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Experiments and numerical simulations of inertial particles in underexpanded jets
are performed. The structure of the jet is controlled by varying the nozzle pressure
ratio, while the influence of particles on emerging shocks and rarefaction patterns is
controlled by varying the particle size and mass loading. Ultra-high-speed schlieren
and Lagrangian particle tracking are used to experimentally determine the two-phase
flow quantities. Three-dimensional simulations are performed using a high-order,
low-dissipative discretization of the gas phase while particles are tracked individually in a
Lagrangian manner. A simple two-way coupling strategy is proposed to handle interphase
exchange in the vicinity of shocks. Velocity statistics of each phase are reported for a wide
range of pressure ratios, particle sizes and volume fractions. An upstream shift of the Mach
disk in the presence of particles reveals significant two-way coupling even at low mass
loading. A semi-analytic model that predicts the extent of the Mach disk shift is presented
based on a one-dimensional Fanno flow that takes into account volume displacement by
particles and interphase exchange due to drag and heat transfer. The per cent shift in Mach
disk is found to scale with the mass loading, nozzle pressure ratio and interphase slip
velocity and inversely with the particle diameter.
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1. Introduction

Compressible flows containing inertial (i.e. heavy compared with the fluid) particles can
be found in many engineering applications and natural phenomena. Coal dust explosions
(Houim & Oran 2015), volcanic eruptions (Bower & Woods 1996; Lube et al. 2020), solid
propellant combustion in rocket engines (Davenas 2012) and plume–surface interactions
during the powered descent of spacecraft (Mehta et al. 2013; Balakrishnan & Bellan 2018;
Capecelatro 2022) are few such examples. In all these cases, the flows exhibit strong
coupling between gas-phase compressibility, turbulence and solid particles. This work
deals with particle-laden underexpanded jets as a canonical flow configuration for studying
the transport of particles through shocks and their back coupling on the gas phase.

Dedicated studies on particle-laden compressible jets date back to the 1960s, primarily
motivated by solid propellant-based rocket combustion (Bailey et al. 1961; Hoglund
1962; Marble 1963; Lewis & Carlson 1964; Bauer 1965; Jarvinen & Draper 1967). The
location of the normal shock wave (or Mach disk), LMD, is a key quantity since it affects
the radiation of the plume and downstream structure of the jet (Franquet et al. 2015).
Experiments by Lewis & Carlson (1964) revealed an upstream movement of the Mach
disk (i.e. a shift towards the nozzle exit) by as much as 30 % with the addition of particles.
The movement was found to increase with increasing particle-to-gas mass fraction, Φm,
and be independent of nozzle pressure ratio, defined as η0 ≡ p0/p∞, where p0 and p∞ are
the total and ambient pressures, respectively. They proposed an empirical correlation for
the per cent change in LMD that depends only onΦm and the nozzle exit Mach number, Me.
Semi-analytic models were proposed in the ensuing years that treat the two-phase mixture
as an equivalent perfect gas so the usual one-dimensional gas dynamics can be applied
(e.g. Bauer 1965; Jarvinen & Draper 1967; Marble 1970). The models assume that the
particles are sufficiently small so that the slip velocity between the phases is negligible.
The results showed reasonable agreement with the experiments of Lewis & Carlson
(1964).

Since the 1960s, advancements in experimental diagnostics and numerical methods have
provided new insights into the effect particles have on the structure of underexpanded
jets. Numerical simulations of rocket exhaust plumes by Dash et al. (1985) showed that
decreasing the particle size resulted in the downstream movement of the Mach disk, i.e.
an increase in LMD counter to the observations by Lewis & Carlson (1964). In contrast,
two-dimensional axisymmetric simulations of Sommerfeld (1994) showed an upstream
movement of the Mach disk that was more pronounced for smaller particles. Because
the Stokes number scales with the square of the particle diameter, it was hypothesized that
smaller particles exhibit a greater radial spread, and thus affect a larger portion of the shock
structure. Reynolds-averaged Navier–Stokes simulations of Carcano et al. (2013) predicted
a similar upstream movement of the Mach disk. Recently, Ejtehadi et al. (2018) simulated
conditions similar to Sommerfeld (1994) using an Eulerian-based two-fluid model. The
Mach disk was found to move downstream for small particles and low concentrations,
consistent with Dash et al. (1985). In a recent experimental study by Jain et al. (2024),
the upstream movement of the Mach disk was found to have a strong dependence on the
nozzle pressure ratio, counter to what was found in previous works. Thus, there appears
to be a lack of consensus regarding both the extent and direction of the Mach disk shift
caused by particles. These studies are summarized in table 1.

To date, a theoretical understanding of the gas-particle dynamics in compressible jets
remains limited. The extent to which particles influence the carrier-phase turbulence is
typically characterized by Φm (or volume fraction, Φv) and particle diameter, dp. For
incompressible flows, two-way coupling becomes apparent when the particle diameter
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Inertial particles in underexpanded jets

η0 dp Φm Φv (×10−3) LMD/De ρp Me
— (μm) — — — (kg m−3) —

Sommerfeld (1994) 33 26 0 − 1.08 1 3.79 − 2.30 2500 1
28 45 0 − 1.08 3.45 − 2.51

Ejtehadi et al. (2018) 29.8 26 0 − 1.08 1 3.71 − 3.695 2500 1
Lewis & Carlson (1964) ∗ 28 0 − 0.6 ∗ ∗ 2700 1.75

∗ 28 0 − 1.08 2.905
Carcano et al. (2013) 58 10 0.21 − 1.73 0.5 − 4 4.94 − 4.16 2500 1
Jain et al. (2024) 3.46 116 2.25 − 2.75 2.3 − 2.9 0.6 − 0.7 2500 1

4.16 1.85 − 2.25 2.3 − 2.8 0.7 − 0.9
4.85 1.6 − 2 2.3 − 2.9 0.8 − 0.95
5.54 1 − 1.4 1.7 − 2.3 1 − 1.2
6.23 0.9 − 1.35 1.7 − 2.5 0.95 − 1.3

Table 1. Summary of previous studies on particle-laden underexpanded jets. Here, ‘∗’ indicates the data were
not reported and could not be inferred. De is nozzle exit diameter, and ρp is particle density.

is significantly larger than the Kolmogorov length scale, or when the mass loading is
non-negligible (see Balachandar & Eaton 2010).

In low-speed, incompressible jets, particle dispersion is entirely controlled by the Stokes
number (Chung & Troutt 1988; Longmire & Eaton 1992; Li et al. 2011; Lau & Nathan
2014; Monroe et al. 2021), defined as St = τp/τf , where τp and τf are characteristic time
scales of the particles and fluid, respectively. When St � 1, particles match the fluid
dispersion rate and conversely, when St � 1, particle dispersion lags that of the fluid.
At intermediate values, particles are capable of dispersing faster than the fluid and being
ejected outside the jet. The spatial distribution of particles in an incompressible jet is
strongly influenced by the underlying vortex ring structures (Longmire & Eaton 1992;
Monroe et al. 2021). Particles, irrespective of their size, tend to preferentially accumulate
in regions in the jet where the streamwise velocity is greater than the mean (Li et al. 2011).
At a fixed mass loading, small Stokes number particles are more successful at modulating
three-dimensional vortex structures than at intermediate or large Stokes numbers (Li
et al. 2011). This seems to be consistent with the findings of Sommerfeld (1994) for the
modulation of shock structures in underexpanded jets.

Compared with incompressible flows, the analysis of particle-laden compressible flows
is complicated by the manifestation of additional length and time scales, such as those
arising from acoustic and shock waves (Capecelatro & Wagner 2024). Direct numerical
simulations of homogeneous, compressible turbulence conducted by Xia et al. (2016)
demonstrated that dilute suspensions of heavy particles tend to suppress gas-phase
dilatation. This suppression leads to weaker shocklets and lower turbulent Mach numbers.
Direct numerical simulations of inertial particles in a spatially developing compressible
turbulent boundary layer by Xiao et al. (2020) revealed a unique preferential concentration
mechanism specific to compressible flows. Namely, larger particles have a tendency to
accumulate in regions of low gas-phase density in the inner zones and high-density regions
in the outer zones, while small particles remain in regions of low density.

Experiments and numerical simulations involving water injection in high-speed jets
have shown that particles are capable of modulating acoustic radiation, resulting in
changes to the near-field and far-field sound pressure levels (Krothapalli et al. 2003;
Henderson 2010; Buchta, Shallcross & Capecelatro 2019). This has been attributed to a
combination of interphase momentum exchange, work due to volume displacement caused
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by the disperse phase and latent heat due to evaporation. In recent years, ultra-high-speed
holographic velocimetry has revealed that individual particles alter the shock structure
of underexpanded jets as they pass through them (Buchmann, Atkinson & Soria 2012;
Ingvorsen, Buchmann & Soria 2012). Meanwhile, the mechanisms contributing to
alterations in the structure of compressible jets are not well known.

In this study, a series of high-resolution experiments and simulations of particle-laden
underexpanded jets are performed to quantify two-phase flow statistics and better
understand the effects of two-way coupling for a range of nozzle pressure ratios,
particle sizes and volume fractions. The following section describes the particle-laden jet
configuration and provides details on the experimental facility. The governing equations
and discretization of the numerical simulations are then given in § 4. Next, comparisons
between the experiments and simulations and analysis of the Mach disk characteristics are
given in § 5. Finally, a semi-analytic model describing the effect of particles on the Mach
disk location is given in § 6.

2. Particle-laden jet configuration

The particle-laden underexpanded jet configuration is shown in figure 1. A high-pressure
gas is discharged from a sonic nozzle with an exit diameter De = 2 mm. As the gas exits
the nozzle, it undergoes rapid expansion and acceleration, giving rise to supersonic flow
downstream of the nozzle exit (refer to region 1 in the figure). Expansion waves initiated at
the nozzle exit approach the jet boundary and subsequently reflect back towards the jet axis
as weak compression waves (region 2 in the figure). When these waves coalesce, they form
oblique shocks that meet at the jet axis. For nozzle pressure ratios η0 � 4 (see Franquet
et al. 2015), the oblique shocks no longer meet at the jet axis, and a Mach disk emerges
(region 3 in the figure). A shear layer forms at the triple point, where the Mach disk and
reflected shock merge. A comprehensive analysis and summary of underexpanded jets can
be found in Franquet et al. (2015).

Particles of diameter dp and density ρp are injected upstream of the nozzle with a
prescribed mass flow rate, ṁp. The mass loading is defined as the ratio of specific masses
between the particles and the fluid, i.e.Φm = ρpΦv/(ρe(1 −Φv)), whereΦv is the particle
volume fraction and ρe is the gas-phase density at the nozzle exit that can be determined
from isentropic relations (see Appendix A.1). In this study, the mass loading is defined
according to the ratio of mass flow rates, Φm = ṁp/ṁf , since it is easier to measure
experimentally. With this, the average volume fraction at the exit of the nozzle can be
determined according to Φv = Φmρe/[ρp(1 +Φmρe/ρp)].

The velocity mismatch between the phases gives rise to a slip velocity that determines
the particle Reynolds number Rep and Mach number Mp at the nozzle exit. The jet
Reynolds number is defined as Re = ρeUeDe/μ, where μ is the dynamic viscosity of
the gas at the nozzle exit. The Stokes number is defined as St = τp/τf , where τp =
ρpd2

p/(18μFd) is the particle response time due to drag, τf = De/Ue is the characteristic
fluid time scale based on the exit parameters and Fd is the non-dimensional drag
correlation of Osnes et al. (2023) (see § 4.3) based on the exit conditions. The particle
response time τp is sometimes given as the Stokes response time, i.e. τ St

p = ρpd2
p/(18μ),

so that acceleration due to drag is defined as Fd(uf − up)/τ
St
p . However, it is common to

take the particle response time valid in the flow regime of interest, i.e. τp = τ St
p /Fd (see

Fox, Laurent & Vié 2020). We chose the latter as it provides a Stokes number that is
relevant for the flow conditions under consideration, as the physical response time of the
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1 Expansion region
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Figure 1. Numerical simulation of the underexpanded particle-laden jet showing the nozzle (blue), particles
(white), local gas-phase Mach number (red/yellow) and density gradient (grey scale).

Case A1 A2 B1 B2 B3 B4

Physical parameters
p0 Total (tank) pressure (kPa) 345 345 655 655 655 655
d̄p Mean particle diameter (μm) 29 29 42 42 96 96
ṁp Particle mass flow rate (g s−1) 0.4 0.96 1.02 2.2 3.7 4.2
Up Mean particle injection 159 154.8 151.3 145.9 114 113

velocity (m s−1)

Non-dimensional parameters
η0 Nozzle pressure ratio 3.4 3.4 6.46 6.46 6.46 6.46
Φv Particle volume fraction (×10−3) 0.29 0.77 0.84 1.7 3.1 3.5
Φm Mass loading 0.15 0.37 0.21 0.44 0.78 0.88
St Stokes number 34.16 31.85 30.23 28.6 49.02 48.41
Re Jet Reynolds number (×104) 9.03 9.03 17.2 17.2 17.2 17.2

Table 2. Summary of parameters considered in the current work. In each case, gas is discharged through a
nozzle with diameter De = 2 mm into ambient conditions with an exit velocity Ue = 312 m s−1 and Mach
number Me = 1.

particle deviates significantly from the Stokes response time owing to the large Reynolds
numbers and Mach numbers.

A summary of the relevant parameters considered in this study are given in table 2.
Experiments and simulations of unladen (single-phase) jets are also performed under the
same conditions as the particle-laden configuration.
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Figure 2. Schematic of the particle-laden underexpanded jet facility at Johns Hopkins University. Blue lines
correspond the air flow and orange lines correspond to the particle flow.

3. Experimental set-up

3.1. High-speed jet facility
Figure 2 shows a schematic of the high-speed particle-laden jet facility at Johns Hopkins
University. The facility consists of the air supply system and jet plenum, particle injection
system and high-speed imaging system. Compressed air flows from a high-pressure tank
into a jet manifold with three pressure regulators that allow for control of the stagnation
pressure p0 and both p1 and p2, with the latter used for the particle injection system. To
measure p0, a pressure probe is inserted upstream of the nozzle exit in the constant-area
section of the jet plenum, where the flow speed is subsonic. Due to the large diameter of
the jet plenum (25.4 mm) and the low-speed flow, the difference between the static and
stagnation pressure is negligible. For simplicity, we treat the measured static pressure as
equivalent to the stagnation pressure. To control the nozzle pressure ratio η0, the pressure
regulator controlling the flow entering the jet plenum is set to the desired p0. The facility is
capable of achieving total pressure ratios within the range of 1.89 ≤ η0 ≤ 6.86, sufficient
to study underexpanded and highly underexpanded jets. The flow is accelerated to sonic
conditions using a commercial stainless-steel 303 conical nozzle (CCP-1, Ikeuchi, Inc.)
with an exit diameter of De = 2 mm.

3.2. Particle characteristics
Particles are injected into the flow stream by applying a pressure difference between p1
and p2, which forces the stationary particles within the particle chamber to enter a feed
tube that extends from the particle chamber to the end of the subsonic section of the jet
plenum. Particles leave the chamber through an orifice diameter that is ∼10dp and enter
a feed tube with an inner diameter of approximately 30 times the largest particle size
in our experiments. Particles first travel into a section that is 219De long before turning
90◦ to enter the jet centreline feed tube that is 330De long to ensure the two-phase flow
becomes fully developed. Particles exit at the end of the feed tube 21De upstream of the
nozzle exit. This allows for sufficient mixing between the particles and the subsonic gas
before entering the converging section of the nozzle, where the flow is accelerated to sonic
speeds at the nozzle exit. A large pressure gradient drives the flow of particles within the
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Inertial particles in underexpanded jets

feeding tube. The Froude number in the feeder tube is Fr = u2
p/(gdp) = O(105), where

up is the particle velocity and g is gravitational acceleration. Similarly, the Froude number
based on the nozzle exit conditions is Fr = U2

e/(gdp) = O(107), thus justifying negligible
gravitational influence. Shadowgraph imaging shows the particles are symmetric about
the axis. Particles are collected downstream of the nozzle using a cyclone separator
(Oneida, Inc.). The particle mass flow rate is measured using a single-point load cell
(PW4CM-2KG, HBM), positioned beneath the feeding chamber. The particle feeding rate
was found to be insensitive to the height of the particle bed within the particle chamber.
The mass flow rate of the particles is constant over time. This was cross-checked by
manually measuring the mass flow rate of the particles at various time instances, showing
a variation in the mass flow rate of less than 2 %. The electrical signal from the load cell
is captured via a 16-bit data acquisition system (NI-9215, National Instruments), which is
converted to a mass flow rate after obtaining a calibration relationship a priori. Further
details on the mass flow rate calculation can be found in Kim et al. (2020).

The particles used in this study are clear poly(methyl methacrylate) acrylic microspheres
(Cospheric LLC) with a density of ρp = 1211 kg m−3. Three particle sizes were considered
with mean diameters of d̄p = 29, 42 and 96 μm, corresponding to Stokes numbers in
the range 29 < St < 57 (see table 2). The particle size distribution, shown in figure 4,
was determined using laser diffraction acquired at NASA’s Jet Propulsion Laboratory,
California Institute of Technology, with deionized water as the dispersant. Measurements
were carried out at brief, one second intervals over a minute, ensuring precise analysis.

3.3. High-speed imaging technique
Ultra-high-speed schlieren is used to visualize the gas-phase shock structures and particles.
The optical set-up shown in figure 2 consists of a 100 W LED that passes through an iris
to collimate the light, followed by a series of lenses that eventually collimate the light
through the measurement plane. A horizontal knife edge was placed in front of the camera
at the focal point to allow for the visualization of the changes in the density gradient in
the vertical direction. In figure 2 a sample zoomed-in image is shown for case B3, where
slight shock structures are visible near the jet boundary, clearly showing the effect of the
knife edge.

In order to resolve the micron-sized particles in time and space, it was necessary
to maximize the signal-to-noise ratio at the imaging sensor and minimize motion blur
(Versluis 2013; Buchmann et al. 2014). The optimal frame rate for time-resolved imaging
is defined as f = nU/S, where f is the frame rate, n ≥ 2 is the number of samples to fulfil
the sampling criterion, U is the velocity scale and S is a length scale. In this study, case
A1 is expected to have the fastest particles due to the small size of d̄p = 29 μm. Assuming
the particles reach velocities of Up = 200 m s−1 and knowing a priori that these particles
move approximately 6 pixels frame to frame, results in a length scale S = 210 μm. Using
these parameters, the optimal frame rate required for study is 1.87 MHz. Cases B1–B4 have
larger particles that move slower, so this frame rate should suffice. Additionally, to avoid
motion blur, the minimum exposure time is expressed as τ ≤ dp/U, resulting in a required
exposure time of τ ≤ 145 ns. To satisfy both f and τ requirements, the Shimadzu HPV-X2
camera (FTCMOS2 sensor) was used, which enabled particle images to be acquired at
2 MHz at exposure times of 200 ns (camera limit). Although the required exposure time
is lower than 200 ns, the particle images acquired for cases A1 and A2 were found to
be sufficient for tracking. The resulting spatial resolutions are 17 μm px−1 for cases A1
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ṁp Up σU σV d̄p σd min(dp) max(dp)

Case (g s−1) (m s−1) (μm)

A1 0.4 159 9.4 10 29.6 5.8 6 70
A2 0.96 154.8 8.1 12 29.6 5.8 6 70
B1 1.02 151.3 11.2 11 42 5.0 10 70
B2 2.2 145.9 13 11.1 42 5.0 10 70
B3 3.7 114 12.1 7.8 96 11.8 50 150
B4 4.2 113 12.6 7.3 96 11.8 50 150

Table 3. Particle injection parameters. Velocities and diameters are sampled from normal and log-normal
distributions, respectively. Additional parameters for each case are listed in table 2.

and A2, 23 μm px−1 for cases B1 and B2 and 21 μm px−1 for cases B3 and B4, with an
estimated depth of field of 1 mm. The resulting field of view is 5.6De in length and 3.5De
in height, sufficient to capture the particle dynamics as particles pass through a pair of
shock cells downstream of the nozzle. The camera outputs a total of 256 frames per run,
necessitating approximately three to four experiments per case to ensure velocity statistics
are adequately converged.

To track the particles, a Lagrangian particle tracking algorithm was applied to the
acquired particle images. First, the particle positions were determined using weighted
averaging and Gaussian fitting to determine particle centres, with the latter ensuring
overlapping particles were also tracked. From the determined particle positions, particle
trajectories were determined based on the nearest neighbour distance in the subsequent
frames, followed by a convolution with a Gaussian smoothing kernel to estimate the
particle velocities in each frame. Further details on this particle tracking algorithm can
be found in Ouellette, Xu & Bodenschatz (2006) and Kelley & Ouellette (2011).

4. Simulation details

4.1. Flow configuration
The numerical simulations were designed to match the experiments described in the
previous section. A schematic view of the flow configuration is shown in figure 1. The
computational domain is Lx × Ly × Lz = 30De × 15De × 15De discretized on a Cartesian
mesh with nx × ny × nz = 1201 × 201 × 201 grid points. The mesh is uniform in the
streamwise (x) direction with grid spacing �x = De/40. Grid stretching is applied in the
spanwise (y and z) directions using the mapping proposed by Vishnampet, Bodony &
Freund (2015) such that the grid spacing varies smoothly from �ymin = �zmin = De/40
at the centreline to �ymax = �zmax = De/6 at the lateral boundaries. The maximum
point-to-point relative change in the grid spacing is <4 %. The minimum grid spacing
is approximately three times smaller than the diameter of the largest particles considered.
As shown in table 3, the maximum particle diameter is 150 μm.

The nozzle extends 4.35De into the domain. The inner contour (converging section)
follows a hyperbolic tangent function with inner and outer diameters that match the
experiment, ensuring the correct exit conditions (see Appendix A.1 for details). Particles
are injected into the flow at the nozzle exit with a prescribed mass flow rate ṁp.
Their velocity and diameter are randomly sampled from distributions informed by the
experiments. More details on the velocity and size distribution can be found in § 4.5.
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The numerical simulations are solved in a volume-filtered Eulerian–Lagrangian
framework using a class of high-order, energy stable finite-difference operators
(Shallcross, Fox & Capecelatro 2020; Capecelatro 2024). Here, individual particles are
tracked in a Lagrangian frame, and the gas-phase equations are modified to incorporate
volume displacement by particles and interphase momentum and energy exchange. Details
on the governing equations and discretization are provided below.

4.2. Gas-phase description
The volume-filtered compressible Navier–Stokes equations describing the gas phase can
be expressed compactly as

∂Q
∂t

+ ∂

∂xi
[α(F I

i − F V
i )] = S, (4.1)

where Q = [αρ, αρui, αρE]T is the vector of conserved variables, F V
i and F I

i are the
viscous and inviscid fluxes and S contains source terms that account for two-way coupling
with the particles, given by

F I
i =

⎡
⎢⎢⎢⎣

ρui
ρu1ui + pδi1
ρu2ui + pδi2
ρu3ui + pδi3
ui(ρE + p)

⎤
⎥⎥⎥⎦ , F V

i =

⎡
⎢⎢⎢⎣

0
τ1i
τ2i
τ3i

ujτij − qi

⎤
⎥⎥⎥⎦ ,

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

( pδi1 − τi1)
∂α

∂xi
+ F1

( pδi2 − τi2)
∂α

∂xi
+ F2

( pδi3 − τi3)
∂α

∂xi
+ F3

(τij − pδij)
∂

∂xi
(αpup,j)+ qi

∂α

∂xi

+ up,iFi + Q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.2a–c)

The conserved variables include the local gas-phase volume fraction α, density ρ,
velocity ui (in direction i) and total energy E. In the source term, αp = 1 − α and
up,i are the volume fraction and velocity of the particle phase in an Eulerian frame,
respectively, defined explicitly in § 4.4. The thermodynamic pressure is defined as p =
(γ − 1)(ρE − ρuiui/2), where γ = 1.4 is the ratio of specific heats. The viscous stress
tensor is given by

τij = μ

(
∂ui

∂xj
+ ∂uj

∂xi

)
+ (μb − 2/3μ)

∂uk

∂xk
δij, (4.3)

where δij is the Dirac delta function and the bulk viscosity μb = 0.6μ is chosen as a model
for air (Sharma, Kumar & Pareek 2023). The shear viscosity varies with temperature
based on a power law according to μ = μ∞(T/T∞)2/3, where μ∞ = 1.8 × 10−5 Pa s and
T∞ = 298 K are the reference shear viscosity and temperature, respectively. Temperature
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is obtained from the ideal gas law, T = p/(ρR), where R is the gas constant. The heat flux
is defined as

qi = −κ ∂T
∂xi
, (4.4)

where κ is the thermal conductivity of the gas. Finally, Fi and Q are interphase momentum
and heat exchange terms that will be defined in § 4.4.

Spatial derivatives are approximated using fourth-order, narrow-stencil finite-difference
operators that satisfy the summation-by-parts (SBP) property (Strand 1994). Kinetic
energy preservation is achieved using a skew-symmetric-type splitting of the inviscid flux
(Pirozzoli 2011), extended to account for the effect of particles. Specifically, the convective
fluxes appearing in (4.1) are expressed in split form as

∂αρuiϕ

∂xi
= 1

2
∂αρuiϕ

∂xi
+ 1

2
ϕ
∂αρui

∂xi
+ αρui

∂ϕ

∂xi
, (4.5)

where ϕ is a generic transported scalar that is unity for the continuity equation, uj for the
momentum equation and E + p/ρ for the total energy equation. This provides nonlinear
stability at low Mach numbers.

To evaluate second and mixed derivatives, first derivative operators are applied
consecutively, necessitating the use of artificial dissipation to damp the highest
wavenumber components supported by the grid. High-order accurate SBP dissipation
operators are used that provide artificial viscosity based on a sixth-order derivative
(Mattsson, Svärd & Nordström 2004). In addition, localized artificial diffusivity is used as
a means of shock capturing following the formulation in Kawai, Shankar & Lele (2010).
In this approach, μb and κ appearing in (4.3) and (4.4) are augmented based on a modified
Ducros-type sensor. Full details on the shock capturing implementation are provided in
Appendix A.3.

The SBP scheme is combined with the simultaneous approximation treatment (SAT) at
the domain boundaries to facilitate an energy estimate (Carpenter, Gottlieb & Abarbenel
1994; Nordström & Svärd 2005). Non-reflecting characteristic boundary conditions
(Svärd, Carpenter & Nordström 2007) are enforced at each of the domain boundaries.
No-slip, adiabatic boundary conditions are enforced at the surface of the nozzle via
a ghost-point immersed boundary method (Chaudhuri, Hadjadj & Chinnayya 2011;
Khalloufi & Capecelatro 2023). Further details on the nozzle profile and integration of
the immersed boundary method in the SBP-SAT framework can be found in Appendix A.

The equations are advanced in time using a standard fourth-order Runge–Kutta scheme,
resulting in the usual Courant–Friedrichs–Lewy (CFL) restrictions on the simulation
time step �t such that maximum CFL is 0.9. The CFL is taken as the maximum
between the acoustic CFL, CFLa = max(|u| + c)�t/Δ and the viscous CFL, CFLv =
max(2μ,μb, κ)�t/Δ2, where Δ is the local grid spacing and c = √

γ p/ρ is the local
sound speed. An additional time-step restriction is applied to ensure the source terms due
to drag are resolved (Patel & Capecelatro 2022).

4.3. Particle-phase description
The particle equations of motion are given by

dx(i)p

dt
= v(i)p , (4.6)
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and

mp
dv
(i)
p

dt
= Vp∇ · (τ − pI)+ F (i)drag + F (i)lift + F (i)am, (4.7)

where I is the identity tensor, x(i)p = (x(i)p , y(i)p , z(i)p ) and v
(i)
p = (v

(i)
p,x, v

(i)
p,y, v

(i)
p,z) are the

position and velocity of particle i, respectively, mp is the mass of the particle and Vp is
its volume. Also, F (i)drag, F (i)lift and F (i)am are the force contributions due to drag, lift and
added mass, respectively.

The unsteady aerodynamic forces acting on a particle (i.e. the pressure gradient and
added mass) are typically neglected in low-speed, gas–solid flows due to the high density
ratio. However, under sufficient gas-phase acceleration, such as in flows with shocks, the
unsteady contributions can dominate (Parmar, Haselbacher & Balachandar 2009; Ling,
Haselbacher & Balachandar 2011) and are thus considered here. Due to the low volume
fractions considered, inter-particle collisions are neglected.

The quasi-steady drag force is given by

F (i)drag

mp
= 1
τp
(u − v(i)p ), (4.8)

where τp = ρpd2
p/(18μFd) is the particle response time due to drag and Fd =

Fd(αp,Rep,Mp) is the non-dimensional drag correlation of Osnes et al. (2023). Here,
Rep = ρ|u − v

(i)
p |dp/μ is the particle Reynolds number and Mp = |u − v

(i)
p |/c is the

particle Mach number.
The Saffman lift force is modelled according to (McLaughlin 1991)

F (i)lift = 9.69
√
ρμ

πρpdp

(u − v
(i)
p )× ω√|ω| , (4.9)

where ω is the gas-phase vorticity.
Following the formulation proposed by Parmar, Haselbacher & Balachandar (2010),

added mass is expressed as

F (i)am = VpCM(Mp, αp)

[
D(ρu)

Dt
− d(ρpv

(i)
p )

dt

]
, (4.10)

where CM = CM,0η1(Mp)η2(αp) is the added-mass coefficient (Ling et al. 2011) and
CM,0 = 0.5 is the value in the zero Mach number and zero volume fraction limit. The Mach
number correction of Parmar, Haselbacher & Balachandar (2008) and volume fraction
correction of Sangani, Zhang & Prosperetti (1991) are employed, expressed as

η1(Mp) =
{

1 + 1.8Mp + 7.6M4
p if Mp < 0.6,

2.633, otherwise
and η2(αp) = 1 + 2αp

1 − αp
. (4.11)

The evolution of particle temperature is given by

mpCp,p
dT(i)p

dt
= q(i)inter, (4.12)

where Cp,p is heat capacity of the particle, T(i)p is its temperature and q(i)inter is the interphase
heat exchange given by

q(i)inter = 6VpκNu
d2

p
(T − T(i)p ), (4.13)

1000 A60-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
14

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1014


M. Patel and others

Interpolation

Particle

x δfδ

�y�

Shock

Figure 3. Schematic of a classical interpolation scheme for a particle in the vicinity of a shock.

where Nu is the Nusselt number that is modelled using the correlation of Gunn (1978).
Particles are advanced in time simultaneously with the fluid via a fourth-order

Runge–Kutta scheme. Special care needs to be taken when evaluating fluid quantities
appearing in (4.8)–(4.13) at the location of the particle, namely α, ρ, u, μ, ∇ · (τ − pI), ω
and T , especially near shocks where the flow is nearly discontinuous (see figure 3). These
details will be given in § 4.4.

4.4. Two-way coupling
Particle information (drag, heat exchange, volume fraction, etc.) is projected to the
Eulerian grid using the two-step filtering approach proposed by Capecelatro & Desjardins
(2013). The gas-phase volume fraction is computed according to

α(x, t) = 1 −
Np∑
1

G
(
|x − x(i)p |

)
Vp, (4.14)

where G is a Gaussian filter kernel with a characteristic length δf = 4d̄p taken to be the
full width at half-maximum, Np is the total number of particles and x is the position on
the Eulerian grid. Interphase momentum exchange appearing in the source term of (4.1) is
given by

F = −
Np∑
i=1

G
(
|x − x(i)p |

)(
F (i)drag + F (i)lift + F (i)am

)
. (4.15)

Similarly, the work done by drag appearing in the energy equation is expressed as

up · F = −
Np∑
i=1

G
(
|x − x(i)p |

)(
F (i)drag + F (i)lift + F (i)am

)
· v(i)p , (4.16)

and the interphase heat exchange term is given by

Q = −
Np∑
i=1

G
(
|x − x(i)p |

)
q(i)inter. (4.17)

The models employed in the particle equation of motion (4.7) were formulated using
correlations reliant on ‘far-field’ fluid quantities, such as velocity, temperature and volume
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fraction that remain unaffected by the presence of the particle. In order for these models
to be applicable in a two-way coupled simulation, the self-induced disturbance must be
removed. This has been an active area of research in recent years (e.g. Horwitz & Mani
2016, 2018; Balachandar, Liu & Lakhote 2019; Liu, Lakhote & Balachandar 2019; Evrard,
Denner & van Wachem 2020; Pakseresht, Esmaily & Apte 2020; Pakseresht & Apte 2021).
However, models have not yet been extended to compressible flows. Various interpolation
techniques have been proposed for particles in the vicinity of shocks (Jacobs & Don
2009; Kozak et al. 2020), although their application to finite size particles necessitating
corrections for self-induced disturbances has not yet been explored. Recently, Yang et al.
(2023) proposed a weighted average-based interpolation scheme with weights biased away
from the particle centre to interpolate far-field conditions. This was reported to restore the
undisturbed quantities.

A simple approach to remove the effect of self-induced disturbances is to filter the fluid
field prior to interpolation (Evrard et al. 2020). A similar strategy is followed in this work.
Any gas-phase quantity, ζ(x, t), appearing in (4.8)–(4.13) (i.e. α, ρ, u, μ, ω and T) is
evaluated at the particle position via convolution with a Gaussian filter according to

ζ̃ [x(i)p (t)] =
∫

V
G
(
|x − x(i)p |

)
ζ(x, t) dV. (4.18)

However, a direct application of (4.18) can be computationally expensive as it requires
each particle to loop through (potentially) many surrounding grid points (Capecelatro &
Desjardins 2013). Instead, this is performed in two steps according to

ζ̃ [x(i)p (t)] ≈
n∑

k=1

W
(
|x − x(i)p |

)
ζ̄ (x, t) dV with ζ̄ (x, t) = ζ(x, t) ∗ G, (4.19)

where W corresponds to weights of a tri-linear interpolation scheme that is localized to
the n nearest grid cells of particle i. The (·) notation denotes a filtered quantity on the grid
that can be solved efficiently via an alternating-direct-implicit scheme. The efficacy of
the proposed interpolation scheme is demonstrated for a single particle passing through a
standing shock in Appendix A. It was found that interpolating the gas-phase stress tensor,
∇ · (τ − pI), without filtering is necessary to avoid excessive smearing of discontinuities
in the presence of shocks (see figure 3) and give reasonable estimate of the undisturbed
gradients.

4.5. Particle injection
One challenge in replicating the experimental conditions is the difficulty in obtaining
optical access near the nozzle exit. Although the mass loading is well characterized,
precise three-dimensional particle positions and velocities are not known. To address this,
particles are randomly placed at the nozzle exit while adhering to the known mass loading.
Their velocities are sampled from distribution functions designed to ensure statistical
agreement within the first De/4 of the nozzle. Further details are provided below.

Particles are seeded in the computational domain at the nozzle exit after the gas phase
reaches a statistically stationary state. The number of particles injected per timestep, N(t),
is determined from the experimentally measured mass flow rate according to

ṁp =
N(t)∑
i=1

πd(i)p
3
ρp

6�t
. (4.20)
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Figure 4. Particle size distribution. Raw data: d̄p = 29.6 μm (•, purple), d̄p = 42 μm (•, blue)
d̄p = 96 μm (•, green). Lines are fitted log-normal distributions using the parameters listed in table 3.

Particles are injected uniformly random throughout the cross-section of the nozzle exit
plane according to

x(i)p = 0, y(i)p = De

2

√
R cos(R2π), z(i)p = De

2

√
R sin(R2π), (4.21a–c)

where R ∈ [0, 1] is a uniform random real number. Particle diameters are sampled
randomly from log-normal distributions, dp ∼ Log-normal(d̄p, σd), where the mean (d̄p)
and standard deviation (σd) are determined from particle size distributions obtained
experimentally (see figure 4). The values for each case are reported in table 3.

Similarly, newly seeded particles are assigned velocities that are randomly sampled
from normal distributions N (Up, σU ) fit to the experimental data with mean Up =
(Up,Vp) and standard deviation σU = (σU, σV). Here, the streamwise particle velocities
are sampled from vp,x ∼ N (Up, σU) and due to axial symmetry the spanwise velocities
are sampled from vp,y ∼ N (Vp, σV) and vp,z ∼ N (Vp, σV). Probability density functions
(PDFs) of the streamwise and spanwise particle velocities are collected experimentally
near the nozzle exit within a window 0 ≤ x/De ≤ 0.25 (see figure 5). The velocity
distributions from the experiments were approximated as Gaussian due to its simplicity
and reproducibility. The parameters used in the simulations are chosen so that the mean
and standard deviations match within this region. The values are given in table 3.

5. Results and discussion

5.1. Single-phase jet
In this section, comparisons are made between the experiments and simulations of the
single-phase jet. Shock structures are visualized in the experiments using an inline-type
schlieren imaging system. Filters and converging lenses are employed to generate a
spatially filtered collimated beam. At the focal point of the beam, a horizontal knife-edge
cutoff is used to enhance the density gradient in the flow. The ensemble average is
calculated using 256 instantaneous images in both the experiments and simulations,
corresponding to 138 μs of data. The numerical schlieren is produced by first integrating
the vertical density gradient along the field of view (z-direction), ψ(x, y) = ∫

∂ρ/∂y dz,
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Figure 5. Particle velocity distributions near the nozzle exit (0 ≤ x/De ≤ 0.25). (a,b) Case A1, (c,d) case
A2, (e, f ) case B1, (g,h) case B2, (i, j) case B3, (k,l) case B4. Experiments: streamwise velocity (�, red)
and spanwise velocity (�, blue). Simulations: streamwise velocity (�, translucent red) and spanwise velocity
(�, translucent blue).
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Figure 6. Ensemble-averaged schlieren obtained from experiments (a,b) and simulations using the scaling
given in (5.1) (c,d) for η0 = 3.40 (a,c) and η0 = 6.46 (b,d).

then applying the scaling proposed by (Quirk 1997)

ξ = exp(−kψs) with ψs = ψ − k0(∂ρ/∂y)max

k1(∂ρ/∂y)max − k0(∂ρ/∂y)max
, (5.1)

where k = 5, k0 = −0.001 and k1 = 0.05.
Figure 6 shows schlieren images produced experimentally and numerically for nozzle

pressure ratios η0 = 3.40 and 6.46. Regions of expansion fans, compression waves,
oblique shocks and their spatial repetition are evident. At a pressure ratio η0 = 3.40,
the jet has a diamond shock structure with merged oblique shocks at the centreline
near x/De = 1.1. Increasing the pressure ratio to η0 = 6.46 causes the Mach disk to
grow in size and move further downstream. The new shock structure resembles a barrel
shock cell. The numerical schlieren shows overall good agreement with experiments.
Some discrepancy can be observed at the lower pressure ratio of η0 = 3.4 (figure 6a,c)
downstream of the first Mach disk.

The normalized Mach disk location is extracted from averaged schlieren images and
reported for a wide range of pressure ratios in figure 7. The validation is extended by
comparing against previous works in the literature, including the empirical correlation
proposed by Crist, Glass & Sherman (1966), given by

LMD

De
=
√
η0

2.4
. (5.2)

Both experiments and simulations show good agreement with the correlation and
previous experiments from the literature. Simulations were conducted at elevated pressure
ratios (η0 = [8, 10, 30]) for further validation. Overall, excellent agreement is observed.
It should be noted that significant variation has previously been reported at pressure
ratios below η0 < 5 (Franquet et al. 2015). Consequently, (5.2) is less valid at such low
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Figure 7. Position of the Mach disk as a function of the total pressure ratio for single-phase flow. Current
experiments (�, purple) and simulations (�, purple), Ashkenas & Sherman (1965) (×), Crist et al. (1966) ( ,
six star open), Hatanaka & Saito (2012) (♦), Tabei, Shirai & Takakusagi (1992) (�), Sommerfeld (1994) (�),
Gibbings, Ingham & Johnson (1972) (+), Addy (1981) (❋), correlation by Crist et al. (1966) (5.2) (—–).

0 1 2 3 4
0.5

1.0
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Figure 8. Centreline Mach number obtained from experiments of a single-phase sonic jet from Henderson
et al. (2005) (�), MOC solution (Owen & Thornhill 1948) (- - -) and numerical simulations performed in the
present study (——) with η0 = 3.40.

pressure ratios, although good agreement is still observed with the present experiments
and simulations. This might also explain the discrepancy in the shock structures observed
in figure 6 at η0 = 3.4.

Figure 8 shows the average centreline Mach number obtained from the simulation
for η0 = 3.4. Comparisons are made against experiments by Henderson, Bridges &
Wernet (2005) and a solution obtained from the method of characteristics (MOC) (Owen
& Thornhill 1948). The MOC solution assumes steady supersonic inviscid flow with
rotational symmetry and η0 = ∞. Both simulations and experiments agree well with the
MOC solution in the near-field region up to the first Mach disk. Beyond this point, the
MOC solution is no longer valid due to the presence of discontinuities.

While the location of Mach diamonds predicted by the simulation are in good agreement
with the experiment shown in figure 8, the local Mach number is over-estimated by ≈20 %.
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The discrepancy with the experiment can be attributed to the non-negligible Stokes
number associated with the seeded particles used with the experimental particle image
velocimetry (PIV) system (0.6 μm diameter particles were used). Finite size particles used
for optical flow measurements lag sudden changes in the gas phase, especially through
discontinuities such as shocks, resulting in an under-prediction in the peak Mach number.
Henderson et al. (2005) estimate 0.04De − 0.12De of particle lag downstream of the Mach
disk, which is orders of magnitude larger than the shock thickness. Similar discrepancies in
the centreline Mach number profile between simulations and experiments have previously
been reported (e.g. Saddington, Lawson & Knowles 2004; Gojon & Bogey 2017).

5.2. Two-phase jet: particle dynamics
Particle velocity statistics are reported at different downstream locations from 0 ≤ x/De ≤
4 divided into windows with width of De. Simulation results are collected at the same
frame rate as the experiments, corresponding to 256 snapshots taken in a 130 μs time
window. Figure 9 shows the PDFs for the streamwise and spanwise particle velocities
for case A2 (Φm = 0.37, d̄p = 29 μm). Particles are injected into a rapidly accelerating
gas phase, causing them to gain momentum through drag. This is evident in figure 9
as the particle streamwise velocity increases from the mean of ≈175 to ≈220 m s−1.
Note that the shape of the streamwise velocity distribution (red) also changes with the
streamwise distance. As particles travel downstream, the spanwise velocity distribution
remains Gaussian (with zero mean) with marginal increase in variance owing to rotational
symmetry of the flow.

On the other hand, the streamwise velocity distribution exhibits skewness which
is captured by both simulations and experiments. However, the skewness is more
pronounced for the experiments. These distributions suggest a higher number density
for the faster-moving particles, especially for the simulations. The ability to capture this
occurrence is important for applications such as plume surface interactions during landing
where these fastest-moving particles are the ones that could cause damage to the landing
platform. The mean and variance of particle velocities with respect to streamwise distance
are shown in Appendix A.4.

When the particle size and mass loading are increased (i.e. from case A2 to case B4),
particles do not experience as significant of an acceleration. This is attributed to the higher
Stokes number compared with case A2 resulting in increased lag. It can also be observed
that the particles accelerate the most in the vicinity of the nozzle exit (0 ≤ x/De ≤ 2)
where the gas-phase acceleration is significantly higher. Similar to case A2, there is
an overall good agreement in the mean particle velocity observed between simulations
and experiments. However, the streamwise velocity variance is slightly underpredicted
at x/De > 2. It is interesting to note that, in case A2 (involving smaller particles), the
simulations are capable of capturing the skewness in the PDF observed experimentally.
In case B4 (with larger particles and higher η0), the skewness in the experiments is less
pronounced and is completely absent in the simulations and is consistent with the velocity
distributions observed in the other cases considered (see Appendix A.4). These results also
reveal that there is a significant momentum exchange between the phases, especially in the
initial shock cells.

Figures 9, 10 and in Appendix A.4 reveal the spanwise velocity statistics remain
relatively unchanged within the first four diameters downstream of the nozzle, even for
the smallest particles considered. It can also be seen from figure 5 that the width of the
spanwise velocity PDF is similar between cases A2 and B2, which have different sized
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Figure 9. Velocity PDFs for case A2 measured in the region (a,b) 0 ≤ x/De < 1, (c,d) 1 ≤ x/De < 2, (e, f )
2 ≤ x/De < 3 and (g,h) 3 ≤ x/De < 4. Experiments: streamwise velocity (�, red) and spanwise velocity (�,
blue). Simulations: streamwise velocity (�, translucent red) and spanwise velocity (�, translucent blue). Mean
injection velocity (- - -).

particles. This is interesting to note, as previous works have observed stronger modulation
of the shock structure for smaller particles, suggesting this is due to increased radial spread
at lower Stokes numbers (Sommerfeld 1994), although these results suggest the difference
in radial spread is not substantial.

Figure 11 presents the streamwise centreline velocities of both phases for two different
nozzle pressure ratios, alongside the corresponding single-phase velocity for comparison.
Due to the discrete treatment of the particle phase, the particle centreline velocity is
calculated based on a cylindrical volume with a radius of 0.1De, although the results were
found to be insensitive to the specific choice in radius.

Similar to the observations in figures 9 and 10, the time-averaged particle velocities
obtained from the simulations exhibit excellent agreement with the experiments. Due
to their high inertia, particles exhibit near-ballistic behaviour. Their velocities increase
monotonically, with maximum acceleration occurring within x/De < 2, where the
maximum gas-phase acceleration is observed. Particles experience a notable lag relative to
the gas phase, leading to a high slip velocity across most of the streamwise distance. The
centreline gas-phase velocities indicate stronger two-way coupling at higher pressure ratio,
with greater deviations from the single-phase profile as mass loading and downstream
distance increase. Compared with the single-phase flow at approximately x/De ≈ 5, the
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Figure 10. Velocity PDFs for case B4 measured in the region (a,b) 0 ≤ x/De < 1, (c,d) 1 ≤ x/De < 2,
(e, f ) 2 ≤ x/De < 3 and (g,h) 3 ≤ x/De < 4. Experiments: streamwise velocity (�, red) and spanwise velocity
(�, blue). Simulations: streamwise velocity (�, translucent red) and spanwise velocity (�, translucent blue).
Mean injection velocity (- - -).
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Figure 11. Time-averaged centreline velocities. Panel (a) shows η0 = 3.4; case A1 (—–, grey) and case
A2 (—–, black). Panel (b) shows η0 = 6.46; case B1 (—–, grey) and case B4 (—–, black), dashed lines
represent corresponding particle velocities from the simulations. Corresponding single-phase velocity (—–,
blue). Symbols represent time-averaged particle-phase velocities obtained from the experiments. Velocities are
normalized by the gas-phase nozzle exit velocity Ue.
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gas-phase velocity completely diverges from phase alignment for the higher pressure
ratio with the greatest mass loading (case B4). The maximum change in gas-phase
velocity compared with the single-phase case occurs downstream of where the maximum
interphase slip velocity is observed. This suggests that there is finite time (and distance)
over which momentum and energy transfer accumulates until notable flow modulation is
observed.

5.3. Changes in Mach disk characteristics
The focus of this study lies in examining the movement of the Mach disk location due
to the presence of particles. As mentioned in § 1, the introduction of particles leads to
an upstream movement of the Mach disk toward the nozzle exit. In this section, we
demonstrate how the Mach disk and surrounding gas structures undergo modifications
due to two-way coupling by particles.

Figure 12 shows experimental snapshots of a flow with soda lime glass beads with a
mean particle diameter of d̄p = 140 μm and Φm = 0.37, visualized by placing a vertical
knife edge at the focal plane to enhance density gradients in the horizontal direction.
Figures 12 and 13 are shown for qualitative purposes. These cases were omitted from
table 2 because the larger particles obscure the gas-phase discontinuities, making it
difficult to quantify the Mach disk shift. Figure 12(a) shows the unladen jet at η0 = 4.42,
representing a highly underexpanded jet with a large Mach disk downstream of the nozzle.
The image shows a few particles entering the field of view, which results in the structure
of the jet being significantly affected as evident in figure 12(b), where the shock cell
and Mach disk have moved closer towards the nozzle, and the oblique shocks appear
more distorted. However, the shock cell remains intact. In figure 12(c), a pair of particles
interact with the Mach disk, distorting a portion of the Mach disk, yet the shock cell
remains intact. However, in figure 12(d), a particle passing through the jet centreline
results in significant distortion of the shock cell and Mach disk. Despite only a few
particles entering the field of view, two particles are enough to fully distort the Mach
disk and surrounding shock structures. It is important to note that the Mach disk structure
is three-dimensional, and therefore, the distortions are also three-dimensional. However,
the conclusions drawn from these results are based on the projected two-dimensional
measurements.

In addition to the modification of the portions of the Mach disk, the presence of particles
in the high-speed and accelerating flow results in the generation of three-dimensional
bow shocks upstream of individual particles, as shown in figure 12(b). The emergence
of bow shocks is due to the large slip Mach number Mp > 1. These structures manifest
upstream of the Mach disk, within the supersonic flow regime, and dissipate downstream
of the Mach disk where the flow is subsonic. Farther downstream of the shock cell,
the flow accelerates to supersonic speeds, and bow shocks emerge once again around
the particles. The presence of bow shocks could potentially alter the surrounding flow
properties further, as these structures extend to the jet boundary, as seen for some of the
particles. In figure 12(c), a reflected shock is clearly visible above the pair of particles
interacting with the Mach disk, which could be emanating from near the nozzle region
where several particles are located. In addition, the time sequence shows the interaction
of bow shocks between neighbouring particles near the nozzle exit. This was previously
observed and analysed in experimental and numerical work on shock–shock interaction
in the two-particle system by Laurence, Parziale & Deiterding (2012). Figure 12(d) also
shows an instance of a bow shock interacting with the distorted Mach disk.
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Mach disk

Mach disk

Particle bow shock

Mach disk distortion
Shock-shock

interaction

(a) (b)
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Figure 12. Instantaneous experimental snapshots of (a) the unladen jet at η0 = 4.42 and (b) observations
of two-way coupling using particles with a mean diameter of d̄p = 140 μm, η0 = 4.42 and Φm = 0.37. The
particles and the gas flow from left to right and were taken at (b) t = 79 μs, (c) t = 84 μs, (d) t = 89 μs. The
scale bar is 1 mm in length.

The distortion of the Mach disk and shock cell at low mass loadings clearly show the
strength of the two-way coupling. When Φm becomes larger, the momentum of the flow is
further reduced due to drag by the particles. Figure 13 shows instantaneous experimental
images with η0 = 3.40 and particles of d̄p = 140 μm. Figure 13(a) shows the single-phase
jet, with a small Mach disk diameter and visible oblique and reflected shocks. When
particles are present at Φm = 0.80, a shock cell is no longer visible, and the Mach disk
appears to be broken down, a similar behaviour as in figure 12. As the mass loading
increases beyond Φm > 1, both shock cell and Mach disk completely disappear, as seen in
figure 13(c,d). The only remaining shock structures in the flow are the bow shocks around
particles, which wrap around the particles atΦm < 1 (see figure 13b) and become a curtain
of shock structures as the mass loading is increased (see figure 13c,d).

To quantify these shock structure changes, the location of the Mach disk is extracted
from both experiments and simulations. This is performed by averaging every image
together within each experimental and simulation run (a total of 130 μs with 256 frames).
After obtaining the ensemble average image in the experiments, the background (an image
in which the disk was filtered out) is subtracted, and a low-pass Fast Fourier Transform
(FFT) filter is applied to enhance the signal-to-noise ratio of the shock structure (Shapiro &
Stockman 2001). Similar to Shekhtman et al. (2021), the Gaussian peak finding algorithm
from O’Haver (1997) is then used to determine the locations of the Mach disk and
oblique shock waves that shoulder it. The endpoints of the Mach disk were determined
by intersections of linear fits for the Mach disk and oblique shocks. The error analysis
for the Mach disk (the upper and lower intersection points of the disk with an oblique
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Mach disk

(a) (b)

(c) (d)

Figure 13. Experimental images showing comparisons between the (a) single-phase jet and particle-laden case
with d̄p = 140 μm particles and η0 = 3.40 with (b) Φm = 0.80, (c) Φm = 1.73 and (d) Φm = 2.26. The scale
bar is 1 mm for all is 1 mm in length.

shock) was performed by using the confidence intervals for lines fitted on signal peaks.
This error is propagated along with the standard deviation obtained from multiple runs
and is converted to real units using the corresponding spatial resolution for each case
studied. Such treatment is not required in the simulations since the particles can be easily
decoupled from the gas phase during post-processing. The Mach disk location is extracted
in this manner for all of the runs for each case. After obtaining the Mach disk location from
experiments and simulations, the relative shift in the Mach disk location as a function of
mass loading is computed and shown in figure 14.

Experiments by Lewis & Carlson (1964) (also shown in figure 14) were performed at
supersonic exit Mach numbers for a single particle size and particle density under the
conditions listed in table 1. They proposed an empirical correlation for the Mach disk
location in the presence of particles, given by

Lp
MD/LMD =

(
1 + 0.197M1.45

e Φm
0.65

)−1
, (5.3)

where the superscript p denotes a quantity when particles are present. It should be noted
that the correlation is independent of nozzle pressure ratio. It returns the single-phase
value in the limit Me or Φm → 0, and predicts a maximum shift in the Mach disk at the
nozzle exit when Me and Φm → ∞.

The experimental results of Sommerfeld (1994) and Jain et al. (2024) are also included
in figure 14. It can be seen that the empirical correlation fails to capture the trends
from these two studies. Sommerfeld (1994) observed that smaller size particles have an
increased effect on Mach disk shift compared with large particles. This was attributed to
the larger spreading angle associated with the smaller particle, consequently affecting the
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Figure 14. Relative shift in the Mach disk location as a function of mass loading. Experiments in the present
study: η0 = 3.4, d̄p = 29 μm (�, purple), η0 = 6.46, d̄p = 42 μm and 96 μm (�, purple). Simulations: η0 =
3.4, d̄p = 29 μm (�, purple), η0 = 6.46, d̄p = 42 μm and 96 μm (�, purple). Experiments by Sommerfeld
(1994) with NPR ≈ 30 (•, purple). Jain et al. (2024) with η0 = 3.46–6.23, d̄p = 116 μm (�, purple),
simulations from Carcano et al. (2013) ( , Six Star Open, purple), experiments by Lewis & Carlson (1964):
Me = 2.905 ( , green), Me = 1.75 ( , Six Star Open, blue). Solid lines correspond to the empirical correlation
(5.3). Larger symbols indicate bigger particles.

larger portion of the jet core until the first Mach disk. Jain et al. (2024) observed a similar
trend. They also found the Mach disk shift to scale with η0, counter to the observations
made by Lewis & Carlson (1964). The experiments in the present study show reasonable
agreement with the correlation. The corresponding error bars show the 95 % confidence
interval.

The numerical simulations severely under-predict the shift in the Mach disk location.
Simulations by Carcano et al. (2013) displayed similar under-prediction in the Mach
disk shift. Underprediction in the current simulations is primarily attributed to an
underprediction in the two-way coupling source terms. As shown in Appendix A.5, the
distortion of the Mach disk is highly sensitive to the details of the projection scheme in
(4.14)–(4.17). The wake and shock structures around an individual particles are smeared
out when the filter size used in the Lagrangian projection is too large. This leads
to an underestimated pressure drop in the wake region which directly correlates with
disturbances in the standing shock. Experimental uncertainty in the particle injection
system may also contribute to the differences observed.

6. A semi-analytical model for the Mach disk location

The addition of particles in the flow results in the loss of stagnation pressure, stagnation
temperature and rise in entropy since particles introduce irreversibilities through drag and
work exchange in an otherwise isentropic flow. In this section, a one-dimensional model of
the two-way coupled flow is formulated to understand the mechanisms contributing to the
shift in Mach disk when particles are added to the flow. We consider a one-dimensional
constant-area flow with friction (Fanno flow). The canonical friction term resulting from
wall shear stress is replaced with the contribution of drag from the particles. The derivation
for Fanno flow (without particles) can be found elsewhere (e.g. Hill & Peterson 1992).

The two-phase flow is assumed to be steady and one-dimensional with a non-constant
fluid velocity u(x). If the particle material density, ρp, is constant, the continuity equation
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for the disperse phase can be expressed as d(αpup) = 0, or

dαp

αp
+ dup

up
= 0. (6.1)

Thus, αpup = const. and since αp � 1, the gas-phase volume fraction α ≈ 1, and is
assumed to be constant and equal to 1 −Φv . Consequently, up is taken to be constant.

Under these assumptions and invoking the ideal gas law, the continuity, momentum and
energy equations for the gas phase (4.1) reduce to

dρ
ρ

+ du
u

= 0, (6.2)

dp
p

= −3
4
γM2 Φv

(1 −Φv)dp
CDφ dx − u du

RT
, (6.3)

and
dT
T

= −γ − 1
γ

u du
RT

− 3
4
(γ − 1)(M − Mp)M

Φv

(1 −Φv)dp
CDφ dx

− 6(γ − 1)
γ

ΦvκNu(T − Tp)

d2
ppu

dx, (6.4)

where φ = |u − up|(u − up)/u2, M = |u|/√γRT and Mp = |u − up|/
√
γRT . φ > 0

corresponds to the case when particles lag the fluid (i.e. up < u) and φ < 0 corresponds to
flows where particles are travelling faster than the fluid. The third term on the right-hand
side of (6.4) represents heat exchange between two phases. For simplicity, added mass
and lift are neglected. Numerical simulations conducted in this study showed these
contributions (not reported here) have a negligible effect on velocity statistics and the
shift in Mach disk.

The relative contribution of heat exchange to the work done by drag (the last two terms
in (6.4)) is

8(1 −Φv)κNu(T − T0)

γ dppu(M − Mp)MCDφ
� 1. (6.5)

Substituting in representative values of κ,Nu,M,Mp,CD, p, Φv and dp, the ratio is found
to be O(10−3). Therefore, we neglect heat transfer between the phases for the subsequent
analysis.

Substituting (6.4) into (6.3) yields

dp
p

= −3
4
γM2 Φv

(1 −Φv)dp
CDφ dx + γ

γ − 1
dT
T

+ 3
4
γ (M − Mp)M

Φv

(1 −Φv)dp
CDφ dx,

(6.6)

which simplifies to

dp
p

= γ

γ − 1
dT
T

− 3
4
γ

Φv

(1 −Φv)dp
CDφMMp dx. (6.7)

Using the isentropic relations for pressure and temperature (see Appendix A.1), yields

dp0

p0
= dp

p
− γ

γ − 1
dm
m
, (6.8)
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and
dT0

T0
= dT

T
− dm

m
, (6.9)

where m = 1 + (γ − 1)M2.
Substituting (6.8) and (6.9) into (6.7) yields

dp0

p0
= γ

γ − 1
dT0

T0
− 3

4
γ

Φv

(1 −Φv)dp
CDφMMp dx. (6.10)

Finally, integrating (6.10) to the location of the Mach disk, Lp
MD, results in the expression

pp
0

p0
=
(

Tp
0

T0

)γ /(γ−1)

exp

(
−b

∫ Lp
MD

0
G(x) dx

)
, (6.11)

where b = 3γ /(4(1 −Φv)dp) and G(x) = ΦvCDφMMp. As previously stated, the above
equation assumes no heat exchange between the two phases, but it does take into account
the work due to drag.

Here, we assume the Mach disk location in a particle-laden flow, Lp
MD, is equivalent to

its single-phase counterpart but with a modified pressure ratio ηp
0. Using the correlation

(5.2), the location of the Mach disk in the presence of particles can be expressed as

Lp
MD
De

= LMD

De

√
pp

0
p0

=
√√√√ η0

2.4

(
pp

0
p0

)
. (6.12)

Substituting (6.11) into (6.12) and assuming Tp
0 ≈ T0 since interphase heat transfer was

found to be negligible, yields

Lp
MD
De

=
√
η0

2.4
exp

(
−b

2

∫ Lp
MD

0
G(x) dx

)
. (6.13)

Note that, because the upper limit of integration Lp
MD is not known a priori, (6.13) must be

solved iteratively.
It can be seen that Lp

MD/De varies with the particle-phase volume fraction, gas phase
Mach number and slip Mach number, and varies inversely with the gas-phase volume
fraction and particle diameter. Additionally, it can be seen that the maximum extent of the
Mach disk shift due to the particles (i.e. when the Mach disk moves up to the nozzle exit;
Lp

MD = 0) occurs in the limit of infinite mass loading and infinite Mach number.
Obtaining the new Mach disk location from (6.13) requires knowledge of how CD, M

and Mp vary in x. The gas-phase Mach number is estimated from a polynomial fit informed
by the numerical simulations (see figure 15), given by

M(x/De) = 0.01839
(

x
De

)3

− 0.2863
(

x
De

)2

+ 2.029
(

x
De

)
+ 0.8123. (6.14)

Table 4 shows a comparison of the per cent shift in the Mach disk between the
one-dimensional model (6.13) and experiments using the parameters reported in table 2.
Here, the drag law of Osnes et al. (2023) is used for CD. The shift in the Mach disk location
is approximately 10 %–20 % lower than what is seen in the experiments. This is likely
due to the assumption of one-dimensional flow, since the shock structures and particle
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Figure 15. Single-phase centreline Mach number for η0 = 3.4 (—–, green), η0 = 6.46 (—–, blue),
η0 = 30 (—–, purple), polynomial fit (6.14) (- - -).

Case η0 Φv d̄p % shift in Mach disk location % shift in Mach disk location
(×10−3) (μm) Experiments one-dimensional model

A1 3.4 0.29 29 6.61 1.75
A2 3.4 0.77 29 5.44 4.28
B1 6.46 0.84 42 9.9 6.61
B2 6.46 1.7 42 12.26 11.37
B3 6.46 3.1 96 15.04 11.46
B4 6.46 3.5 96 15.81 12.51

Table 4. Comparison between experiments and the model given in (6.13).

dynamics are inherently three-dimensional. Despite its simplicity, the model predicts the
correct trends and gives overall good agreement against the experimental data.

To understand the effect of the parameters appearing in (6.13), figures 16 and 17 report
the Mach disk shift obtained from the model by varying each parameter independently.
Figure 16(a) shows how the shift scales with mass loading for a diameter ratio De/dp = 40
and Mp = 0.42 at the nozzle exit, corresponding to a particle velocity up = 160 m s−1. At
low η0, the shift scales with the mass loading linearly and with an increase in η0 the shift
scales according to a fractional power ofΦm. Figure 16(b) reveals a strong correlation with
η0, consistent with the experimental observations by Jain et al. (2024).

From figure 17(a), it is evident that smaller particles result in a larger shift. This is
consistent with observations from experiments in this work and in the literature. It is
interesting to note that Sommerfeld (1994) attributed this to a Stokes number effect,
whereby smaller particles influence a larger portion of the jet cross-section due to increase
in lateral spreading. Meanwhile, the one-dimensional model does not account for lateral
spreading but predicts a similar trend nonetheless.

Figure 17(b) shows the effect of the velocity lag between the phases at the nozzle exit
characterized by Mp. UnlikeΦm, η0 and De/dp, the effect of Mp is relatively less prominent
and exhibits a linear dependence on the Mach disk shift. The results shown in figure 17(a)
are with constant η0 = 10 and Mp = 0.48. The results shown in figure 17(b) were obtained
with η0 = 10 and De/dp = 40. The range of Mp spans the values considered in the present
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Figure 16. Effect of mass loading and nozzle pressure ratio on Mach disk shift.
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Figure 17. Effect of particle size and inlet slip Mach number on the Mach disk shift.

work and experiments reported in the literature. Here, Mp = 0.2 corresponds to particles
injected from the nozzle with velocity up = 250 m s−1 and Mp = 0.8 corresponds to
up = 62 m s−1.

As described above, the one-dimensional model suggests the shift in Mach disk caused
by particles depends on Φm, Φv , De/dp, M and Mp. In order to find an adequate scaling
based on the experimental datasets from the literature (e.g. Sommerfeld 1994; Jain et al.
2024) and the present work, we only consider Φm, η0 and De/dp since these are readily
attainable. It should be noted that in most cases the particle size and slip Mach number
are mutually dependent. Smaller particles typically exhibit lower slip Mach numbers due
to reduced inertial lag. A least-squares fit reveals the relative shift in Mach disk scales
according to

1 − Lp
MD

LMD
∝ Φmη

1/4
0 (De/dp)

0.09. (6.15)

As shown in figure 18, this results in a modest collapse of the data and a significant
improvement over the correlation developed for supersonic jets (6.12) (see figure 14).

7. Conclusions

The study of particle-laden sonic and supersonic jets has a long history, stemming from
research on solid rockets in the 1960s. This flow configuration showcases a distinct jet
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Figure 18. Mach disk shift as a function of normalized mass loading from experiments of sonic jets
(Me = 1). Symbols are the same as figure 14. Slope of 1 (- - -, red) with R2 = 0.89, where R is the coefficient
of determination.

structure consisting of shocks, compression and expansion waves. The introduction of
inertial particles significantly modifies the structure of the jet due to strong two-way
coupling between the phases. A key feature is the upstream shift in the Mach disk location
towards the nozzle. This shift is amplified as the particle mass flow rate increases.

In this work, we performed high-resolution experiments and simulations of sonic
jets under two pressure ratios and a wide range of particle sizes and mass loadings.
Optical measurements of both phases were obtained using an ultra-high-speed camera
system operating at 2 million frames per second. The gas phase was visualized using
a schlieren imaging system and particle-phase statistics were obtained via Lagrangian
particle tracking. Concurrent three-dimensional Eulerian–Lagrangian simulations were
performed using a high-order, low-dissipative discretization of the gas phase. An efficient
and simple two-way coupling strategy was proposed to handle the interphase exchange
term in the presence of discontinuities. Particle size and velocity distributions at the
nozzle exit were measured experimentally and used to inform boundary conditions in the
simulations.

The focus of this work was on the near-field region within the first four diameters
downstream of the exit of the nozzle. Numerical simulations were found to accurately
predict the gas-phase shock structures in the unladen cases and particle velocity
distributions in the laden cases. The streamwise and spanwise velocity distributions of the
particles exiting the nozzle were close to Gaussian with increasing variance as they spread
downstream. The particles exit the nozzle with velocity that lags the gas phase, resulting in
a net drag force that removes energy from the carrier flow. Although the simulations were
capable of reproducing the particle velocity statistics, they were found to underpredict the
shift in Mach disk location by as much as 50 %. This points to a need for improved models
to handle two-way coupling in flows with significant acceleration and discontinuities.

Despite the relatively low volume fractions of O(10−4 − 10−3), strong two-way
coupling between particles and the gas phase was observed. This coupling manifests into
short-range disturbances, such as localized bow shocks around individual particles, and
long-range interactions that modulate the shock structure far from the particle. This is
distinct from incompressible jets that exhibit only mild changes to the carrier flow under
such dilute conditions.
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To better understand the mechanism associated with the shift in the Mach disk, a
one-dimensional model based on Fanno flow was derived that accounts for the effect of
volume displacement and momentum and energy exchange between the phases. It was
found that the shift in the Mach disk location scales with the mass loading, volume
fraction, nozzle pressure ratio and slip velocity, and inversely with the particle size.
Predictions from the model show overall good agreement with the experiments. Based
on the results from this study and data collected from the literature, a simple scaling was
proposed to collapse the shift in Mach disk location observed in particle-laden sonic jets.
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Appendix A. Further details on the numerics

This section provides further details on the numerics than what was presented in the main
text.

A.1. Nozzle parameterization
A converging nozzle with an analytic interior contour based on a hyperbolic tangent
profile is chosen. The ratio of inlet to exit diameters is kept same as the nozzle used
in experiments. The inlet geometrical and fluid parameters are denoted by (·)1 and
corresponding exit parameters by (·)e. The relationship between inlet and exit conditions
are based on the isentropic relations, and more details on the derivation can be found
in Anderson (1990). The relationship between inlet quantities (D1, p1,M1, ρ1) shown in
figure 19 is given by

p1 = p0

(
1 + (γ − 1)M2

1/2
)−γ /(γ−1)

, (A1)

ρ1 = ρ0

(
1 + (γ − 1)M2

1/2
)−1/(γ−1)

, (A2)

and

D2
1 = D2

e/M1(γ + 1/2)(γ+1)/(2γ−2)
(

1 + (γ − 1)M2
1/2

)(γ+1)/(2γ−2)
, (A3)
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Figure 19. Nozzle parameters considered in the numerical simulations.

where LN = 4.35De is the nozzle length, Ls = 0.15De is the straight section length. The
inner contour of the nozzle follows the analytical profile of

D(x) = max
[
1.1De + (1.1De − D1)tanh

(
20σ1(x − LN + Ls)

)
, (A4)

De + (De − D1)tanh
(

25σ2(x − LN + Ls)
)]
, (A5)

with

σ1 = 0.015 and σ2 = σ1
D1 − 1.1De

0.1De
. (A6a,b)

In figure 19, Do
1 and Do

e are outer diameters at the inlet and nozzle exit, respectively, that
are set to Do

1 = 6.5De and Do
e = 2De.

A.2. Immersed boundary method
Boundary conditions are enforced at the surface of the nozzle using a ghost-point
immersed boundary method. As shown in figure 20, the values of the conserved variables
at ghost points residing within the solid are assigned based on the quantities at the image
point. The image point is identified through a normal vector outward from the surface,
n = ∇G, where G is a signed distance levelset function. This is performed after each
Runge–Kutta sub-iteration. Because image points do not align with grid points, fluid
quantities are interpolated to image points via an inverse distance weighting scheme
proposed by Chaudhuri et al. (2011). The number of layers of ghost points grows with
increasing order of accuracy of the scheme. For the sixth-order interior finite-difference
stencil used herein, requires three layers of grid points for the first derivatives. However,
for the second derivatives, the number of layers are further extended.

It should be noted that the nozzle lip introduces additional challenges because of the
zeroth-order continuity at the sharp corner. This results in a singularity that can result in
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Figure 20. Schematic of the ghost-point immersed boundary method with two layers of ghost points.
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Figure 21. Pressure field in the vicinity of the nozzle lip (a) before filtering and (b) after filtering. The white
line shows a contour of the zero levelset (nozzle surface).

stability issues and ill-defined normal vectors. Boukharfane et al. (2018) proposed solving
an additional set of equations using the stencils from all sides of the corner (three sides
in three dimensions) to prescribe values at ghost points. Alternatively, Chaudhuri et al.
(2011) proposed storing multiple arrays of ghost points to be used in each flux direction,
however, this is an expensive approach to evaluate derivatives and is potentially memory
intensive. In the present work, we apply a truncated 9-point Gaussian filter (Cook & Cabot
2004) to the flow field within the solid (G < 0) to smooth the discontinuities within the
nozzle. The resulting pressure field inside the nozzle before and after filtering is shown in
figure 21. This was found to reduce spurious oscillations and give better results against the
experiments (i.e. the Mach disk location and Mach disk diameter).

A.3. Shock capturing
The bulk viscosity and thermal conductivity appearing in (4.3) and (4.4) are augmented
according to μb = μf + μ∗ and κ = κf + κ∗, where the subscript f and asterisks denote
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fluid and artificial transport coefficients, respectively. The artificial dissipation terms take
the form

μ∗ = Cβρfsw|∇4θ |Δ6, κ∗ = Cκ
ρc
T

|∇4e|Δ5, (A7a,b)

where θ = ∇ · u, e = (γ − 1)−1p/ρ, Cβ = 1 and Cκ = 0.01. The overbar denotes
a truncated 9-point Gaussian filter (Cook & Cabot 2004). Fourth derivatives are
approximated via a sixth-order compact (Padè) finite-difference operator (Lele 1992).
To limit the artificial bulk viscosity to regions of high compression (shocks), we
employ a similar sensor originally proposed by Ducros et al. (1999) and later
improved by Hendrickson, Kartha & Candler (2018), given by fsw = min(4

3 H(−θ)×
θ2/(θ2 +Ω2 + ε), 1), where H is the Heaviside function, ε − 10−32 is a small positive
constant to prevent division by zero andΩ = max(|∇ × u|, 0.05c/Δ) is a frequency scale
that ensures the sensor tends to zero where vorticity is negligible.

It is important to note that in the presence of strong discontinuities, the artificial
diffusivity terms used for shock capturing (A7a,b) may induce a severe time-step
restriction. To avoid introducing unphysical discontinuities near the immersed interface,
β∗ and κ∗ are defined at every grid point within the domain (interior and exterior), but
values inside the solid (G < 0) are not used when computing CFLv .

A.4. Particle velocity statistics
This section contains PDFs of particle velocities for all of the cases considered in the
current work (case A1, and cases B1–B3 figures 23, 24 and 25) not reported in the main
text. Similar to case A2 discussed in § 5.2, case A1 figure 22 shows comparable trends in
velocities. Additionally, similar to case B4, case B3 shows similar trends. For cases B1 and
B2, the overall velocities and the acceleration (comparing velocities between successive
windows) appear to be higher than in cases B3–B4 and lower than observed in cases
A1–A2. This is because cases B3–B4 have larger size particles with mean diameter of
42 μm, compared with 29 μm considered in cases A1–A2 and 98 μm in B3–B4. Overall,
simulation results show good agreement with the experiments, although they fail to predict
the bi-modal distribution seen in the streamwise velocity in B2.

A.5. Effect of filtering during two-way coupling
As discussed in § 4.4, the particle models are based on correlations that depend on
undisturbed flow quantities. In two-way coupled simulations, the particle modifies the
local flow and thus the undisturbed quantities must be reconstructed. Although strategies
exist for incompressible flows (e.g. Horwitz & Mani 2016, 2018; Balachandar et al. 2019;
Liu et al. 2019; Pakseresht et al. 2020; Pakseresht & Apte 2021), no formal approach yet
exists for compressible flows.

In this work, we propose to remove the local disturbance caused by the particle by
applying a low-pass filter to the Eulerian field prior to interpolation per (4.19). Such
an approach has shown success in previous studies (Evrard et al. 2020; Yang et al.
2023). Numerical experiments revealed that two-way coupling has minimal effect on local
gradients in gas-phase pressure and velocity. In the presence of shock waves, filtering will
severely dampen the undisturbed gradients. Thus, for the particle force balance in (4.7), we
propose to filter the gas-phase velocity prior to interpolation but not the pressure gradient
or viscous stress.
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Figure 22. Velocity PDFs for case A1 measured in the region (a,b) 0 ≤ x/De < 1, (c,d) 1 ≤ x/De < 2,
(e, f ) 2 ≤ x/De < 3 and (g,h) 3 ≤ x/De < 4. Experiments: streamwise velocity (�, red) and spanwise velocity
(�, blue). Simulations: streamwise velocity (�, translucent red) and spanwise velocity (�, translucent blue).
Mean injection velocity (- - -).

C1 C2

M∞ = Mp Rep ρ∞ (kg m−3) p∞ (kPa) M1 Mp Rep p2/p1 ρp/ρ1

2 2000 0.96 35.4 2.8 2 2000 14.12 2018

Table 5. Simulation parameters associated with the test cases shown in figure 26.

To test the efficacy of this approach, we consider two canonical three-dimensional cases
(see figure 26): case C1 corresponds to a uniform supersonic flow past a stationary particle
and case C2 corresponds to a particle moving with constant velocity (with Mp = 2) passing
through a standing shock. The parameters listed in table 5 are chosen to be representative
of the conditions particles experience in the underexpanded jet.

The accuracy of the scheme is measured by comparing the interpolated values with the
corresponding values in a one-way coupled flow. We evaluate the streamwise interpolated
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Figure 23. Velocity PDFs for case B1 measured in the region (a,b) 0 ≤ x/De < 1, (c,d) 1 ≤ x/De < 2,
(e, f ) 2 ≤ x/De < 3 and (g,h) 3 ≤ x/De < 4. Experiments: streamwise velocity (�, red) and spanwise velocity
(�, blue). Simulations: streamwise velocity (�, translucent red) and spanwise velocity (�, translucent blue).
Mean injection velocity (- - -).

velocity, ux, and streamwise component of the resolved stress, Px = ∇x · (τ − pI) at the
location of the particle. The corresponding errors, Eu and EP, are evaluated according to

Eu = ux − uun
x

uun
x

, (A8)

and

EP = Px − Pun
x

Pun
x

, (A9)

where (·)un denotes an interpolated quantity obtained from the corresponding undisturbed
(one-way coupled) simulations. We report the maximum error, which occurs at steady state
in C1 and when the particle is at the location of the shock in C2.

Figure 27 shows the errors in the gas-phase velocity and stress evaluated at the particle
location as a function of filter size, δf , and particle diameter. In the case of a uniform
supersonic flow past a particle (case C1), the velocity evaluated at the location of the
particle should be equal to the free-stream velocity. As the filter size increases, the
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Figure 24. Velocity PDFs for case B2 measured in the region (a,b) 0 ≤ x/De < 1, (c,d) 1 ≤ x/De < 2,
(e, f ) 2 ≤ x/De < 3 and (g,h) 3 ≤ x/De < 4. Experiments: streamwise velocity (�, red) and spanwise velocity
(�, blue). Simulations: streamwise velocity (�, translucent red) and spanwise velocity (�, translucent blue).
Mean injection velocity (- - -).

interphase source terms sent to the fluid are progressively smeared out and the error
decreases. However, as shown in figure 28, this also reduces the wake and bow shock
that should be present. Filtering the gas-phase velocity prior to interpolation (denoted by
circles) significantly reduces the error, even when the filter size is relatively low.

Because the flow is uniform, the undisturbed pressure gradient and viscous stress are
null. Thus, we evaluate the accuracy of evaluating the fluid stress at the particle location
in case C2. It can be seen that filtering the stress prior to interpolation (circles) results
in large error regardless of the filter size. The error is significantly lower (<5 % ∀δf /dp
and ∀�x/dp considered) if the stress remains unfiltered prior to interpolation (triangles),
which is what was employed in the simulations reported in the main text.

Figure 28 shows the local coefficient of pressure, Cp = 2( p − p∞)/(ρ∞U2∞), and Mach
number for the uniform flow past a sphere (case C1) with dp = 2�x. A bow shock
and wake are clearly visible when the coupling terms are localized to the particle (i.e.
small filter sizes). As one might expect, increasing the filter mollifies the momentum and
pressure deficit resulting in weaker flow structures.
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Figure 25. Velocity PDFs for case B3 measured in the region (a,b) 0 ≤ x/De < 1, (c,d) 1 ≤ x/De < 2,
(e, f ) 2 ≤ x/De < 3 and (g,h) 3 ≤ x/De < 4. Experiments: streamwise velocity (�, red) and spanwise velocity
(�, blue). Simulations: streamwise velocity (�, translucent red) and spanwise velocity (�, translucent blue).
Mean injection velocity (- - -).
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Figure 26. Two configurations considered to assess the effect of filtering during of two-way coupling.
(a) Uniform flow past a frozen particle and (b) particle passing through a standing shock.
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Figure 27. Effect of filtering when evaluating gas-phase quantities at the particle location. (a) Error in the
interpolated velocity for case C1 and (b) error in the interpolated stress for case C2. Circles indicate runs when
filtering is applied prior to interpolation and triangles indicate runs without filtering.
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Figure 28. Simulation results of a uniform flow past a stationary particle (case C1) showing the local
coefficient of pressure (a–c) and gas-phase Mach number (d–f ). The filter size employed in the two-way
coupling increases from left-to-right with (a,d) δf = 2dp, (b,e) δf = 3dp and (c, f ) δf = 4dp.

Figure 29 shows normalized local pressure contours in case C2 when the particle is
4.5dp upstream of the standing shock. As with case C1, the effect of two-way coupling
is less pronounced as the filter size increases. Significant distortion of the shock can be
observed when δf = 2dp. Small increases in the filter size have a pronounced effect, with
almost no distortion when δf = 4dp.

It is important to note that a requirement of the volume-filtered Eulerian–Lagrangian
framework is that δf > dp when dp > �x so that the volume fraction remains bounded
α ∈ [0, 1] and to avoid numerical instabilities associated with the source terms. Because
the jet simulations considered a polydisperse distribution of particles, δf � dp for the
majority of particles, which likely contributes to the underprediction in the shift in
Mach disk observed. This points to a need for improved two-way coupling strategies for
Eulerian–Lagrangian simulations involving shock–particle interactions.
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Figure 29. Instantaneous snapshots of case C2 showing local gas-phase pressure (colour) and particle position
(white). The images correspond to the instant the particle is 4.5dp upstream of the shock. The filter size
employed in the two-way coupling increases from left-to-right with (a) δf = 2dp, (b) δf = 3dp and (c) δf = 4dp.
Solid white line shows the extracted shock location.
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