let us assume
that ε(r) ≤ Cr−γ for γ > 0. Let a > 0 be a point in the support of μ such that μ([0, a)) > 0,
and set p = μ([a, ∞]). Then the process Y admits coefficients E(n) ≤ C(nap)−γ as n → ∞.

Proof of Proposition 4.2. Let us assume without loss of generality that μ �= δa (otherwise
Example 4.6 applies for any a ∈R+), where δa denotes the Dirac delta measure for a ∈R+.
Set ν = pδa + (1 − p)δ0. The latter is a Bernoulli distribution that assigns probability p to the
inter-arrival time a and (1 − p) to the time 0. It follows that μ([0, b)) ≤ ν([0, b)) for all b > 0.
Then, by using Lemma 4.1, the result in Example 4.5, and [45, Theorem 1],

E(n) ≤ C
∫
R+

r−γ μ∗n(dr)

≤ C
∫
R+

r−γ ν∗n(dr)
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= C

(
(1 − p)n +

n∑
j=1

(aj)−γ

(
n

j

)
pj(1 − p)n−j

)

= C(nap)−γ + O(n−γ−1),

where the last inequality holds for n → ∞. �

Remark 4.2. Proposition 4.2 gives us an upper bound for the coefficients E . This means that
the true decay of the coefficients E could be faster, in general, than n−γ . However, we have
not found examples of sequences τ where this happens. Even for extremely heavy-tailed inter-
arrival time distributions such as in Example 4.3, we can just find an estimate from above of
the coefficients of the renewal sampled process Y , i.e. E(n) ≤ Cn−γ for large n, that has the
same power decay as the coefficients ε.

Proposition 4.2 summarizes the results given in this section. In fact, as long as X is

-weakly dependent such that there exists a γ > 0 with ε(r) ≤ Cr−γ , then the assump-
tions of Corollary 3.1 are satisfied and Y inherits the asymptotic dependence structure of
X. Note that Proposition 4.2 ensures that Y is 
-weakly dependent also when, for exam-
ple, ε(r) = C(r log(r))−1 and then ε(r) ≤ Cn−1. Therefore caution has to be exercised when
checking conditions of type (4.1) for the process Y .

Example 4.7. Let us consider the sufficient condition for the applicability of the central limit
theorem for κ-weakly dependent processes (see [26]), where (4.1) holds with A(δ) = 1. If X
is a 
-weakly dependent process with coefficients ε(r) = C(r log(r))−1, then Y is a 
-weakly
dependent process with coefficients E(n) ≤ C̃n−1 as n → ∞ by applying Proposition 4.2. We
have that the coefficients ε(r) are summable and satisfy (4.1), but we do not know the summa-
bility of the coefficients E(n), as Proposition 4.2 just gives an upper bound of their value, which
is not summable.

5. Conclusion

We assume that our sampling scheme is described by a renewal sequence T independent of
the process X being weakly dependent or α-mixing. We determine under which assumptions
the process Y = (XTi , Ti − Ti−1) is itself weakly dependent or α-mixing. If X admits exponen-
tial or power decaying coefficients, then Y inherits strong mixing or weak dependence, and its
related coefficients preserve the exponential or power decay (at least asymptotically). Our gen-
eral results enable the application of central limit theorems used under equidistant sampling
schemes to renewal sampled data.

Other sampling schemes are of great interest in practical applications and constitute a nat-
ural continuation of our work, for instance sampling schemes where T is a point process
dependent on X, as observed in transaction-level financial data. Moreover, when analyzing data
from continuous spatio-temporal random fields, the theory we have developed so far allows us
to analyze sampling along a self-avoiding walk that moves in non-negative coordinate direc-
tions. Another possible extension of our theory aims to study the random field sampling along
a walk that moves in lexicographically increasing coordinate directions.
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