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FULL IDEALS AND RING GROUPS IN Z»[x] 

BY 

JOHN A. SUVAK 

Introduction. If we add the operation of composition to the polynomial ring 
JR[X], where R is a commutative ring with identity, we get a tri-operational 
algebra sd = (R[x], +, -,°). A full ideal or tri-operational ideal of si is the 
kernel of a tri-operational homomorphism on si. This is equivalent [4, pp. 
73-74] to the following: A full ideal of si is a ring ideal A of R[x] such that 
f°ge A for every fe A and gel?[jc]. For a full ideal A of R[x] we can form 
the tri-operational algebra (R[x]/A, +, •,<>) where (R[x]/A,°) forms a monoid 
called the ring semi-group of R[x] over A, denoted by HR(A). The group of 
units of HR(A) is called the ring group of K[x] over A, denoted by GR(A). 

For any ideal I of R, (I) = I[x] and {I}R = {fe R[x]:f(a) e I for every aeR} 
are full ideals of R[x]. Dickson [2] characterized the full ideals {I}z where Z is 
the ring of integers, and Nôbauer [7] developed a general theory of ring groups 
and used these results to describe the ring groups GZ((I)) and GZ({I})> It is 
natural to ask whether these results can be extended to the rings Zn of integers 
modulo n. In this paper, then, we will first characterize the full ideals {I}zn, 
which we will shorten to {I}n, and secondly we will describe the ring groups 
Gzndï)) and GZn({I}), which we will shorten to Gn((I)) and Gn({I}), for every n 
and every ideal I of Zn. 

1. The full ideals {I}n. Since Zn is a principal ideal ring and, in fact, every 
ideal I of Zn has a unique generator which is a divisor of n, our first problem is 
reduced to describing the ideals 

{{d)}n = {f eZn[x]:f(a) = 0 mod d for every aeZn} 

for every n and every d that divides n. We begin by giving a characterization 
for the full ideals {0}n={{n)}n, where 0 is the zero (full) ideal of Zn[x], and 
then we will see how these results can be used to find {I}n for any ideal I. 

In characterizing {0}n for arbitrary n we will make considerable use of results 
obtained by Dickson [2] for Z[x]. We thus consider the homomorphism 
<\)\Z^> Zn and the injective map i/>:Zn -> Z, where cj> is reduction modulo n, 
and the induced tri-operational homomorphism </>:Z[x]-> Zn[x] and injective 
map ijJ:Zn[x]-* Z[x], with </>°i/> and <£°i/j the identity maps on Zn and Zn[x] 
respectively. In Chapter II of [2] Dickson gives a method for constructing a 
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generating set for all residual polynomials modulo n\ that is, all polynomials 
fe Z[x] with f{a) = 0 mod n for every aeZ. The following lemma and theorem 
allow us to apply these results to solving our problem. 

LEMMA 1. (1) If feZ[x] and aeZ, then (f>(f(a)) = (j)(f)(<j)(a)). 
(2) If feZn[x] and aeZn, then ^(/(a)) = ^( / ) (^(a) )modn. 

Proof. 
_(1) If f = lcix

ieZ[x'\ and aeZ, then ^(/(a)) = <^Gc ia
i) = I ^ ( c i ) [ ^ ( a ) ] i = 

<M/)(<Ma)). 
(2) For feZn[x] and ae.Zn we have, using (1) and the fact that </>°̂  

and (poïjj are identity maps, that <p(ij/(f(a))) = f(a) and also (f>(if/(f)(il/(a))) = 
ém))(<t>(iP(a))) = f(a). Thus W ( a ) ) ^ ^ ( a ) ) m o d n . 

THEOREM 2. Let 4> and ijj be defined as above. Then, 
(1) If f is a residual polynomial modulo n, then </>(/) e{0}„. 
(2) If fe{0}m then ijj(f) is a residual polynomial modulo n. 

Proof. 
(1) If / is a residual polynomial modulo n and aeZ, then /(a) = 0 m o d n 

and 4>(f(a)) = 0. So (j)(f)(<f>(a)) = Q by Lemma 1, and since <fi is surjective we 
have <£(/)(&) = 0 for every 5 e Z n and thus <£(/)£ {0}n. 

(2) Let /e{0} n and aeZ. Then ^ ( a ) ) = a m o d n . So by Lemma 1, 
^(/)(a) = ^ ( / ) ( ^ ( a ) ) ) = ^(/(<^(a)))mod n. But/(<£(<*)) = 0 since /e{0}„. Thus 
^ ( / ) ( f l ) -0mod n. 

This theorem together with results of Dickson [2] in characterizing residual 
polynomials can be applied in a simple way to our case to get the following 
results describing {0}n. If p is a prime and t < p, then Theorem 27 of [2] gives, 

{0}p. - < p ' - V - x ) , pf~2(xp - x ) 2 , . . . , p(xp -xY'\ (xp - xY). 

Note that taking t=l we get the principal ideal {0}p = ( x p - x ) . If we now 
define a map 7 r :Z + -^ Z[JC] by 7r(k) = X ( J C - 1 ) ( J C - 2 ) • • • (x — k + 1) and identify 
</>(7r(k)) with 7r(k), then Theorem 2 above and equation (32) of [2] give that 
Bach /e{0} n of degree m can be expressed in the form / = 
a2Tr(2) + a37r(3) + • • • + am7r(m) where k ! ak = 0 for k = 2, 3 , . . . , m. Moreover 
we are able to give a method for constructing a generating set for {0}n. For m a 
positive integer let jji(m) denote the least positive integer such that /x(m)! is 
divisible by m. Now for a given n, partition the divisors d > 1 of n into sets by 
the equivalence relation that identifies divisors with the same JLL value. Choose 
as a representative of each class the largest d of that class and let du d2,..., ds 

denote these representatives. Then Theorem 2 together with equation (27) and 
Theorem 28 of [2] give us, 
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COROLLARY 3. Let n be arbitrary and du d2,..., ds be the divisors of n 
selected above. Then 

{0}n = U- TTi^dJ), ^ TT(fJL(d2)l . . . , ~ Triads))). 
\di a2 as I 

As an example the reader can verify that {0}3O = (157r(2), 57r(3), 7r(5)). 
We now use the above results to characterize the full ideals {!}„ for arbitrary 

n and any ideal I of Zn. Let {I}n~{{d)}n where d divides n. Then the maps 
a:Zn->Zd and â:Zn[x]~> Zd\x\ which are reduction modulo n, are ring 
epimorphisms, and, as in Lemma 1, for any feZn[x] and aeZn we have 
«(/(a)) = à(f)(a(a)). We also have the obvious injection maps /3 :Zd —> Zn and 
P:Zd[x]-> Zn[x] and these are such that a°/3 and â* (Ï are identity maps. We 
first show, 

LEMMA 4. Let â be as given above and letfe Zn[x]. Thenfe{(d)}n if and only 
ifa(f)e{0}d. 

Proof. If fe{(d)}n, then f(a) = 0 mod d for every aeZn and hence a (/(a)) = 
a(/)(a(a)) = 0. Since a is surjective we have a(f)(b) = 0 for every beZd and 
â(/)e{Q}d. Conversely, if a(/)e{0}d , then for any aeZn we have 0 = 
â(f)(a(a)) = a(f(a)). So / ( a ) ^ O m o d d and fe{{d)}n. 

With this we can prove our desired result. 

THEOREM. If {0}d={fi,f2j... ,fk) and d divides n, then {(d)}n = 
(j8(/i), j3 ( / 2 ) , . . . . j8(/k), d) where d is the constant polynomial f=d in Zn[x]. 

Proof. Suppose fe(p(t\\ | 3 ( / 2 ) , . . . , j3(/k), d>, so / = dg + ZU j3(/i)s with g, 
gi G Zn[x], i = 1, 2 , . . . , k. Since â is a ring homomorphism and â°j3 is the 
identity map on Zd[x] we get â(f) = Y,Ki £<*(&) G {0}d, and so by Lemma 4 we 
have /e{(d!)}n. Conversely, suppose fe{{d)}n. Then â( / ) G {()}<* by Lemma 4 
and we can write a(f) = J^=1figi for some gteZd[x\ Now consider the 
polynomial h = l U j8(/0|3(ft). Then 5(h) = 1 ^ / i 6 and â( / ) = â(h) or 
â ( / - h) = 0. Hence f-h = dg for some g G Zn[x] and so 

k 

/=-dg + h = dg+L|3(/,)0(g,) 
i = l 

and / G ( ] 3 ( / I ) , j3 ( / 2 ) , . . . , /3(/k), d) and the theorem is proved. 

Thus we can obtain a set of generators for {(d)}n by sort of lifting the 
generators of {0}d, which we can construct from Corollary 3, to Zn[x] and 
throwing in the constant polynomial f=d. 

2. The ring groups Gn((î)). Nôbauer [7] obtained results concerning the ring 
groups GZ((I)). The following theorem and corollary allow us to apply these 
results to our problem. 
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THEOREM 6. Let I = (n), n a positive integer, be an ideal of Z. Then GZ((I)) — 

Gn((0)). 

Proof. Since Hn((0)) is the semi-group (Zn[x], <>), we first define 0 :HZ((I)) -» 
ff„((0)) by 0(/+(/)) = <£(/). Now 0 is well-defined, for if / + ( ! ) = g + (I) then 
f-ge(I) and (M/ -g ) = 0, and so <£(/) = <Mg). Clearly 0 is an epimorphism 
since ^ is a tri-operational epimorphism. Also 4>(f) = c/>(g) implies <M/-g) = 0 
and f- ge(I) and so 0 is a semi-group isomorphism. Since 6 takes the identity 
of HZ((I)) onto the identity of Hn((0)), the restriction of 0 to Gz(C0) is an 
isomorphism onto Gn((0)). 

It immediately follows by factoring that, 

COROLLARY 7. Let I = (m} be an ideal of Zn where m divides n. Then 
Gn((I))=Gm((0)). 

Thus we see that we will have the structure of Gn((I)) for every n and every 
ideal I of Zn if we can only obtain the structure of Gn((0)) for every n. 

The case of n = p, a prime, is particularly interesting since it can be 
generalized to obtaining the structure of GD((0)), the group of units of D[x] 
under composition, for any integral domain D. Let D+ be the additive group of 
D and U(D) be the group of multiplicative units of D. It is well known that 

GD((0)) = {a + bxeD[x]:beU(D)}. 

We can now express GD((0)) as a semi-direct product. If we let 

B={a + x:aeD} and H = {bx: be 17(D)}, 

then B is a normal subgroup of Gd((0)), H is a subgroup of GD((0)), 
BDH = {x}, and BH=GD(qO)). Thus GD((0)) is a semi-direct product of B 
and H, and in fact 

GD((0))~BXeH 

where 0:H-> Aut(B) is given by 0(bx)(a + x) = ba + x. Of course B — D+ and 
H— 17(D) and we can also express 

G D ( (0)) -D + X e £/(D) 

where 0:17(D) -> Aut(D+) by 0(d)(a) = da. 
Thus we have characterized GD((0)) as a semi-direct product for any integral 

domain D. Returning to the case of Zp, a field, we get: Let p be a prime. Then 
feZp[x] belongs to Gp((0)) if and only if / has the form / = a + bx, b^Q, and 

Gp((0))-z;x,Z* 
where Z* is the multiplicative group of non-zero elements of Zp and d:Z* —» 

<-Aut(Zp) is given by 0(a)(c) = ac for a e Z * and c e Z p . 
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Observe that |Gp((0))| = p ( p - l ) , and since Zp-cr(p) and Z p — cr(p-l) we 
also have Gp((0)) expressed as a semi-direct product of cyclic groups. 
Furthermore, in this case we can identify these semi-direct products Gp((0)) as 
known groups. For any three positive integers m, n and k the metacyclic group 
M(m, n, k) is defined [3, p. 462] as the group generated by two elements a and 
b satisfying am = 1, bn = 1 and bab'1 = ak where fcn = 1 mbdm. We then have, 

THEOREM 8. Let p be a prime and n a primitive root of p. Then Gp((0)) — 
M ( p , p - 1 , ft). 

Proof, If we let / = 1 + x and g = ft*, then /, g e Gp((0)) with / p = x, gp _ 1 = x 
and g°/° g - 1 = ft + x = / n with ftp_1 = 1 mod p. Also it is easily seen that / and g 
generate Gp((0)) since /"g*3 = a + nfix and ft is a primitive root of p. 

To describe Gn((0)) for composite n we use Theorem 6 to apply results 
Nôbauer [7] obtained for the ring groups GZ((I)). If ft is a power of a prime 
then we can use equations (11) and (12) of [7] and Theorem 6 to determine 
which elements of Zv\x\ belong to Gp*((0)). Specifically, if p is a prime and 
f > 0 , then / e Gp<((0)) if and only if it can be expressed in the form 

/ = a + bx + px2a(x) 

with be U(Zpt), so fc#0modp, and a(x)eZp<[x]. Thus we have a structural 
representation for Gp*((0)) to the extent that elements of Zp<[x] are identifiable 
as elements of Gp<((0)) or not. 

Finally, for n arbitrary, ft = pi1p^* • -p), Pi^Pj for i^j, we can use Theorem 
6 to apply a result of Nôbauer [7, p. 257] to get 

G„((0))«GPlr1((0))XG |l4t2((0))X- • -XGPrtr((0)). 

From this we get the result, 

THEOREM 9. Gn((0)) is finite if and only if n is square free. 

Proof. If ft = piP2# , ,Pr is square free, then |Gn((0))| = rii=i Pi (Pi - l ) and 
hence is finite, and if n is not square free then Gn((0)) is not finite since 
Gp«((0)) is not finite for i > l . 

3. The ring groups Gn({I}). This problem is again reduced to describing 
G„({(d)}) for every n and every d that divides ft. The following theorem and 
corollary give us a further reduction and allow us to apply the results of 
Nôbauer [5, 6, 7] to this case. 

THEOREM 10. Let I = (ft), ft a positive integer, be an ideal of Z. Then 
Gz({I}) = Gn({0}). 

Proof. We first define 0:Hz({I})-> H„({0}) by 0(/+{I}) = <M/)+{O}„. Now 6 
is well-defined, for if /+{ /}= g+{I} then / - g e { I } and by Theorem 2 we have 
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<t>(f~g) = <t>(f)~~4>(g)e {0}n- Also 6 is an epimorphism since é is a tri-
operational epimorphism. Furthermore 0 is injective, for if </>(/) + {0}n = 
<Mg) + {0}„ then <M/-g)e{0}„ and / -gG{2} , and so / + {/}= g + {/}. Thus 0 is 
a semi-group isomorphism. Since 0 takes the identity of HZ({I}) onto the 
identity of Hn({0}), the restriction of 0 to GZ{{I}) is an isomorphism onto 
Gn({0}). 

Again by factoring we get, 

COROLLARY 11. Let I = (m) be an ideal of Zn where m divides n. Then 
Gn({I})-Gm({0}). 

Thus we reduce the problem to that of finding Gn({0}) for arbitrary n. 
The case of n = p, a prime, is taken care of by a more general result. If 

F = GF(pk) is the field of pk elements, then using Satz 10 of [7] and Theorem 
3 of [1] it is easy to see that 

GF({0})-Sp* 

where Sp« is the symmetric group on pk elements. Taking k = l gives 

Gp({0})-Sp. 

The case of n composite can be solved by applying Theorem 10 to results of 
Nôbauer [5, 6]. First, we find the structure of Gp<({0}), p a prime, t>\. From 
Satz IV of [6] and Theorem 10 we know that all the elements of Gp<-i({0}) 
which have a representative of the form 

/ = a0 + aix+pa2x
2 + - • -+pt~2at-ix

t~i 

form a subgroup of Gp«-i({0}). If we denote this subgroup by BP< ^ then Satz V 
of [6] gives us that Gp({0}) is isomorphic to the complete monomial group of 
degree p of Bp< K (See Ore [8] for a general study of monomial groups.) We 
can also obtain a formula for the order of Gp'({0}). Let n = p\ p a prime, be 
given. For a positive integer i let e(i) denote the exponent of p in the prime 
factorization of /!, and let s be the largest integer for which s + e(s) < t and let 
T = Yl

Si=o(t-i-e(i))- Then equation (15) of [6] gives us that 

|Gp-({0})| = p ! ( p - l ) p p ( T " 2 ) p 

Finally we can obtain G„({0}) for arbitrary n. If n = p\lp^ • • • p) is any 
positive integer, then applying Theorem 10 to a result of Nôbauer [7, p. 257] 
we get 

Gn({0})- GpMmXG^HiOVX • • • XGPr;r({0}). 

Thus we can find Gn({I}) for any n and any ideal I of Zn. Also, Gn({I}) is finite 
for every n and 2, and in fact we can obtain a form ila for its order. 
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