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Abstract
This paper proposes a kinematic calibration method of a novel 5-degree-of-freedom double-driven parallel mech-
anism with the sub-closed loop on limbs. At first, considering the introduction of a sub-closed loop significantly
increased the complexity and difficulty of kinematic error modeling, an equivalent transformation method is pro-
posed for the limb with a sub-closed loop. Then kinematic error model of the parallel mechanism is established
based on the closed-loop vector method and parasitic motion analysis, which is verified by virtual prototype tech-
nology. Because the full kinematic error model is generally redundant, error parameter identifiability analysis is
carried out by QR decomposition of the identification Jacobian matrix, and the redundant parameters are removed.
Additionally, the Sequence Forward Floating Search algorithm is utilized to optimize measurement configurations
to reduce the influence of measurement noise. Finally, with a laser tracker as the measuring device, numerical sim-
ulations and experiments are implemented to verify the proposed kinematic calibration method. The experiment
results show that average position and orientation errors are reduced from 2.778 mm and 1.115◦ to 0.263 mm and
0.176◦, respectively, within the prescribed workspace.

1. Introduction
The 5-degree-of-freedom (DOF) parallel kinematic mechanisms have been widely applied in high-
precision machining and manufacturing because of their high stiffness and load-bearing capacity [1].
For traditional parallel mechanisms, the number of DOF is usually the same as the number of limbs with
actuated joints; that is, each limb has only one actuated joint [2, 3]. If the parallel mechanism has more
than 3-DOF, multiple limbs will cause complex structures and lead to easy interference between limbs
[4]. To solve this problem, the hybrid mechanisms [5, 6] are composed of stacking kinematic chains
with a parallel or serial structure. As an alternative, several double-driven parallel mechanisms [7–11]
are proposed to reduce the number of limbs while ensuring the number of DOFs. Among these innova-
tion explorations, a novel 5-DOF double-driven parallel mechanism has been presented in our previous
research [7], which achieves 5-DOF of the moving platform with only three limbs, showing good appli-
cation foreground. Notably, to increase stiffness and simplify control, actuated revolute joints in this
double-driven parallel mechanism are designed as a sub-closed loop, making it challenging to assemble
precisely. Such assembly errors naturally degrade accuracy. Hence, developing an error identification
and compensation method for this parallel mechanism is essential.

Over the past few decades, accuracy improvement has attracted much attention and has extensively
been studied in the academic community. It is well-known that if the mechanism has high repeatability,
kinematic calibration is the most efficient and economical approach for accuracy improvement [12],
which generally includes four steps: error modeling, measurement, identification, and compensation.
And, the error modeling and parameter identification issues will be mainly focused on in this paper.
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Error modeling aims to build a mapping relationship between the end-effector’s (EE) pose error
and component geometric errors. The existing kinematic error modeling methods can be divided into
two main categories: matrix-based method and vector-based method [13]. The matrix-based methods
are generally based on forward kinematics of the mechanisms and matrix calculus. According to the
construction method of the homogeneous transformation matrix, the matrix-based method can be further
categorized into the Denavit–Hartenberg model [14], the screw theory [15], the product of exponentials
method [16], and so on. Considering that it is challenging to derive analytical forward kinematics of
the parallel mechanisms due to their multi-closed loop structure, the matrix-based methods have mainly
been utilized for the serial mechanisms or parallel mechanisms with a simple serial chain on each limb till
now. In contrast, the vector-based method is mainly based on the geometric constraints of the mechanism
[17]. For example, the closed-loop vector method based on inverse kinematics has been widely applied
to parallel mechanisms [18–20]. However, because this method requires differentiating the closed-loop
vector equation or adding first-order linear perturbation, introducing a sub-closed loop on limbs would
significantly increase the complexity and difficulty of kinematic error modeling by the closed-loop vector
method. To solve this problem, the step-by-step modeling method has been proposed [21–23]. First,
the sub-closed loop’s error transfer equation is separately established using the geometric conditions.
Then, this transfer equation of the sub-closed loop is integrated into that of the limb according to the
principle of linear superposition. The equivalent transformation method is another alternative solution
for the kinematics modeling of parallel mechanisms with the sub-closed loop on limbs [24]. Because
of the unique properties of different parallel mechanisms, to the authors’ knowledge, there is still no
one consistent kinematic error modeling method. How to derive the accurate kinematic error model of
parallel mechanism with a sub-closed loop remains an open issue.

Besides, due to the characteristics of parallel mechanisms, it is notable that the full kinematic error
model generally does not meet the minimality condition; that is, some parameters in the model are redun-
dant [25]. Therefore, parameter identifiability analysis is becoming essential. The analysis of kinematic
parameter identifiability has predominantly relied on numerical methods or experience. Chen et al. [26]
applied QR decomposition of identification Jacobian to determine the redundant parameters. Gao et al.
[27] utilized singular value decomposition (SVD) for model redundancy analysis. Tian et al. [28] con-
ducted correlation analysis on the column of the identification matrix of a 5-DOF hybrid machine tool to
eliminate the unidentifiable parameters. Due to its high numerical stability, the QR decomposition will
be utilized in this paper. Currently, the available parameter identification methods include nonlinear and
linear identification methods [29]. Among them, linear least squares have been widely utilized for error
parameter identification of parallel mechanisms [17, 19, 21, 30]. Additionally, some authors proposed to
improve parameter identification accuracy in calibration experiments by optimizing measurement con-
figurations [31, 32]. The optimal measurement configurations are generally selected by maximizing or
minimizing observability indices, which are defined by the singular value of the identification Jacobian
matrix [32].

Having outlined existing approaches and challenges, this paper focuses on the kinematic calibration
method of a novel 5-DOF double-driven parallel mechanism with sub-closed loops. The rest of this
paper is organized as follows: In Section 2, the parallel mechanism is introduced. Then kinematics error
model is derived based on the equivalent transformation and closed-loop vector method. In Section
3, parameter identifiability analysis is carried out by QR decomposition technology. In Section 4, the
Sequence Forward Floating Search algorithm is utilized to optimize the measurement configurations.
In Section 5, numerical simulations and experiments are conducted to verify the proposed method.
Conclusions are drawn in Section 6.

2. Kinematic error model and verification
2.1. System description
As illustrated in Figure 1, the study subject of this paper is a novel 5-DOF double-driven parallel mech-
anism, which consists of a fixed base, a moving platform, a PUU limb, and two PR(RPRR)S limbs.
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Figure 1. 3D model: (a) the whole parallel mechanism, (b) PUU limb, and (c) PR(RPRR)S limb.

Herein, P, R, S, and U represent the prismatic, the revolute, the spherical, and the universal joint,
respectively. P specifically refers to an actuated prismatic joint. Compared with traditional parallel mech-
anisms, the PR(RPRR)S limb has two active joints in one limb (which is also called the double-driven
limb), reducing the number of limbs of parallel mechanisms; that is, only three limbs are needed to
achieve 5-DOF of the moving platform. This double-driven strategy can effectively increase motion
flexibility and reduce interference between limbs, showing good application foreground. Additionally,
to increase stiffness and simplify control, actuated revolute joints in the double-driven limbs are
designed as a sub-closed loop, significantly increasing the complexity and difficulty of kinematic error
modeling.

For the convenience of analysis, the schematic diagram of the 5-DOF double-driven parallel mecha-
nism is shown in Figure 2. The base frame {O1} is established at the intersection point O1 of the extension
lines of the three guide rails. The positive direction of y1 axis points to the PUU limb rail’s direction,
that is, A1. The z1 axis is perpendicular to the plane where the three guides are located and points to the
side of the moving platform, and the x1 axis is determined by the right-hand rule. The origin O2 of frame
{O2} of the moving platform is located at the geometric center of the isosceles right triangle C1C2C3.
The y2 axis points from O2 to C1. The x1 axis is parallel to C3C2 and points to C2, and the z2 axis can
be determined by the right-hand rule. According to the above frame definition, the 5-DOF of the mov-
ing platform can be expressed as three translation motions (along x1, y1, and z1 axis) and two rotation
motions (around x1 and y1 axis) [7]. The main geometric parameters and corresponding notations of this
5-DOF parallel mechanism are shown in Table 1.

2.2. Kinematic error modeling of the parallel mechanism
The closed-loop vector method is utilized for the 5-DOF double-driven parallel mechanism under study
for kinematic error modeling. Error transfer equations of each limb should be derived by using the
geometric relations. Especially, an equivalent transformation method will be proposed for the limb with
a sub-closed loop. Then kinematic error model of the whole parallel mechanism can be established by
combining the error transfer equations and the differential form of parasitic motion.
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Table 1. Geometric parameters of the 5-DOF parallel mechanism.

Structure parameters Meaning Notes
l1/mm Length of B1C1 –
l2(l6)/mm Length of B2E1 (B3E2) l2 = l6

l3(l7)/mm Length of C2D1 (C3D2) l3 = l7

l4(l8)/mm Length of F1D1 (F2D2) l4 = l8

l5(l9)/mm Length of E1D1 (E2D2) l5 = l9

gi/mm Distance from point O1 to point Ai(i = 1 ∼ 3). –
Distance from point Ei−3 to point Fi−3(i = 4 ∼ 5)

h/mm Length of AiBi(i = 1 ∼ 3) –
d/mm Half the length of C2C3 –

Figure 2. Schematic diagram of the 5-DOF parallel mechanism.

2.2.1 Error transfer equation of PUU limb
The closed-loop vector of the PUU limb is shown in Figure 3. u1 is the unit direction vector of the
fixed-length rod B1C1. p is the position vector of the origin O2 of moving platform frame {O2}. w1 is the
unit direction vector of O1A1, and c1 is the position vector of C1 in frame {O2}. The closed-loop vector
equation of PUU limb can be expressed as

g1w1 + b1 + l1u1 = p + Rc1 (1)

where w1 = [
cos ϕ1 sin ϕ1 0

]T
, ϕ1 = π

2
, b1 = [

0 0 h
]T

, c1 = [
0 2

3
d 0

]T . R is the orientation
matrix of frame {O2} with respect to frame {O1}.

According to X-Y-Z Euler angle notations, R can be expressed as

R = Rot (x, α) Rot (y, β) Rot (z, γ ) =
⎡
⎣ cβcγ −cβsγ sβ

cαsγ + sαsβcγ cαcγ − sαsβsγ −cβsα
sαsγ − cαsβcγ sαcγ + cαsβsγ cαcβ

⎤
⎦ (2)

where cα = cos α, sα = sin α. Then, differentiate Eq. (1), ignore the high-order infinitesimal terms, and
yield

dg1w1 + g1dw1 + db1 + dl1u1 + l1du1 = dp + dRc1 + Rdc1 (3)

https://doi.org/10.1017/S0263574724001607 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001607


Robotica 3713

Figure 3. Schematic diagram of PUU limb.

where dw1 = dew1dϕ1 = [ − sin ϕ1 cos ϕ1 0 ]Tdϕ1. To eliminate the unknown differential term du1,
taking dot products on both sides of Eq. (3) with u1, the error transfer equation of the PUU limb can be
obtained as

u1
Tdp + (Rc1 × u1)

T Jd� = dl1 − u1
TRdc1 + u1

Tdg1w1 + g1u1
Tdew1dϕ1 + u1

Tdb1 (4)

where J =
⎡
⎣ 1 0 sin β

0 cos α − sin α cos β

0 sin α cos α cos β

⎤
⎦ , d� = [ dα dβ dγ ]T is the X-Y-Z Euler angle error vector.

dp = [ dx dy dz ]T is the position error vector of frame {O2} with respect to frame {O1}.

2.2.2 Error transfer equation of PR(RPRR)S limbs
Considering that two double-driven PR(RPRR)S limbs have the same structure and are placed symmet-
rically, the modeling process of only one limb is described here. Notably, for the general closed-loop
vector method, a single closed-loop vector equation can only be applied for one vector closed-loop.
Therefore, kinematic error modeling of limbs with a sub-closed loop by using the closed-loop vector
method is a challenging problem. To solve this problem, that is, establishing the error transfer equation
of the PR(RPRR)S limb, an equivalent transformation method is proposed: (1) The PR(RPRR)S limb is
equivalently transformed to a PRPS limb; that is, B2 and C2 are directly connected by a virtual P joint, as
shown in Figure 4(b). Then error transfer equation of the PRPS limb can be calculated. (2) Geometric
errors of the sub-closed loop are integrated into that of the limb based on geometric conditions. The
detailed derivation process is expressed as follows.

From Figure 4(b), the closed-loop vector equation of the equivalent PRPS limb can be obtained as

g2w2 + b2+L22u22 = p + Rc2 (5)

where w2 = [
cos ϕ2 sin ϕ2 0

]T
, ϕ2 = π

4
, b2 = [

0 0 h
]T . u22 is the unit direction vector of

B2C2, L22 is the corresponding length. c2 = [
d − 1

3
d 0

]T is represented in frame {O2}. Next, differ-
entiate Eq. (5), ignore the high-order infinitesimal terms, and yield

dg2w2 + g2dw2 + db2 + dL22u22 + L22du22 = dp + dRc2 + Rdc2 (6)

where dw2 = [ − sin ϕ2 cos ϕ2 0 ]Tdϕ2 = dew2dϕ2. u22 = [ − sin ϕ2 cos θ22 cos ϕ2 cos θ22 sin θ22 ]T ,
θ22 is the rotation angle of the revolute joint at B2. By taking the derivative of
u22 and ignoring higher-order infinitesimal terms, du22 can be represented as du22 =⎡
⎣− cos ϕ2 cos θ22 sin ϕ2 sin θ22

− sin ϕ2 cos θ22 − cos ϕ2 sin θ22

0 cos θ22

⎤
⎦ [

dϕ2

dθ22

]
. Taking dot products on both sides of Eq. (6) with
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Figure 4. Schematic diagram of double-driven limb: (a) PR(RPRR)S limb and (b) equivalent PRPS
limb.

w2, Eq. (6) is rewritten as

w2
Tdp + (Rc2 × w2)

T Jd� = dg2 − w2
TRdc2 + w2

Tdb2 − L22 cos θ22dϕ2 (7)

Taking dot products on both sides of the Eq. (6) with u22. It is obvious that, u22
Tw2 = 0, then we

obtain

u22
Tdp + (Rc2 × u22)

T Jd� = g2u22
Tdw2 + dL22 − u22

TRdc2 + u22
Tdb2 (8)

Notably, the above derivation is focused on the equivalent PRPS limb. To consider the effects of
the sub-closed loop on PR(RPRR)S limb as shown in Figure 4(a), based on the cosine law of triangles
D1E1F1 and B2C2D1, the variable L22 can be derived as

L22 =
√

(l2 + l5)
2 + l3

2 + (l2 + l5) l3

l4
2 + l5

2 − g4
2

l4l5

(9)

Then, differentiate Eq. (9), and ignore the high-order infinitesimal terms; dL22can be calculated as

dL22 = ∂L22dl22 (10)

where ∂L22 =
[

∂L22

∂l2

∂L22

∂l3

∂L22

∂l4

∂L22

∂l5

∂L22

∂g4

]
, dl22 = [

dl2 dl3 dl4 dl5 dg4

]T .

By substituting Eqs. (10) to (8), (8) can be rewritten as

u22
Tdp + (Rc2 × u22)

T Jd� = g2u22
Tdew2dϕ2 + ∂L22dl22 − u22

TRdc2 + u22
Tdb2 (11)

Similarly, error transfer equations of the other PR(RPRR)S limb can be formulated as

w3
Tdp + (Rc3 × w3)

T Jd� = dg3 − w3
TRdc3 + w3

Tdb3 + L33 cos θ33dϕ3 (12)

u33
Tdp + (Rc3 × u33)

T Jd� = g3u33
Tdew3dϕ3 + ∂L33dl33 − u33

TRdc3 + u33
Tdb3 (13)

where ϕ3 = 3

4
π , ∂L33 =

[
∂L33

∂l6

∂L33

∂l7

∂L33

∂l8

∂L33

∂l9

∂L33

∂g5

]
, dl33 = [

dl6 dl7 dl8 dl9 dg5

]T .

2.2.3 Error modeling of whole parallel mechanism considering a parasitic motion
To derive kinematic error modeling of the whole parallel mechanism, error transfer equations of the
three limbs, that is, Eqs. (4) and (7) and Eqs. (11) to (13) should be combined, resulting in a matrix
equation as

J1dX = J2dW1 (14)
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Figure 5. Geometric constraints on PUU limb of the mechanism.

where dX = [ dp d� ]T , J1 =

⎡
⎢⎢⎢⎢⎣

u1
T (Rc1 × u1)TJ

w2
T (Rc2 × w2)TJ

u22
T (Rc2 × u22)TJ

w3
T (Rc3 × w3)TJ

u33
T (Rc3 × u33)TJ

⎤
⎥⎥⎥⎥⎦

5×6

, J2 =

⎡
⎢⎢⎢⎢⎣

N1 01×26

01×9 N2 01×18

01×10 N3 01×13

01×22 N4 01×5

01×23 N5

⎤
⎥⎥⎥⎥⎦

5×35

,

N1 = [
u1

Tw1 −u1
TR u1

T 1 g1u1
Tdew1

]
1×9

, N2 = [
1 −w2

TR w2
T −L22 cos θ22

]
1×8

,

N3 = [−u22
TR u22

T g2u22
Tdew2 ∂L22

]
1×12

, N4 = [
1 −w3

TR w3
T L33 cos θ33

]
1×8

,

N5 = [−u33
TR u33

T g3u33
Tdew3 ∂L33

]
1×12

,

dW1 = [ dg1 dc1 db1 dl1 dϕ1 dg2 dc2 db2 dϕ2 dl22 dg3 dc3 db3 dϕ3 dl33 ]T
35×1

.

For the convenience of identification and compensation, Eq. (14) should be expressed in standard
form; that is, dX should be derived by using the inverse of J1. Notably, the rank of J1 is five, which is
less than the dimension of dX, that is, six. Therefore, to obtain a unique solution, an additional constraint
equation is needed. Here, the parasitic motion of the 5-DOF parallel mechanism will be analyzed and
utilized. From Figure 5, the PUU limb has a geometric constraint; that is, OHB1, B1C1, and O2C1 are
always coplanar, in other words (O2C1 × B1C1) · OHB1 = 0, which can be formulated as

−2

3
g1

[
x sin α cos γ + (z − h) cos β sin γ + xcosα sin β sin γ

] = 0 (15)

From Eq. (15), there is a mapping relationship between γ and other parameters. In other words, this
5-DOF parallel mechanism has a parasitic motion, which can be described as a small constrained motion
in the remaining direction of motion in addition to the motion in the specified direction [33]. By using
Eq. (15), γ can be obtained as

γ = arctan

( −x sin α

(z − h) cos β + x sin β cos α

)
(16)

Therefore, the independent parameters of frame {O2} can be set as X ′ = [ x y z α β ]T , and then
the differential relation between γ and parameters X ′ can be formulated as

dγ = 	γ dX ′ (17)

where 	γ =
[

∂γ

∂x

∂γ

∂y

∂γ

∂z

∂γ

∂α

∂γ

∂β

]
, dX ′ = [

dx dy dz dα dβ
]T .
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Figure 6. Measurement of pose error of the moving platform.

The relationship between dX and dX ′ can be expressed as

dX = JpdX ′ (18)

where Jp =
[

E5×5

	γ

]
6×5

, E5×5 is the identity matrix. By combining Eqs. (14) and (18), the following

equation can be derived:

J1JpdX ′ = J2dW1 (19)

Thus, the error model of this parallel mechanism is formulated as

dX = JdW1 (20)

where J = Jp(J1Jp)−1J2, J1Jp is always invertible within the prescribed workspace.

2.3. Base and tool frame error modeling
As shown in Figure 6, an external measurement device, that is, laser tracker, is applied in this paper to
measure the moving platform pose. A measurement tool needs to be added to the moving platform for
this measurement strategy. The machining and assembly errors of the measurement tool will also affect
the calibration effect. In addition, the measured pose needs to be converted to the base frame {O1} from
the measurement frame {Om} using a transformation matrix, that is, O1TOm, which is generally unknown
and may introduce errors. Therefore, it is necessary to further extend the kinematic error model, that is,
Eq. (20), by considering the tool frame and base frame errors.

First, for tool frame error modeling, a tool frame is built as shown in Figure 6, of which the orientation
is the same as frame {O2}. Then position vector of O3 in frame {O1} can be expressed as

pO3 = p + Rt (21)

where t is the position vector of tool frame {O3} with respect to frame {O2} and R is the rotation matrix
of frame {O2} with respect to frame {O1}. Take differentiation on both sides of Eq. (21), resulting in

dpO3 = dp + dRt + Rdt (22)

where dt is the position error vector of frame {O3} described in frame {O2}.
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Figure 7. Schematic diagram of defined frames {O1
′} and {O3

′}.

According to Eq. (20) and the matrix differential theory, dRt = −[(Rt) × ]Jd�. Then, by substituting
dRt to Eq. (22), we can obtain

dpO3 = JpO3dW2 (23)

where JpO3 = [
Ja − [(Rt) × ]JJb R

]
, Ja represents the first three rows of J, while Jb is the last three

rows. And, [(Rt) × ] is the skew-symmetric matrix of vector Rt. dW2 = [ dWT
1 dtT ]T .

As shown in Figure 6, the measured pose of the tool frame is described in the measurement frame
{Om}. For the sake of clarity, the transformation matrix between frame {O1} and frame {Om} is denoted
as O1TOm, which can be expressed specifically as

O1TOm =
[

O1ROm
O1pOm

01×3 1

]
(24)

where O1ROm and O1pOm denote, respectively, the rotation matrix and position vector of frame {Om} with
respect to frame {O1}.

To construct the kinematic error model, kinematic errors of base frame {O1} are introduced as
[dp0, d�0]T = [dx0 dy0 dz0 dα0 dβ0 dγ0]T , where dp0 and d�0 are, respectively, the position error
vector and orientation error vector. For the convenience of analysis [34], we define frame {O1

′} to
denote the actual base frame and define frame {O3

′} to denote the actual tool frame, which are
different from the nominal frames, that is, frame {O1} and {O3}. The defined frames are shown
in Figure 7.

Then, considering kinematic errors of the base frame, in different frames, we can obtain
O1′pO3′ = O1′ROm

OmpO3′ + O1′pOm (25)

O1pO3′ = [d�0×] O1′pO3′ + O1′pO3′ + dp0 (26)

where O1′pO3′ denotes the position vector of point O3
′ described in the actual base frame {O1

′}, while
O1pO3′ is the position vector of point O3

′ with respect to the nominal base frame {O1}. O1′ROm is the
orientation matrix of frame {Om} with respect to frame {O1

′}.
According to Eqs. (25) and (26), dpO3 and dpmO3 can be expressed as

dpO3 = O1pO3′ − O1pO3 = dp0 − [
O1′pO3′×]

d�0 + O1′pO3′ − O1pO3 (27)

dpmO3 = O1′pO3′ − O1pO3 = dpO3 − dp0 + [
O1′pO3′×]

d�0 (28)

where dpmO3, dpO3 are position error vectors of the tool frame, expressed in frames {O1
′} and {O1},

respectively.
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Figure 8. Selected sample positions in the prescribed workspace.

The orientation error vector of the tool frame is

d�mO3 = d� − d�0 = JbdW2 − d�0 (29)

By combining Eqs. (23), (28), and (29), the kinematic error model of the parallel mechanism
considering base and tool frame errors can be obtained as

dXmO3 = JmO3dW (30)

where dXmO3 =
[

dpmO3

d�mO3

]
, JmO3 =

[
JpO3 −E3×3

[
O1′pO3′×]

Jb 03×6 −E3×3

]
, dW = [ dW2 dp0 d�0 ]T .

2.4. Simulation verification of the kinematic error model
To verify the above kinematic error model, a virtual prototype with geometric errors is established in
SolidWorks software, and the moving platform pose error by simulation would be compared with that
calculated by the MATLAB program [35]. It is notable that the numerical error inherent in SolidWorks
computational solvers is set as 10−8 mm.

Without loss of generality, 20 typical configurations are selected to do this verification. The posi-
tions are selected as shown in Figure 8. For each position, three typical orientations of the moving
platform would be simulated, namely, Pose 1 (α = 0◦, β = 0◦), Pose 2 (α = 5◦, β = −5◦), and Pose 3
(α = −5◦, β = 5◦). The process is flowcharted in Figure 9. It is worth pointing out that the error values
of vector dW are all in the range of [ −0.2 0.2 ](mm) or [ −0.02 0.02 ](◦).

The results are shown in Figs. 10, 11, and 12. It is worth pointing out that the D-value represents the
deviation between the simulated value and the calculated value. The position error and orientation error
are expressed by the module of the position error vector and the module of the attitude error vector, that
is, |dp| = √

dx2 + dy2 + dz2, |d�| = √
dα2 + dβ2 + dγ 2.

The calculated pose errors match with the simulation pose errors well; that is, the maximum devia-
tions are around 0.002 mm and 0.002◦, respectively. The maximum position error deviations of Pose 1,
Pose 2, and Pose 3 are 0.19%, 0.25%, and 0.26%, respectively. The maximum orientation error devi-
ations of Pose 1, Pose 2, and Pose 3 are 0.24%, 0.52%, and 0.55%, respectively. Considering that the
nonlinear terms are neglected in kinematic error modeling, the results prove that the kinematic error
model has enough accuracy.
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Figure 9. Flow chart of kinematic error model validation.

Figure 10. Verification results of Pose 1 α = 0◦, β = 0◦: (a) position error and (b) orientation error.

3. Parameter identification and model redundancy analysis
3.1. Parameter identification method
To identify the kinematic errors of the mechanism, n sets of measurement configurations are selected in
the workspace. From Eq. (30), 6 × n scalar equations can be obtained as

dQn = HndW (31)

where dQn =

⎡
⎢⎢⎣

dXmO3
(1)

dXmO3
(2)

. . .

dXmO3
(n)

⎤
⎥⎥⎦ , Hn =

⎡
⎢⎢⎣

JmO3
(1)

JmO3
(2)

. . .

JmO3
(n)

⎤
⎥⎥⎦ , dXmO3

(i) represents the error vector of i − th measurement

configuration and JmO3
(i) is the corresponding identification Jacobian matrix (i = 1, 2, 3 . . . n).
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Figure 11. Verification results of Pose 2 α = 5◦, β = −5◦: (a) position error and (b) orientation error.

Figure 12. Verification results of Pose 3 α = −5◦, β = 5◦: (a) position error and (b) orientation error.

When 6 × n > k, where k is the dimension of dW , by applying the least-square technique, the
kinematic error vector dW can be calculated as

dW = H+
n dQn = (HT

n Hn)
−1HT

n dQn (32)

where H+
n = (HT

n Hn)−1HT
n is the pseudo-inverse of Hn. For the 5-DOF double-driven parallel mecha-

nism under study, the dimension of dW , that is, the number of kinematic errors to be identified, is 44.
Therefore, at least n = 8 groups of measurement configurations are required. In addition, due to the
multi-closed loop structure of the parallel mechanism, the kinematic error model is more complicated.
Some kinematic errors may not affect the accuracy of the mechanism, and some ones may have a mul-
tilinear correlation with other errors. In other words, some kinematic parameter errors are redundant.
Therefore, to derive the minimal model that is more suitable for practical industrial application, the
parameter identifiability analysis should be completed first.

3.2. Identifiability analysis
This section focused on parameter identifiability analysis to ensure the stability and accuracy of param-
eter identification. And the QR decomposition technique is applied. According to QR decomposition,
the identification Jacobian Hn can be rewritten as

(Hn)m×k = Qm×m

[
Rk×k

0(m−k)×k

]
(33)
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where Qm×m is am × m orthogonal matrix, Rk×k is an upper triangular matrix, and 0(m−k)×k is a null matrix.
m = 6 × n .n is the total number of measurement configurations. k is the number of parameter errors to be
identified. According to the properties of the orthogonal matrix and upper triangular matrix, the param-
eters corresponding to the zero diagonal elements of matrix Rk×k can be considered as unidentifiable.
Among them, the parameters corresponding to the all-zero columns of the matrix Rk×k are independent
of the pose error. The parameters corresponding to the columns with zero diagonal elements and nonzero
other elements are linearly related to the previous identifiable parameters. Moreover, for several linearly
related parameters to be identified, the top priority is determined as identifiable parameters. Therefore,
changing the order of the parameters to be identified can result in different final identifiable parameter
vector [36].

According to the QR decomposition method, a sufficient number of measurement configurations,
that is, 6n > k, are randomly determined. By analyzing the identification Jacobian matrix, the rank of
the identification matrix is r = 35, and the total number of parameters to be identified is k = 44, so there
are nine redundant parameters. Among them, there are no all-zero columns in Rk×k, and the number of
columns whose diagonal is zero while other elements are nonzero are the 6th, 15th, 20th, 21st, 28th,
33rd, 34th, 37th, and 40th columns, respectively, indicating that the parameters corresponding to these
columns are linearly correlated with the remaining parameters.

After reasonably adjusting the sequence of parameters to be identified, the 6th, 15th, 18th, 19th,
28th, 31st, 32nd, 37th, and 40th parameters in dW are treated as redundant parameters, namely,
db1y, db2y, dl2, dl3, db3y, dl6, dl7, dty, and dy0. Therefore, the final parameter error vector to be
identified is

dW ′ = [
dg1 dc1x dc1y dc1z db1x db1z dl1 dϕ1 dg2 dc2x dc2y dc2z db2x db2z dϕ2 dl4 dl5 dg4 dg3

dc3x dc3y dc3z db3x db3z dϕ3 dl8 dl9 dg5 dtx dtz dx0 dz0 dα0 dβ0 dγ0

]T (34)

Then, by removing corresponding columns, the Jacobian matrix Hn are represented as Hn
′. Eq. (31)

and Eq. (32) can be rewritten as

dQn = Hn
′dW ′ (35)

dW ′ = (
(Hn

′)T Hn
′)−1

(Hn
′)T dQn (36)

4. Measurement configuration optimization
As shown in existing studies [31, 32], the robustness of parameter identification regarding the measure-
ment noise is sensitive to the measurement configurations. Therefore, the optimization of measurement
configuration is an effective means to improve the accuracy of identification results [37]. And, the two
key points of measurement configuration optimization are the observation index and search algorithm.

The observation indices are generally established according to the singular value of the identification
Jacobian matrix, and optimal measurement configurations are obtained by screening discrete measure-
ment configurations in the workspace. In this paper, the reciprocal of the traditional index O2 [38],
denoted as OT , is selected as the observation index, which can be expressed as

OT = 1

O2

= σs

σ1

(37)

where σi is the nonzero singular value of the identification Jacobian matrix Hn
′ and 0 ≤ σ1 ≤ σ2 ≤ · ·

· ≤ σs(i = 1, 2, . . . , s). The smaller the observed OT value is, the less sensitive the robot configurations
selected for parameter identification are to the measurement noise, and the more accurate the identified
kinematic parameters will be.

Measurement configuration optimization is a combinatorial optimization problem, and researchers
have proposed many heuristic or random search algorithms. Among these algorithms, the Floating
Search algorithm is the best in the balance of efficiency and effectiveness [39]. Especially, the Sequential
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Figure 13. Flow chart of Floating Search algorithm [39].

Figure 14. Variation curve of the observed values during the optimization.

Forward Floating Search algorithm includes “add” and “delete” operations based on certain condi-
tions, which will terminate when the number of optimal solutions meets the requirements [40]. For
clarity, the optimization process is described in Figure 13. n is the number of needed configurations for
measurement. Qall is the set contains all discrete configurations, and N is the total number of discrete con-
figurations, here N = 304920. X is a single configuration in Qall. X+ and X−are selected configurations
to be added and deleted, respectively, belonging to Qall.

As an example, select n = 30 measurement configurations for the calibration of the 5-DOF double-
driven parallel mechanism under study. The variation curves of OT(Qk−1) and OT(Qk\{X−}) during the
optimization process are shown in Figure 13, where OT(Qk−1) and OT(Qk\{X−}) are the observation
indices of configuration sets Qk−1 and Qk\{X−}, respectively. And Qk is the set that contains k con-
figurations, and Qk\{X−} is the configuration set obtained by deleting X− from Qk. With the increase
in search cycles, the observed values of OT(Qk\{X−}) and OT(Qk−1) first increased and then decreased
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Figure 15. Selected measurement configurations in the prescribed workspace: (a) selected position and
(b) selected orientation.

and gradually tended to be stable at about 30 cycles. Finally, the total number of optimal measurement
configurations reached n = 30 after nearly 40 cycles.

The optimized results of measurement configurations are displayed in Figure 15. Among these results,
Figure 15(a) shows the selected positions in the prescribed workspace, while Figure 15(b) shows the
selected orientations. From Figure 15, the results show that the optimal measurement configurations are
randomly distributed in the mechanism’ prescribed workspace.

5. Kinematic calibration simulation and experiment
5.1. Numerical simulation based on virtual prototype
With a concept similar to simulation verification of the kinematic error model, numerical simulations
are implemented to verify the effectiveness of the proposed kinematic calibration method, especially
parameter identification in a virtual environment. Here, the SolidWorks software is utilized to establish
the virtual prototype with geometric errors. Figure 16 shows a flow chart of the procedure of simulation.
For clarity, the detailed procedure of the kinematic calibration simulation is as follows.

1. Randomly select geometric errors dW , where the errors are all within the range of
[ −0.2 0.2 ](mm) or [ −0.02 0.02 ](◦). Then, the virtual prototype with geometric errors is
established in SolidWorks software.

2. The 30 optimal measurement configurations selected in Section 4 are used for simulation, which
are also treated as target configurations, that is, Qn. Then, drive the parallel mechanism to mea-
sure the pose vector of frame {O3} in each measurement configuration, which is treated as the
measured configurations, that is, Qm

n .
3. By comparing Qn with Qm

n , the measured pose error vector of frame {O3} is calculated as dQn =
Qm

n − Qn, which is also treated as the pose error vector of frame {O3} before calibration.
4. By substituting dQn into Eq. (36), identified kinematic error vector dW ′ can be obtained.
5. To compensate the kinematic errors, the target configurations are adjusted as Qa

n = Qn − dQn
′,

where dQn
′ is calculated according to Eq. (35), that is, dQ′

n = Hn
′dW ′, and Qa

n is the adjusted con-
figurations. Then, drive the parallel mechanism to measure the pose vector of frame {O3} in each
adjusted target configuration, which is treated as the measured configurations after calibration,
that is, Qma

n .
6. By comparing Qn and Qma

n , the measured pose error vector of frame {O3} after calibration is
calculated as dQa

n.
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Figure 16. Flow chart of the kinematic calibration simulation.

Figure 17. Kinematic calibration simulation results: (a) position error and (b) orientation error.

Pose errors of frame {O3} before and after calibration are shown in Figure 17. From Figure 17, the
parallel mechanism’s accuracy has been dramatically enhanced after kinematic calibration. The average
position error has been reduced from 0.515 mm to 0.004 mm, and the average orientation error has been
reduced from 0.249◦ to 0.001◦, which validates the effectiveness of the proposed kinematic calibration
method.

To further analyze the robustness of the proposed kinematic calibration method to measurement
errors, noise errors following a normal distribution with N(0, 202)(μm) or N(0, 0.022)(◦) are added to
measured configurations, that is, Qm

n , in the simulation above, that is, Step (2). Then the corresponding
pose errors after calibration are shown in Figure 18. After introducing measurement noise, the aver-
age position error after kinematic calibration is 0.015 mm, and the average orientation error is 0.019◦.
Measurement noise can affect the results. However, the average pose errors after calibration are all
within limits of acceptability, which also confirms the effectiveness of redundant parameter reduction
and measurement configurations optimization in Section 4.

https://doi.org/10.1017/S0263574724001607 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001607


Robotica 3725

Figure 18. Kinematic calibration simulation results with measurement noise: (a) position error and
(b) orientation error.

Figure 19. Measurement tool for kinematic calibration: (a) 3D model and (b) tool frame.

5.2. Experiment verification
To further verify the effectiveness of the proposed kinematic calibration method in practical application,
a calibration experiment is conducted in this section. The prototype is built by our team, and the mea-
surement device is an API OT2 laser tracker with the observed error of 15 μm + 0.5 μm/m. Notably,
the full pose of the tool (position and orientation) should be measured in the experiment, while the laser
tracker with one sphere reflector generally only offers the position, that is, the center of a sphere reflector.
Therefore, a specific measurement tool has been designed, as shown in Figure 19 (a).

The tool can be bolted to the moving platform of the parallel mechanism, and it contains three reflector
holders, the centers of which make an equilateral triangle. For simplicity, a tool frame is defined as shown
in Figure 19 (b), and the original point of frame {O3} is located on the center point of the equilateral
triangle.

Considering that the manufacturing errors of measurement tools are relatively small, the nominal
transformation matrix from frame {O2} to frame {O3}, that is, O2TO3, is treated as known. Figure 20
shows the experimental site for kinematic calibration. When an external measurement device, that is,
laser tracker, is applied, all the measured poses of frame {O3} are with respect to the measurement frame
{Om}. The measured pose of frame {O3} with respect to frame {Om} is described as

OmTO3 =
[

OmRO3
OmpO3

01×3 1

]
=

[
rx ry rz

OmpO3

01×3 1

]
(38)

where OmpO3 = (OmM1 + OmM2 + OmM3)/3 denotes the position vector of frame {O3}, OmM i is
the measured position vector of the center of reflector, and OmRO3 represents the orienta-
tion matrix of frame {O3} , ry = (

OmM1 − 1
2

(
OmM2 + OmM3

))
/
∥∥OmM1 − 1

2

(
OmM2 + OmM3

)∥∥ , rz = rx ×
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Figure 20. Experimental site and equipment for kinematic calibration experiment.

ry, rx = (OmM2 − OmM3)/‖OmM2 − OmM3‖. All position and orientation vectors are described in
frame {Om}.

Because the kinematic error model of this parallel mechanism is established in the base frame {O1},
the measured pose needs to be converted to the base frame {O1} from the measurement frame {Om}. In
other words, the transformation matrix from frame {O1} to frame {Om}, that is, O1TOm, must be derived.
In this paper, the SVD method [41] is utilized to calculate the transformation matrix O1TOm. Construct
the following objective function:

F =
n∑

i=1

∥∥(
O1ROm

OmpO3
(i) + O1pOm

) − O1pO3
(i)
∥∥2

2
(39)

where OmpO3
(i) is the i-th measured position vector in the measurement frame {Om}, O1pO3

(i) is the i-th
nominal position vector in the base frame {O1}, and n is the number of measurement configurations.
Centralize all vectors OmpO3

(i) and O1pO3
(i), resulting in{
OmpO3

(i)′ = OmpO3
(i) − OmpO3

O1pO3
(i)′ = O1pO3

(i) − O1pO3

(40)

where OmpO3 = 1
n

∑n
i=1

OmpO3
(i), O1pO3 = 1

n

∑n
i=1

O1pO3
(i), and they satisfy the following relationship:

O1ROm
OmpO3 + O1pOm = O1pO3 (41)

Substituting Eqs. (40) and (41) into Eq. (39) yields

F =
n∑

i=1

((
OmpO3

(i)′)T OmpO3
(i)′ − 2

(
O1pO3

(i)′)T O1ROm
OmpO3

(i)′ + (
O1pO3

(i)′)T O1pO3
(i)′

)
(42)

To solve O1ROm and O1pOm, it is necessary to minimize the value of the objective function F.
Considering that (OmpO3

(i)′)T OmpO3
(i)′ and (O1pO3

(i)′)T O1pO3
(i)′ are constant for each measurement, to min-

imize the value of F is equivalent to maximize function F′, which is expressed as

F′ =
n∑

i=1

((
O1pO3

(i)′)T O1ROm
OmpO3

(i)′
)

= trace
(

O1ROmz
)

(43)

where z = ∑n
i=1 (O1pO3

(i)′(OmpO3
(i)′)T), trace(O1ROmz) represents the trace of the matrix O1ROmz.
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Figure 21. Comparison of errors before and after calibration: (a) position error and (b) orientation
error.

According to SVD, z can be expressed as z = uVT . To maximize F′, we can obtain

O1ROm = VuT (44)

By substituting Eq. (44) into Eq. (41), O1pOm can be calculated. Then O1TOm is obtained according
to Eq. (24). It is worth pointing out that the derived transformation matrix O1TOm is not the accurate
transformation matrix between the nominal base frame {O1} and measurement frame {Om}. Therefore,
for clarity, the estimated transformation matrix is denoted by O1′TOm. According to matrix transformation,
the measured poses of frame {O3} with respect to frame {O1}, that is, O1′TO3m, can be obtained as

O1′TO3m = O1′TOm
OmTO3 (45)

where O1′TO3m =
[

O1′RO3m
O1′pO3m

01×3 1

]
, O1′RO3m and O1′pO3m denote the measured rotation matrix and

position vector of frame {O3} with respect to the estimated base frame {O1
′}, respectively.

In the experiment, 30 optimal measurement configurations selected in Section 4 are used for param-
eter identification, that is, identification configurations. To further validate the effectiveness of the
kinematic calibration method, 20 additional verification configurations are randomly selected in the
prescribed workspace. The parallel mechanism is commanded to undergo the measurement configura-
tions successively, and the measurement at each configuration is repeated three times, and the mean
value is retained. The position and orientation errors before and after kinematic calibration are shown
in Figure 21.

From Figure 21, the proposed kinematic calibration can improve the absolute accuracy of the 5-DOF
double-driven parallel mechanism. For both the identification configurations and verification configu-
rations, the average position error decreases from 2.778 mm to 0.263 mm, and the average orientation
error decreases from 1.115◦ to 0.176◦. Meanwhile, we found that gravity has a significant impact on the
positioning accuracy of parallel mechanisms in our related research. In future research, we will study the
kinematic calibration considering the gravity factor. In addition, although there are flexible deformations
and some neglected geometric errors, the accuracy after kinematic calibration is still within an accept-
able range. In other words, the proposed kinematic calibration method for the 5-DOF double-driven
parallel mechanism with the sub-closed loop on limbs is validated.

https://doi.org/10.1017/S0263574724001607 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001607


3728 Xuhao Wang et al.

6. Conclusions
In this paper, a kinematic calibration method of a 5-DOF double-driven parallel mechanism with the sub-
closed loop on limbs (i.e., the PUU-2PR(RPRR)S parallel mechanism) using a laser tracker is proposed.
The main conclusions are drawn as follows:

1. A kinematic error modeling approach for the 5-DOF double-driven parallel mechanism with
the sub-closed loop on limbs is proposed. At first, to solve the modeling complexity introduced
by the sub-closed loop, the PR (RPRR) S limb with a sub-closed loop is transformed into an
equivalent PRPS limb. Then, by combining the closed-loop vector method with the parasite
motion analysis, the kinematic error model of the whole mechanism is established. By employing
virtual prototype technology, numerical simulation is implemented. The results of the simulation
verified that the deviation of the kinematic error model is within 0.6%.

2. Error parameter identifiability analysis is conducted based on the QR decomposition of the iden-
tification Jacobian matrix. To improve the robustness of kinematic calibration, the Sequence
Forward Floating Search algorithm is used for measurement configuration optimization.

3. Numerical simulations and prototypical experiments are carried out to verify the proposed kine-
matic calibration method. The experiment results show that after kinematic calibration, the
average position error is reduced from 2.778 mm to 0.263 mm, and the average orientation error is
reduced from 1.115◦ to 0.176◦, which decreased by 90.53% and 84.22%, respectively. To further
improve absolute accuracy of this parallel mechanism, the non-kinematic calibration considering
deformations from external load or gravity will be investigated in our further work.
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