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Abstract
The recognizing underwater targets is a crucial component of autonomous underwater vehicle patrols and detection
efforts. In the process of visual image recognition in real underwater environment, the spatial and semantic fea-
tures of the target often appear to different degrees of loss, and the scarcity of specific types of underwater samples
leads to unbalanced data on categories. This kind of problem makes the target features appear weak and seriously
affects the accuracy of underwater target recognition. Traditional deep learning methods based on data and fea-
ture enhancement cannot achieve ideal recognition effect. Based on the above difficulties, this paper proposes an
improved feature enhancement network for weak feature target recognition. Firstly, a multi-scale spatial and seman-
tic feature enhancement module is constructed to extract the feature information of the extraction target accurately.
Secondly, this paper solves the influence of target feature distortion on classification through multi-scale feature
comparison of positive and negative samples. Finally, the Rank & Sort Loss function was used to train the depth
target detection to solve the problem of recognition accuracy under highly unbalanced sample data. Experimental
results show that the recognition accuracy of the proposed method is 2.28% and 3.84% higher than that of the
existing algorithms in the recognition of underwater fuzzy and distorted target images, which demonstrates the
effectiveness and superiority of the proposed method.

1. Introduction
Underwater target detection has a wide range of applications in marine environment monitoring and
safety, and most existing target detection algorithms are implemented on Autonomous Underwater
Vehicle (AUV). These AUV play a crucial role in enhancing marine monitoring and maintenance efforts
[1]. Due to the influence of complex sea conditions and refraction of light transmission, the images
obtained by AUV and other underwater vision equipment have weak features such as feature blur, loss
and distortion. Most of the existing methods based on deep network solve the problem of weak feature
target recognition by image deblurring, feature co-occurrence relationship for feature correction [2], dis-
tortion correction [3, 4] and other methods. However, this kind of algorithm can easily lead to the loss
of original spatial and semantic information of small targets [5, 6], and increase the relevant modules
and computing volume of the algorithm [7].

The acquisition of images of different targets in underwater environments by underwater vision
devices, such as autonomous underwater vehicles, can be challenging, leading to an uneven distribu-
tion of labels in the training set. As a result, most targets lack training data and labels, which makes it
difficult for the algorithm to accurately identify such targets with low signal-to-noise ratio. The existing

C© The Author(s), 2024. Published by Cambridge University Press.

https://doi.org/10.1017/S0263574724000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000195
https://orcid.org/0000-0003-4811-5854
https://orcid.org/0009-0002-5260-0123
mailto:cailei2014@126.com
https://doi.org/10.1017/S0263574724000195


1232 Lei Cai et al.

Figure 1. General framework of improved feature enhancement network for weak feature target
recognition.

solution is to augment data, extract significant features from data images [6] and optimize data sample
expansion and network framework. Although this kind of method can effectively improve the recogni-
tion accuracy, it will also cause the loss of basic correlation features of sample images in the recognition
process. Therefore, in this case, the improvement effect of the algorithm on the recognition accuracy is
limited. Graph convolutional networks and recurrent relationship trees play a key role in image semantic
feature extraction [8, 9]. Unsupervised presentation learning can distinguish different targets by means
of feature similarity measurement, which is helpful for downstream classification and recognition tasks
and can effectively solve the above problem.

This paper proposes an improved feature enhancement network method for underwater target recog-
nition with weak features. As shown in Fig. 1, the method proposed in this paper builds an identification
network by combining spatial and semantic enhancement, unsupervised feature contrast extraction and
Rank & Sort (RS) Loss, which is robust to unbalanced samples. The network achieves high recognition
accuracy under the condition of uneven target samples and distorted images. The integration of image
recognition algorithms with AUV can significantly enhance the inspection accuracy and efficiency of
AUV.

The main contributions of this paper are as follows:

1. This paper introduces a multi-scale spatial and semantic feature enhancement module. This
module enhances the extraction of multi-scale spatial features by utilizing feature mapping
with self-learning parameters. It integrates semantic information from various sensory inputs
to accurately extract target feature information.

2. A multi-scale feature comparison module is developed in this paper to address issues related
to target feature blurring and distortion. It achieves this by conducting multi-scale feature com-
parisons between positive and negative samples. This network module is designed to ensure the
robustness of the recognition network, especially in scenarios involving small sample sizes for
underwater target recognition.

3. We propose a multi-scale target sorting detector based on RS Loss to train the deep target recog-
nition network, particularly to address challenges associated with highly unbalanced sample
data. We conducted comprehensive experiments, and the results demonstrate the effectiveness of
our method in significantly improving detection accuracy, particularly for weakly characterized
targets.
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2. Related work
The integration of deep learning techniques into underwater vehicles for detection and identification
represents a pivotal research domain in marine maintenance. Sun [1] introduced a kernelized correla-
tion filter tracker and a novel fuzzy controller, which were trained using a deep learning model, resulting
in favorable outcomes in visual tracking of underwater vehicles. Chu [10] utilized deep reinforcement
learning based on a double-deep Q-network for autonomous underwater navigation, leading to effec-
tive path planning and obstacle avoidance. Tang [11] developed a deep learning-based underwater
target detection model and a real-time underwater target detection method, effectively addressing the
challenges associated with side-scan sonar recognition.

Refraction of light caused the loss of image features, making it more difficult for the algorithm to accu-
rately identify the target. Rich semantic information is a prerequisite to achieve the classification task,
while accurate spatial information is a prerequisite to achieve the localization task for target detection
[7]. Cai [12] constructed a target recognition network by multi-intelligence collaboration, multi-view
optical field reconstruction and migration reinforcement learning to enhance target feature data from
both data sources and feature frameworks, with significant improvements in simplified computation and
target recognition accuracy. Lin [13] employed a planar detection algorithm based on the semantic web
to construct planar odometry for robots operating in structured environments. Inflationary convolution
allows the extraction of sufficient semantic information by expanding the field of perception without
changing the size of the feature map [14]. Cai [15] addressed the problem of distorted target recognition
accuracy by supplementing missing salient features with spatial semantic information. Rabbi [16] used
a super-resolution method for images to zoom in on objects, effectively solving the problem of feature
loss and improving the detection performance of small targets in remote sensing images from the use
of edge enhancement. The methods mentioned above excel at extracting detailed semantic information
through deep features; however, they exhibit shortcomings in effectively utilizing spatial information
and are less suitable for data characterized by imbalanced categories.

Multi-scale features contain richer spatial and semantic feature information and are beneficial for
identifying weak targets at very low signal-to-noise ratios. Ma [17] fuses advanced feature detail
enhancement and multi-scale features for contextual semantic edge detection. Ju [18] proposes the atten-
tion mechanism for multi-scale target detection by adaptively learning the importance and relevance
ideas of features at different scales with the Lee [19] computed enhanced feature extraction networks
by contrast learning. To cope with scale variations. Kuang [20] utilized semantic information extraction
and environment matching to enhance the localization capabilities of mobile robots, enabling them to
operate more efficiently in their environment. Cai [21] conducted fuzzy small target feature extraction
by combining hybrid dilation convolution with multi-scale features. Liu [22] learns object features and
contextual feature weights based on upsampling to fuse multi-layer feature maps to improve the detection
performance of small object detection performance. Douadi [23] developed a method for rapidly and
precisely constructing navigation maps for robots by modeling spatially stabilized keypoints. Reference
[24] designed a shallow feature enhancement module to enhance the representation of weak feature
objects with the help of rich contextual information. Since reusing feature information leads to unclear
weights, Fang [25] proposed a densified, lightweight top-down network structure for effective integra-
tion of multi-scale features. Gupta [26] pointed out that the drawback of multi-scale feature methods
is mainly that spatial details are ignored until the final fusion stage, so each channel in the aggregated
features is weighted according to the adjacent layers to enhance the distinguishing power of the fea-
ture representation. In summary, reducing the loss of spatial information while ensuring the acquisition
of strong semantic information is the key to improving classification and localization accuracy. While
the methods described above make comprehensive use of spatial information, they may not be suitable
for datasets with semantic information loss and category imbalance. Balancing the preservation of spa-
tial information while ensuring the acquisition of robust semantic information is pivotal for enhancing
classification and localization accuracy.
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For the problem that accurate recognition cannot be achieved for specific categories with complex fea-
tures and uneven sample size, Wang [27] used similarity constraints to capture the intrinsic connection
between available information and feature weights, and fusion ranking loss to capture the dependency
between labels. Zhi [28] proposed an end-to-end convolutional neural network based on multi-path
structure. Gao [29] used a multi-category attention region module that maintains the diversity of feature
data in the attention region. Jiang [30] extracts multi-scale features and learns multi-scale relationships
between samples, which can alleviate the lack of performance of cross-entropy loss in the case of small
samples. Khosla [31] proposes RS Loss based on the properties of ranking, which can train models in
the presence of highly unbalanced data.

In summary, while these methods exhibit advantages in specific aspects of target detection and under
particular scenarios, they fail to provide an effective solution to the challenges of spatial and seman-
tic feature loss, especially when dealing with the scarcity of underwater class-specific samples [32].
To tackle these issues, this thesis introduces an improved feature enhancement network for enhancing
the recognition accuracy of weak feature targets. Specifically, in situations where spatial and semantic
features suffer varying degrees of loss, this thesis incorporates a spatial and semantic enhancement fea-
ture extraction module to enhance feature extraction. Moreover, to address the challenges arising from
a shortage of samples in specific categories, often accompanied by feature blurring or distortion, this
paper introduces a multi-scale feature comparison and selection module, aimed at precisely recognizing
weak feature targets. By arranging the algorithm of this paper on the underwater vehicle, we can improve
the inspection accuracy and efficiency of the underwater vehicle.

3. Proposed method
This section provides a comprehensive description of the overall architecture of the proposed improved
feature enhancement network for recognizing weak feature targets. It comprises three primary compo-
nents: a spatial and semantic enhancement feature extraction module, a multi-scale feature comparison
selection module, and a multi-scale target ranking detector. The network architecture in this paper is
configured with hyperparameters, such as convolutional kernel size and the number of feature channels,
following the ResNet50 reference model.

3.1. Spatial and semantic enhanced feature extraction module
The weak light and complex background in underwater environment lead to the weak intensity of image
objects acquired by Autonomous Underwater Vehicle (AUV), and the loss of spatial and semantic
features to varying degrees, which seriously affects the accuracy of target recognition. The semantic
information is sparse in the shallow feature map extracted by the traditional classification network,
while the semantic information is rich in the deep feature map, but the spatial information decays seri-
ously. To solve the above problems, In this paper, we introduce the spatial and semantic enhancement
feature extraction module to improve the extraction of spatial and semantic features from the original
classification network.

This article uses ResNet50 as the backbone network to extract features. The feature extraction network
module has an overall composition of 6 layers of ResNet blocks. The input is a 256×256 pixel size
image x. The features extracted by each ResNet block are denoted as fq(x). The multi-scale features
of the image are extracted with different ResNet blocks H = h0, h1, . . . , hi, i < 6. The different scale
feature maps obtained from each ResNet block are used as input to obtain a new multi-scale feature
map enhanced with spatial and semantic information by the spatial and semantic feature enhancement
module. This module is divided into two parts, spatial feature enhancement and dense upsampling. The
overall structure of the spatial and semantic enhancement feature extraction module is shown in Fig. 2.

The spatial features are enhanced in a multi-branch parallel structure, and the context information
of the target is extracted by enlarging the receptive field, which enriches the semantic information and
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Figure 2. Network framework diagram of spatial and semantic enhanced feature extraction module.

Figure 3. Spatial feature enhancement of multi-branch parallel structures and their perceptual field
representation.

avoids the attenuation of spatial information as much as possible. This network can enhance the ability
to extract spatial and semantic features. Multi-branch formal structure extracts the features of different
receptive fields. As shown in Fig. 3, each branch uses expansion convolution with different expansion
rates to carry out convolution operations on the same feature graph, so as to obtain isoscale feature graphs
with different receptive fields. The features extracted from different receptive fields were restored to the
original size and number of channels by cascade fusion.

Dense upsampling is then used to generate a new multi-scale feature map. Dense upsampling pre-
vents information decay, and the feature map obtained by upsampling not only uses a top-down approach
to transfer information layer by layer but also adds a form of direct transfer to complement the previ-
ous feature map. The multi-scale feature selection module of the reference [24] was used to transfer
the semantic information of the 16 × 16 feature map to the 64 × 64 feature map as an example. It is
structured through two parallel branches. In one, a top-down approach, the 16 × 16 feature map is first
sampled to 32 × 32, fused with the original 32 × 32 feature map, with the size of 32 × 32 as the next
sample, and then sampled to 64 × 64 and 128 × 128 in turn. In the other branch, it is directly sampled as
128 × 128, passed to the feature map of the corresponding size, which is used to guide the enhancement
of shallow semantic features and avoid information loss.

Taking into account the impact of various texture details and objects on recognition results, the multi-
scale model must determine the suitable size and number of feature maps for fusion. Each feature map
of the multi-scale feature model is assigned a learnable parameter ωx, and each feature map is adaptively
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Figure 4. Multi-scale feature comparison selection module structure.

merged by training to find the optimal proportion of each feature map in the fusion. This design avoids the
degradation of feature extraction performance caused by the decay of spatial information. The element
summation method first adjusts feature maps of equal scale to the same number of dimensions and then
sums the corresponding elements. When fusion is complete, it then reverts to its original dimensions.
The multi-scale enhanced features of the image are represented as:

F = {fe0(x), fe1(x), fe2(x), fe3(x), fe4(x)} (1)

where x is the input test image. fei(x) is the multi-scale enhancement feature output of the completed
training enhancement feature extraction network.

3.2. Multi-scale feature comparison selection module
The shortage of samples in specific categories is compounded by issues like feature blurring or dis-
tortion. This challenging scenario results in the low-accuracy recognition of weak feature targets. To
address this, the multi-scale feature contrast selection module characterizes feature contrast metrics
through unsupervised learning. This, in turn, furnishes multi-scale prominent features and reference
sample data to assist the target detector in accurately recognizing weak feature targets.

Data expansion by image distortion, blurring, cropping, flipping, etc. In this paper, the positive sam-
ples are the original example samples and the samples obtained by data expansion, while the negative
examples are all other categories of strength samples in the sampled training batch and the expanded
samples. The goal of feature comparison is to learn the similarity representation of samples. It should
minimize or keep constant the feature distance for different pairs of positive examples while maximizing
the feature distance between pairs of negative examples. The objective of the method is to select sample
features from a series of labeled sample images X = x1, x2, . . . , xn that are close to the instance image
features, thus complementing the semantic information of the instance features.

The entire multi-scale feature comparison selection module contains two encoder branches Fq and
Fp, as shown in Fig. 4, with both branches applying the same spatial and semantic enhancements to the
feature extraction network. The feature mapping module ϑ( • ), which connects one after each feature-
enhanced scale feature map, passes the feature vector fei(x) through a fully connected layer ϑ( • ). Here,
the feature mapping ϑ( • ) maps the multi-scale enhanced feature map of the image to the feature space
vector z = z1, z2, z3, z4, z5. The similarity measure of the feature space is then performed by the cosine
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similarity function D(i, j) of the samples. Where xi and xj are the example image representations and the
image representations in the training samples of the comparison batch, respectively.

In this paper, the multi-scale feature contrast loss used SCLLoss [33] function to train the two-
branch space with semantically enhanced feature extraction model Fτ ( • ) and feature mapping ϑ( • ).
The contrast loss function is defined as follows:

LMECL = −β

N

N∑
i=1

c∑
c=1

yi,c · log ŷi,c −
N∑

i=1

λ

Nyi − 1

N∑
j=1

log
exp(ϑ(xi) · ϑ(xj)�τ )∑N
k=1 exp(ϑ(xi) · ϑ(xj)�τ )

(2)

where N is the image batch size of the Fp structure input, the input is the training image of xi, yii=1,...,N of
the training images. xi is the image sample and xj is the label corresponding to the image sample. Nyi is
the total number of instances in the batch with the same label as yi. xi denotes the positive sample images
in the image training batch. xj is the negative sample images in the batch. yi,c denotes the input instance
images of label data, and ŷi,c denotes the probability that the model output instance is of category C. β

and λ are a scalar-weighted hyperparameter,β = 1 − λ. tau is an adjustable scalar temperature parameter
that controls feature class differentiation.

The construction of salient features through image feature space comparison not only makes the num-
ber of negative samples larger but also improves the training effect. However, this approach presents
challenges in terms of iteratively updating the encoder Fp. To address this, we utilize the momentum
updating approach introduced in literature [15]. This approach dynamically updates encoder Fp using
encoder Fq. The parameter of encoder Fq is denoted as ϑq, and the updating method is stochastic gradient
descent. The parameter of encoder Fp is denoted as ϑp, and the update method is zϑp + (1 − ϑq), with
momentum coefficients z ∈ [0, 1). ϑp updates in accordance with the changes in ϑq. When the training
of the multi-scale feature contrast selection module is completed, the multi-scale space and semantic
features are extracted from the multi-scale enhanced features F′

e obtained by branching Fq of the net-
work, and the multiple similar feature labels yi,c obtained by branching Fp. F′

e and yi,c were used to guide
through the subsequent target recognition tasks.

3.3. Multi-scale target sequencing detector
To address the challenge of imbalanced samples in specific underwater categories, this paper presents an
improved feature enhancement network for weak feature target recognition. This approach is based on
RS Loss and constructs a multi-scale target sorting detector to perform recognition tasks across various
scales. The recognition network ultimately achieves the most accurate results by continuously updating
the feature comparison selection and prediction rankings.

Firstly, 5 scales of spatial and semantic enhancement features were input to the target detector to
generate a series of Anchor Boxes and prediction category information. Then, an update sorting classi-
fication with continuous Intersection over Union (IoU) prediction task is performed. RS loss LRS [31]
was used for the classification task, and the continuous prediction category information data consisted
of two parts, the prediction categories generated by the instance image after the target detector and the
multiple similar feature labels yi,c category data obtained in the multi-scale feature comparison selection
module. The IoU(b̂i, bi) between the predicted position box b̂i and the true position box of the data (bi)
is used as the continuous label. In the continuous IoUs prediction task, K-means is first used to generate
Anchor Boxes with larger IoU values than ground truth, and the clustering centers of Anchor Boxes
are overlapped with the centroids of ground truth to select the target candidate bounding boxes. The
minimum outer rectangle of the two prediction boxes is then calculated by Distance-IoU, which is used
to characterize the distance between the two target boxes. To compute the loss Lr of the multi-scale
target sorting detector, we define xi as the real label of the instance image and xj as the label of multiple
similar feature samples. The RS Loss, denoted as LRS, is the difference between the current sorting error
term �RS(xi) and the desired sorting error term �∗

RS(xi). It also includes the overall average error term
for updating sorting, given by (�S(xj) − �∗

S(xj))pS(xi | xj), where �S(xj) − �∗
S(xj ≥ 0) represents the positive
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case signal enhancement term for xi ∈ P, and (�S(xj) − �∗
S(xj))pS(xi | xj) ≤ 0 represents the signal degra-

dation term for xj ∈ P. Here, pS(xi | xj) is the category probability mass function based on the probability
mass function (pmf) of �RS(xi). The RS Loss LRS is integrated into the multi-scale sorted target detector
loss Lr, which is calculated as follows:

LRS = 1

|P|
∑
xj∈P

(�RS(xi) − �∗
RS(xi) + (�S(xj) − �∗

S(xj))pS(xi | xj)) (3)

Lr =LRS + |∂LRS|∣∣∂ ŝ
∣∣

/ |∂LRS|∣∣∣∂ b̂
∣∣∣
Lbox (4)

The multi-scale target sorting detector loss, denoted as Lr, combines RS Loss LRS and IoU Loss. The
iterative parameter for IoU Loss, represented as |∂LRS |

|∂ ŝ| /
|∂LRS |
|∂ b̂| , is computed using a magnitude-based tun-

ing algorithm based on the L1 paradigm. Here, b̂ and ŝ denote the predicted boundaries, encompassing
both box regression and classification header outputs. Lbox corresponds to the IoU Loss.

4. Experimental
The experiments were conducted on a small server with 64G of memory and dual GPUs configured with
RTX 3090Ti. Model algorithm simulations were performed on a Pytorch platform configured under
Ubuntu 18.04.

4.1. Experimental dataset
The data for training and testing of the method in this paper are extracted from various sources,
including CADDY, Underwater Image Enhancement Benchmark, Underwater Target dataset (UTD)
and self-collected images. Among them, the UTD is a self-constructed public underwater dataset
by the author’s team. This dataset, which is publicly available on GitHub at https://github.com/
Robotics-Institute-HIST/Dataset.git, consists of 2616 images across various object categories, includ-
ing AUV, submarine, Frogman and torpedo. These images encompass various environments, including
turbid water, uneven light, overlapping targets and others, resulting in a dataset rich in diversity.

Our team also collected self-acquired images using AUV in different underwater scenarios with vary-
ing target categories, attitudes, and lighting environments. We obtained 200 effective images that were
supplemented to the training process to enhance the diversity of the dataset and improve the model’s gen-
eralization ability. Specifically, in the multi-scale feature comparison module, our self-acquired dataset
facilitates positive sample selection and accelerates the learning of target feature similarity. To ensure
the applicability of the model, it was deployed on our team’s AUV to perform real-time recognition of
self-mined images. This approach verified the accuracy and generalization ability of the model’s recog-
nition effect. The target recognition algorithm is effectively integrated with the autonomous underwater
vehicle to enhance the inspection accuracy and efficiency of the underwater vehicle. Using a combina-
tion of three publicly available datasets and self-collected images in equal ratio, this paper trained and
tested the spatial and semantic enhancement feature extraction model and target recognition network
using 1200 labeled images. The datasets were divided into training and testing sets in a 7:3 ratio.

4.2. Implementation details
For model training, an Adaptive Learning Rate (AdamW) optimizer was used to train the recognition
method model. On the server side, the entire training process was iterated 50,000 times with the initial
learning rate set to 0.01, and the weights decayed to 0.0001. The default numbers of suggested frames
suggested features and iterations were 1000, 1000 and 60, respectively.
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Figure 5. Obvious underwater recognition of specific categories of targets.

4.3. Experimental results
Experiments were conducted to validate the recognition of underwater targets by an improved feature
enhancement network method for weak feature target recognition. As for different types of underwater
weak feature target images, four sets of simulation experiments are designed in this section to verify the
effectiveness of the proposed algorithm and compare it with MR-CNN [22], SLMS-SSD [24], DNTDF
[25] and ALMNet [26]. Experiments in this paper have been conducted to recognize several specific
classes of target images, and four of them, Torpedo, Submarine, Frogman and AUV, were selected for
analysis of recognition accuracy in this paper. The algorithms were evaluated in terms of category confi-
dence, average recognition accuracy (mAP), and the number of frames per second (FPS) that the method
network can process.

The first experiments were conducted with well-featured underwater category-specific target recogni-
tion, and the visualization results are shown in Fig. 5. In terms of position frame and category confidence,
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Table I. Obvious data on the results of underwater category-specific target identification.

Method Torpedo Submarine Frogman AUV mAP FPS
MR-CNN 0.8016 0.9549 0.8682 0.9326 0.8893 18
DNTDF 0.8242 0.9704 0.8597 0.9383 0.8982 16
ALMNet 0.8858 0.9623 0.8762 0.9574 0.9204 23
SLMS-SSD 0.8672 0.9862 0.8688 0.9568 0.9198 42
OURS 0.9062 0.9835 0.8943 0.9532 0.9343 29

Table II. Results data for recognition of underwater blurred images.

Method Torpedo Submarine Frogman AUV mAP FPS
MR-CNN 0.7253 0.8052 0.7632 0.8289 0.7807 14
DNTDF 0.7349 0.8259 0.7548 0.8461 0.7904 16
ALMNet 0.7651 0.8143 0.7739 0.8573 0.8027 20
SLMS-SSD 0.7632 0.8758 0.7713 0.8616 0.8180 36
OURS 0.7843 0.8716 0.8132 0.8942 0.8408 26

Table III. The recognition time and accuracy of distorted underwater image.

Method Torpedo Submarine Frogman AUV mAP FPS
MR-CNN 0.6432 0.7572 0.6879 0.7668 0.7138 9
DNTDF 0.6876 0.7685 0.6982 0.7559 0.7201 11.5
ALMNet 0.6493 0.7592 0.6851 0.8026 0.7241 19
SLMS-SSD 0.6658 0.7664 0.7072 0.8159 0.7388 32
OURS 0.7182 0.7943 0.7408 0.8556 0.7772 27

the comparison algorithm generally suffers from small target misses with weak features when it comes
to frogman target image recognition. In contrast, the algorithm in this paper is able to recognize more
accurately and with higher accuracy than the comparison algorithm. The underwater clear image test
set recognition result data is shown in Table I, with the first four columns showing the accuracy in each
category (same as Tables II and III ). The bold black font in the table indicates the outstanding met-
rics of each algorithm. The data show that this paper method has the highest recognition accuracy in
both torpedo and frogman target categories recognition with 0.9062 and 0.8943 respectively. Among
the recognition results of the AUV test sample images, SLMS-SSD method has the highest accuracy of
0.9862. Our paper method is only second to SLMS-SSD method accuracy of 0.0027. In the AUV test
sample image recognition results, ALMNet has the best recognition result with an accuracy value of
0.9574. Its value is only higher than that of the present method at 0.0042. and the present method has
the highest mAP value compared to the comparison algorithms with a value of 0.9343. In terms of algo-
rithm speed comparison, SLMS-SSD exhibits the fastest recognition speed, boasting impressive FPS
data of up to 42. While the method proposed in this paper cannot rival SLMS-SSD in speed, it neverthe-
less demonstrates a speed advantage when compared to other methods. Moreover, the method presented
in this paper achieves the highest mean Average Precision (mAP) value, highlighting its effectiveness
and accuracy.

The next step was to conduct experiments on target recognition of underwater blurred images. The
recognition accuracy and visualization results of each method for blurred images are shown in Fig. 6
and Table II. Due to the interference of image blurring on the features, the recognition accuracy of each
method is significantly reduced. The recognition data show that the mAP of the method in this paper
is 0.8408, which is the highest when comparing methods, and is 0.0202 higher than the mAP value
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Figure 6. The target recognition results of underwater blurred images.

of the second-place SLMS-SSD method. mAP of the SLMS-SSD method is 0.8758, but only 0.0042
higher than the algorithm of this paper. Among the remaining category recognition results shown, the
algorithm of this paper is relatively optimal. The recognition speed of this method is slightly inferior to
that of the SLMS-SSD method, but it is 2.28% ahead in recognition accuracy.
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Figure 7. The recognition results of underwater distorted image.

In addition, experiments were carried out for the recognition of underwater distorted images. The
recognition accuracy and visualization results for each method in the experiments are shown in Fig. 7
and Table III. The image distortion and blurred feature data were affected differently and the relative
recognition had a different impact on the results. Different methods have different optimization strategies
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Table IV. Ablation experiment identification result data.

Method Torpedo Submarine Frogman AUV mAP FPS
Backbone 0.7113 0.7953 0.7672 0.8501 0.7809 34
OURS-1 0.7438 0.8184 0.7805 0.8650 0.8019 31
OURS-2 0.7353 0.8027 0.7879 0.8674 0.7983 31
OURS 0.7597 0.8428 0.7971 0.8772 0.8192 29

according to their own recognition contexts and therefore have different performance in the recognition
results. As can be seen from the data of recognition results in the table, the mAP of this paper’s method
is 0.7772 in recognizing underwater distorted targets. It still has the highest mAP value among the
compared algorithms and is 3.84% higher than the SLMS-SSD method which is in the second place
in terms of accuracy values. Our method has only the highest accuracy value in the comparison of
recognition accuracy values for each category of targets. In addition, in terms of the recognition speed
of each method for underwater distorted target images, our method is second only to the SLMS-SSD
method with the highest FPS value.

In the three different experiments mentioned above, this paper’s method increases the computing
time and makes the number of negative samples larger to improve the training effect by constructing
salient features through image feature space comparison in the multi-scale feature comparison selec-
tion module. With a slight decrease in FPS compared to the SLMS-SSD method, the proposed method
significantly enhances the recognition accuracy of images.

Finally, we conducted an ablation experiment to determine whether the spatial and semantic feature
enhancement module and the multi-scale enhancement feature comparison selection module, contribute
to improved feature extraction performance. ResNet50 was chosen as the backbone feature extraction
network, and the results were validated on the dataset. The experimental findings are presented in
Table IV. We used ResNet50 as the backbone for feature extraction. OURS-1 represents the recog-
nition results with the addition of the spatial and semantic feature enhancement module, while OURS-2
represents the results with the inclusion of the multi-scale enhancement feature comparison selection
module. OURS is the recognition result obtained by fusing both modules. As shown in Table IV, adding
the spatial and semantic feature enhancement module to the backbone network led to a 0.0210 increase
in mAP, demonstrating that the multi-scale feature fusion and inflationary convolution operation can
enhance spatial and semantic feature extraction capabilities. Incorporating the enhanced feature com-
parison selection module into the multi-scale backbone network resulted in a 0.0174 increase in mAP,
confirming that the feature comparison selection module can enhance accuracy in recognizing distorted
targets within imbalanced categories. Combining these two modules in experiments led to the highest
mAP, showcasing the significant mutual enhancement of the designed modules, collectively improving
the detection performance of weak feature target recognition.

5. Conclusion
Aiming at the difficulties such as serious interference in underwater environment and the difficulty of
data acquisition by equipment and the scarcity of specific types of samples, this paper proposes an
improved feature enhancement network method for weak feature target recognition. In this method,
a multi-scale spatial and semantic feature enhancement module is constructed to extract the feature
information of the extraction target accurately. Secondly, the influence of target feature distortion on clas-
sification is solved by the multi-scale feature comparison of positive and negative samples. Finally, RS
Loss based on ranking is integrated to train the depth target recognition network and solve the problem
of recognition accuracy under highly unbalanced sample data. This approach enhances the inspection
accuracy and efficiency of underwater vehicles. The accuracy of the proposed method is 2.28% and
3.84% higher than that of the existing algorithms.
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