Bull. Aust. Math. Soc. 107 (2023), 353–360 doi:10.1017/S0004972722000922

NOWHERE-ZERO 3-FLOWS IN TWO FAMILIES OF VERTEX-TRANSITIVE GRAPHS

JUNYANG ZHANG[™] and YING TAO[™]

(Received 1 July 2022; accepted 31 July 2022; first published online 15 September 2022)

Abstract

Let Γ be a graph of valency at least four whose automorphism group contains a minimally vertex-transitive subgroup *G*. It is proved that Γ admits a nowhere-zero 3-flow if one of the following two conditions holds: (i) Γ is of order twice an odd number and *G* contains a central involution; (ii) *G* is a direct product of a 2-subgroup and a subgroup of odd order.

2020 Mathematics subject classification: primary 05C21; secondary 05C25.

Keywords and phrases: vertex-transitive graph, integer flow, nowhere-zero 3-flow, Cayley graph.

1. Introduction

Graphs considered in this paper are finite, undirected, loopless, but allowed to have multiple edges. Let Γ be a graph. As usual, we use $V(\Gamma)$ and $E(\Gamma)$ to denote the vertex set and edge set of Γ , respectively. An *orientation* \mathcal{D} of Γ is an assignment of one of the two possible orientations for every $e \in E(\Gamma)$. Let φ be a mapping from $E(\Gamma)$ to the set of integers and k a positive integer. For every $v \in V(G)$, we use $\varphi^+(v)$ to denote the sum of values $\varphi(e)$ of edges e with orientation originating from v and $\varphi^-(v)$ the sum of values $\varphi(e)$ of edges e with orientation pointing to v. If $-k < \varphi(e) < k$ for every $e \in E(\Gamma)$ and $\varphi^+(v) = \varphi^-(v)$ for every $v \in V(\Gamma)$, then we call the ordered pair (\mathcal{D}, φ) a k-flow of Γ . If further $\varphi(e) \neq 0$ for every $e \in E(\Gamma)$, then we call (\mathcal{D}, φ) a *nowhere-zero* k-flow of Γ . For convenience, we use \mathcal{NZ}_k to denote the family of graphs which admit a nowhere-zero k-flow.

Tutte proposed three conjectures in the middle of the last century on integer flows which are still unsolved, namely the 5-flow, 4-flow and 3-flow conjectures. The 3-flow conjecture (see, for example, [16, Conjecture 1.1.8]) is stated as follows: every 4-edge-connected graph is contained in NZ_3 . By the equivalent version of the 3-flow conjecture given by Kochol [6], it suffices to prove this conjecture for 5-edge-connected graphs. However, it was conjectured by Jaeger [5] that every

The first author was supported by the Basic Research and Frontier Exploration Project of Chongqing (No. cstc2018jcyjAX0010) and the Foundation of Chongqing Normal University (21XLB006).

[©] The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

k-edge-connected graph is contained in NZ_3 for some given positive integer *k*. This so called weak 3-flow conjecture was solved by Thomassen [14] who proved that the statement holds for an 8-edge-connected graph. Lovász *et al.* [8] improved this breakthrough by proving that the statement of the weak 3-flow conjecture is true when k = 6. However, the 3-flow conjecture remains wide open for 5-edge-connected graphs. In this situation, it is natural to attempt to verify the conjecture for interesting families of graphs, for example, vertex-transitive graphs.

A graph Γ is *vertex-transitive* if its automorphism group Aut(Γ) acts transitively on $V(\Gamma)$. A subgroup G of Aut(Γ) is said to be *minimally vertex-transitive* if G is transitive on $V(\Gamma)$, but any proper subgroup of G is intransitive on $V(\Gamma)$. In particular, if G acts regularly (transitively and every nontrivial element fixes no vertex) on $V(\Gamma)$, then Γ is called a *Cayley graph* on *G*. A graph is said to be *k*-regular (or *regular* for short) if each of its vertices has valency k where k is a positive integer. It is obvious that every vertex-transitive graph is regular. In [9], it was proved that the edge connectivity of a connected vertex-transitive simple graph is equal to its valency. Thus, the 3-flow conjecture for vertex-transitive graphs asserts that every vertex-transitive simple graph of valency at least four is contained in NZ_3 . In this direction, the 3-flow conjecture was verified for Cayley graphs on abelian groups [11], nilpotent groups [10], dihedral groups [15], generalised dihedral groups [7], generalised quaternion groups [7], generalised dicyclic groups [1], groups of order pq^2 (p and q are two primes) (J. Zhang and Z. Zhang, 'Nowhere-zero 3-flows in Cayley graphs of order pq^{2} , submitted for publication) and two families of supersolvable groups [17]. Very recently, the first author and Zhou [18] proved that a graph of valency at least four is contained in NZ_3 if its automorphism group has a vertex-transitive nilpotent subgroup.

In [10], to study nowhere-zero 3-flows in Cayley graphs, Nánásiová and Škoviera introduced the method of decomposing a graph into a union of closed ladders. They proved that a Cayley graph of valency at least four on a group *G* is contained in NZ_3 if its connected set contains a central involution of *G*. They also proved that every Cayley graph of valency at least four on a group which is a direct product of a 2-subgroup and a subgroup of odd order is contained in NZ_3 . In this paper, we attempt to generalise the above two results to vertex-transitive graphs. We obtain the following two theorems.

THEOREM 1.1. Let Γ be a vertex-transitive graph of order twice an odd number and valency at least 4. Let G be a minimally vertex-transitive subgroup of the automorphism group of Γ . If G contains a central involution, then $\Gamma \in \mathcal{NZ}_3$.

THEOREM 1.2. Let Γ be a graph of valency at least four. If there exists a subgroup of Aut(Γ) which acts transitively on $V(\Gamma)$ and is a direct product of a 2-subgroup and a subgroup of odd order, then $\Gamma \in NZ_3$.

The proof of Theorem 1.2 relies on Theorem 1.1 and the main result of [18].

2. Preparations

Let Γ_1 and Γ_2 be two graphs. The *Cartesian product* $\Gamma := \Gamma_1 \Box \Gamma_2$ of Γ_1 and Γ_2 is the graph defined as follows:

- $V(\Gamma) = V(\Gamma_1) \times V(\Gamma_2);$
- $E(\Gamma) = V(\Gamma_1) \times E(\Gamma_2) \cup E(\Gamma_1) \times V(\Gamma_2);$
- each (u₁, e₂) ∈ V(Γ₁) × E(Γ₂) is an edge with ends (u₁, u₂) and (u₁, v₂), where e₂ is an edge in E(Γ₂) with ends u₂ and v₂;
- each $(e_1, u_2) \in E(\Gamma_1) \times V(\Gamma_2)$ is an edge with ends (u_1, u_2) and (v_1, u_2) , where e_1 is an edge in $E(\Gamma_1)$ with ends u_1 and v_1 .

Let C_n be the cycle of length n which has vertex set $\{1, \ldots, n\}$ and edge set $\{\{1, 2\}, \ldots, \{n - 1, n\}, \{n, 1\}\}$. Let K_2 be the complete graph of order two with vertex set $\{0, 1\}$. The graph $CL_n := C_n \Box K_2$ is called a *circular ladder*. The *Möbius ladder* M_n is a graph obtained from CL_n by replacing the edges $\{(1, 0), (n, 0)\}$ and $\{(1, 1), (n, 1)\}$ with $\{(1, 0), (n, 1)\}$ and $\{(1, 1), (n, 0)\}$, respectively (see Figure 1). A graph is called a *closed ladder* Γ , every edge of the form $\{(i, 0), (i, 1)\}$ is called a rung of Γ . We use $R(\Gamma)$ to denote the set of all rungs of Γ .

In [10], the method of decomposing a graph into a union of closed ladders was introduced to study nowhere-zero 3-flows in Cayley graphs. The following lemma, given in [7], is derived from the proof of [10, Theorem 3.3].

LEMMA 2.1. Let $\Gamma := \bigcup_{i=1}^{s} \Theta_i$ be a connected graph where every subgraph Θ_i is a closed ladder. If $E(\Theta_i) \cap E(\Theta_j) = R(\Theta_i) \cap R(\Theta_j)$ for any pair of distinct $i, j \in \{1, \ldots, s\}$ and each edge of $\bigcup_{i=1}^{s} R(\Theta_i)$ is contained in at least two closed ladders in $\{\Theta_1, \ldots, \Theta_s\}$, then Γ is contained in \mathcal{NZ}_3 .

A graph is said to be *even* if each of its vertices is of even valency. It is well known [2, Theorem 21.4] that every even graph is contained in NZ_k for all integers $k \ge 2$. Let Γ be a graph and E a subset of $E(\Gamma)$. We use $\Gamma - E$ to denote the subgraph of Γ with vertex set $V(\Gamma)$ and edge set $E(\Gamma) - E$. A subgraph Γ' of Γ is called a *parity subgraph* of Γ if $\Gamma - E(\Gamma')$ is even. It is also well known [2, Theorem 21.5] that a cubic bipartite graph is contained in NZ_3 . All that leads to the following obvious lemma.

LEMMA 2.2. Let Γ be a graph and Γ' a parity subgraph of Γ . If $\Gamma' \in NZ_3$, then $\Gamma \in NZ_3$. In particular, if every vertex of Γ is of odd valency and Γ' is a spanning cubic bipartite subgraph of Γ , then $\Gamma \in NZ_3$.

In [4], it was proved that the Cartesian product of two nontrivial connected bipartite graphs is contained in NZ_3 . This result was generalised in [13] by proving that the Cartesian product of every pair of graphs is contained in NZ_3 except when one factor has a cut edge and every block of another factor is a circuit of odd length. By using Lemma 2.1, we prove the following lemma.

FIGURE 1. CL_n and M_n .

LEMMA 2.3. Let Γ_1 be an even graph with minimum valency at least four and Γ_2 be an arbitrary graph. Then $\Gamma_1 \Box \Gamma_2$ is contained in NZ_3 .

PROOF. Let $\Gamma_{11}, \ldots, \Gamma_{1m}$ be all the connected components of Γ_1 . Then $\Gamma_1 \Box \Gamma_2$ is an edge-disjoint union of $\Gamma_{11} \Box \Gamma_2, \ldots, \Gamma_{1m} \Box \Gamma_2$. Therefore, $\Gamma_1 \Box \Gamma_2 \in NZ_3$ if and only if $\Gamma_{1i} \Box \Gamma_2 \in NZ_3$ for every $1 \le i \le m$. Since Γ_1 is an even graph with minimum valency at least four, Γ_{1i} is an even graph with minimum valency at least four, Γ_{1i} is an even graph with minimum valency at least four for every $1 \le i \le m$. Therefore, we assume that Γ_1 is connected (for otherwise, we consider its components). By Veblen's theorem [2, Theorem 2.7], every even graph is an edge disjoint union of cycles. Therefore, there is a family \mathcal{F}_1 of edge disjoint cycles of Γ_1 such that $\bigcup_{\Sigma \in \mathcal{F}_1} \Sigma = \Gamma_1$. Let \mathcal{F}_2 be the decomposition of Γ_2 such that every member of \mathcal{F}_2 is either a complete graph of order two or a trivial graph with just one isolated vertex in Γ_2 (note that every graph has such a decomposition).

Consider an arbitrary member $\Lambda \in \mathcal{F}_2$. If Λ is a trivial graph, then $\Gamma_1 \Box \Lambda$ is isomorphic to Γ_1 and therefore an even graph. Since every even graph is contained in \mathcal{NZ}_3 , we have $\Gamma_1 \Box \Lambda \in \mathcal{NZ}_3$. Now consider the case that Λ is the complete graph of order two. Set $\mathcal{F}_1 = {\Sigma_1, ..., \Sigma_s}$ and $\Theta_i = \Sigma_i \Box \Lambda$ for every $\Sigma_i \in \mathcal{F}_1$. Then $\mathcal{F} := {\Theta_1, ..., \Theta_s}$ is a family of circular ladders. It is obvious that $\Gamma_1 \Box \Lambda = \bigcup_{i=1}^s \Theta_i$. Moreover, $\Gamma_1 \Box \Lambda$ is connected as both Γ_1 and Λ are connected. Let $1 \le i < j \le s$. Since Σ_i and Σ_j have no common edge, $E(\Theta_i) \cap E(\Theta_j) = R(\Theta_i) \cap R(\Theta_j)$. Since the minimum valency of Γ_1 is at least four, every vertex of Γ_1 is contained in at least two cycles in \mathcal{F}_1 . It follows that each edge of $\bigcup_{i=1}^s R(\Theta_i)$ is contained in at least two members of \mathcal{F} . By Lemma 2.1, $\Gamma_1 \Box \Lambda \in \mathcal{NZ}_3$.

Set $\mathcal{F}_2 = \{\Lambda_1, \dots, \Lambda_t\}$. By the above discussion, $\Gamma_1 \Box \Lambda_i \in \mathcal{NZ}_3$ for every $\Lambda_i \in \mathcal{F}_2$. Since $\Gamma_1 \Box \Gamma_2$ is the edge disjoint union of $\Gamma_1 \Box \Lambda_1, \dots, \Gamma_1 \Box \Lambda_t$, we have $\Gamma_1 \Box \Gamma_2 \in \mathcal{NZ}_3$.

The following lemma is extracted from [18, Lemma 4.8].

LEMMA 2.4. Let Γ be a graph of valency five whose automorphism group contains a vertex-transitive subgroup G having a central involution z. Suppose that Γ has a

Nowhere-zero 3-flows

perfect matching M of which every edge is of the form $\{v, z(v)\}, v \in V(\Gamma)$. If Γ is an edge-disjoint union of M, Γ_1 and Γ_2 , where Γ_1 and Γ_2 are both spanning 2-regular subgraphs of Γ preserved by G, then $\Gamma \in \mathcal{NZ}_3$.

3. Proof of Theorems 1.1 and 1.2

PROOF OF THEOREM 1.1. Let Γ be a graph of order 2*n*, where *n* is an odd number. We assume that Γ is of odd valency as $\Gamma \in N\mathbb{Z}_3$ if Γ is even. Let *G* be a minimally vertex-transitive subgroup of the automorphism group of Γ and *z* a central involution of *G*.

We first prove that *z* does not fix any vertex of Γ . Otherwise, if z(v) = v for some $v \in V(\Gamma)$, then z(g(v)) = zg(v) = gz(v) = g(v) for all $g \in G$. Since *G* acts transitively on $V(\Gamma)$, it follows that *z* fixes all vertices of Γ . This contradicts the fact that *z* is not the identity automorphism of Γ .

Since *z* does not fix any vertex of Γ and $|V(\Gamma)| = 2n$, we conclude that *z* is a permutation factorising into *n* disjoint transpositions. Therefore, *z* is an odd permutation on $V(\Gamma)$ as *n* is an odd number. Let *H* be a subset of *G* consisting of all even permutations of *G*. Then $z \notin H$ and *H* is a normal subgroup of *G* of index 2. Since both $\langle z \rangle$ and *H* are normal in *G* and $\langle z \rangle \cap H = 1$, we get $G = \langle z \rangle \times H$.

Since G is minimally transitive on $V(\Gamma)$, we deduce that H is intransitive on $V(\Gamma)$. Let u be an arbitrary vertex of Γ . Then $|G:G_u| = |V(\Gamma)| = 2n$ and $|H:H_u|$ is a nontrivial divisor of 2n. Since $|H: H_u| = (1/2)|G: H_u| \ge (1/2)|G: G_u| = n$, it follows that $|H: H_u| = n$. Therefore, the action of H on $V(\Gamma)$ has two orbits. Let U be the orbit of u under the action of H on $V(\Gamma)$. Then z(U) is the orbit of z(u) under the action of H on $V(\Gamma)$ as zh = hz for all $h \in H$. Since $G = \langle z \rangle \times H$ acts transitively on $V(\Gamma)$, we have $U \cap z(U) = \emptyset$ and $U \cup z(U) = V(\Gamma)$. Let $\Gamma[U]$ and $\Gamma[z(U)]$ be the subgraphs of Γ induced by U and z(U), respectively. Then $\Gamma[U]$ and $\Gamma[z(U)]$ are isomorphic and have no common edges. Since U is the orbit of u under the action of H and H preserves $\Gamma[U]$, we conclude that $\Gamma[U]$ is a regular graph. Assume that $\Gamma[U]$ is of valency s. Since $\Gamma[U]$ and $\Gamma[z(U)]$ are isomorphic and have no common edges, $\Gamma[U] \cup \Gamma[z(U)]$ is an s-regular graph. Let Γ' be the graph obtained from Γ by removing all the edges of $\Gamma[U] \cup \Gamma[z(U)]$. Then Γ' is a regular bipartite graph with bipartition $\{U, z(U)\}$. Assume that Γ' is of valency t. Then Γ is of valency s + t. In particular, s + t is an odd number at least five. Since $\Gamma[U]$ is an s-regular graph of odd order, s is an even number and therefore *t* is an odd number.

By [2, Corollary 16.5], every regular bipartite graph has a perfect matching. Therefore, Γ' has a perfect matching. If $t \ge 3$, then, by removing a number of perfect matchings, one can get a spanning cubic bipartite subgraph Γ'' of Γ' which is also a spanning cubic bipartite subgraph of Γ . By Lemma 2.2, $\Gamma \in \mathcal{NZ}_3$.

From now on, we assume that t = 1. Then there exists a permutation μ on U such that $z\mu(v)$ is the unique vertex in z(U) adjacent to v for all $v \in U$. Since $z \in Aut(\Gamma)$, we see that z(v) is the unique vertex in z(U) adjacent to $\mu(v)$. Therefore, $\mu^2(v) = v$. It follows that μ fixes at least one vertex in U as the number n of vertices of U is odd.

J. Zhang and Y. Tao

Without loss of generality, assume $\mu(u) = u$. Then *u* is adjacent to z(u). Since *H* is transitive on *U* and zh = hz for all $h \in H$, we conclude that *v* is adjacent to z(v) for all $v \in U$. In other words, μ is the identity permutation. Note that $\Gamma[U]$ is an even regular graph of valency at least four. Let $\Sigma = \Gamma[U] \Box K_2$ be the Cartesian product of $\Gamma[U]$ and K_2 , where K_2 is the complete graph of order two with vertex set {0, 1}. By Lemma 2.3, $\Sigma \in \mathcal{NZ}_3$. Define a mapping ψ from $V(\Gamma)$ to $V(\Sigma)$ as follows:

$$\psi(v) = \begin{cases} (v, 0) & \text{if } v \in U, \\ (z(v), 1) & \text{if } v \in z(U). \end{cases}$$

It is straightforward to check that ψ is a well-defined bijection from $V(\Gamma)$ to $V(\Sigma)$. We further prove that ψ is an isomorphism.

Let v_1 and v_2 be two vertices of Γ . Since $\Gamma[U]$ is an induced subgraph of Γ , every edge in Γ joining two vertices in U is contained in $\Gamma[U]$. Therefore, if $v_1, v_2 \in U$, then by the definition of a Cartesian product, the number of edges in Γ joining v_1 and v_2 is equal to the number of edges in Σ joining $(v_1, 0)$ and $(v_2, 0)$. If $v_1, v_2 \in z(U)$, then $z(v_1), z(v_2) \in U$. Since $z \in Aut(\Gamma)$, the number of edges in Γ joining v_1 and v_2 is equal to the number joining $z(v_1)$ and $z(v_2)$. It follows that the number of edges in Γ joining v_1 and v_2 is equal to the number of edges in Σ joining $(z(v_1), 1)$ and $(z(v_2), 1)$. Now consider the case that one of the two vertices v_1 and v_2 is contained in U and another is contained in z(U). Without loss of generality, assume that $v_1 \in U$ and $v_2 \in z(U)$. Then

$$v_1$$
 is adjacent to v_2 in $\Gamma \iff v_2 = z(v_1)$
 $\iff v_1 = z(v_2)$
 $\iff (v_1, 0)$ is adjacent to $(z(v_2), 1)$ in Σ .

The discussion above implies that the number of edges joining v_1 and v_2 in Γ is equal to the number of edges in Σ joining $\psi(v_1)$ and $\psi(v_2)$. Therefore, ψ is an isomorphism from Γ to Σ . Since $\Sigma \in \mathcal{NZ}_3$, we have $\Gamma \in \mathcal{NZ}_3$.

PROOF OF THEOREM 1.2. Let Γ be a graph of valency at least four and *G* a subgroup of Aut(Γ) acting transitively on $V(\Gamma)$ and being a direct product of a 2-subgroup *Q* and a subgroup *H* of odd order. We assume that Γ is of odd valency as $\Gamma \in \mathcal{NZ}_3$ whenever the valency of Γ is even. Then Γ is of even order and it follows that *Q* is nontrivial.

We proceed by induction on the order |Q| of Q. By Theorem 1.1, $\Gamma \in \mathcal{NZ}_3$ if |Q| = 2. Now assume |Q| > 2. Suppose that the theorem is true for all graphs whose automorphism groups have a vertex-transitive subgroup which is a direct product of a 2-subgroup of order less that |Q| and a subgroup of odd order.

It is well known [12, Theorem 4.2] that every 2-group has a nontrivial centre. Let *z* be an involution contained in the centre of *Q*. Since $G = Q \times H$, we see that *z* is also contained in the centre of *G*. Therefore, $\langle z \rangle$ is a normal subgroup of *G* and *z* does not fix any vertex of Γ . Set $\tilde{v} := \{v, z(v)\}$ for every $v \in V(\Gamma)$ and $\tilde{V} := \{\tilde{v} \mid v \in V(\Gamma)\}$. Let $\Gamma[\tilde{v}]$ be the subgraph of Γ induced by \tilde{v} . Since *G* acts transitively on $V(\Gamma)$, it follows that $\Gamma[\tilde{u}]$ and $\Gamma[\tilde{v}]$ are isomorphic for every pair of vertices $u, v \in V(\Gamma)$. Set $\Gamma' = \bigcup_{\tilde{v} \in \tilde{V}} \Gamma[\tilde{v}]$

and $\Gamma'' = \Gamma - E(\Gamma')$. Then both Γ' and Γ'' are spanning subgraphs of Γ preserved by *G*. Therefore, Γ' and Γ'' are both vertex-transitive. Assume that the valency of Γ' and Γ'' are *s* and *t*, respectively. Then Γ is of valency s + t. In particular, s + t is odd.

Case 1: $s \ge 2$. Note that every connected component of Γ' is a graph with two vertices joined by *s* edges. Therefore, Γ' is a bipartite graph. If $s \ge 3$, then Γ' has a spanning cubic bipartite graph which is also a spanning cubic bipartite graph of Γ . It follows from Lemma 2.2 that $\Gamma \in \mathcal{NZ}_3$. If s = 2, then *t* is odd. By [3, Theorem 3.51], every vertex-transitive graph of odd valency has a perfect matching. Therefore, Γ'' has a perfect matching *M*. Since every connected component of $\Gamma' \cup M$ is a graph with two vertices joined by two edges, every connected component of $\Gamma' \cup M$ is a graph obtained from an even length cycle by adding a parallel edge to each edge of one of the two perfect matchings of this cycle. Therefore, $\Gamma' \cup M$ is a spanning cubic bipartite graph of Γ and it follows from Lemma 2.2 that $\Gamma \in \mathcal{NZ}_3$.

Case 2: s = 0. In this case, \tilde{v} is an independent set of Γ for every $\tilde{v} \in \tilde{V}$. Use $\tilde{\Gamma}$ to denote the graph with vertex set \tilde{V} and every pair of vertices \tilde{u} and \tilde{v} being joined by ℓ edges if and only if the subgraph $\Gamma[\tilde{u} \cup \tilde{v}]$ of Γ induced by $\tilde{u} \cup \tilde{v}$ is ℓ -regular (we treat an independent set as a 0-regular graph). Then $\tilde{\Gamma}$ is a graph of odd valency at least five and Γ is a cover (see [11]) of $\tilde{\Gamma}$. Furthermore, Aut($\tilde{\Gamma}$) contains $G/\langle z \rangle$ as a subgroup acting transitively on the vertex set \tilde{V} of $\tilde{\Gamma}$. Note that $G/\langle z \rangle = Q/\langle z \rangle \times H\langle z \rangle/\langle z \rangle$ and $Q/\langle z \rangle$ is of order less than Q. By the induction hypothesis, $\tilde{\Gamma} \in N\mathbb{Z}_3$. It is known [11, Proposition 2.3] that if a graph admits a nowhere-zero 3-flow, then each of its covers does too. Therefore, $\Gamma \in N\mathbb{Z}_3$.

Case 3: s = 1. In this case, Γ' is a perfect matching of Γ . Since every group of odd order is solvable, H is a solvable group. Let H' be the derived subgroup of H. Then H' is a proper subgroup of H and normal in G. If H is abelian, then $G (= Q \times H)$ is nilpotent. By [18, Theorem 1.1], $\Gamma \in \mathcal{NZ}_3$. Now assume that H is nonabelian. Then H' is nontrivial and $G/H' = QH'/H' \times H/H'$ is nilpotent. Use \bar{v} to denote the orbit of v under the action of H' and $\Gamma[\bar{v}]$ the subgraph of Γ induced by \bar{v} . Then $\Gamma[\bar{v}]$ is a vertex-transitive graph of odd order as H' acts transitively on $\bar{\nu}$. Therefore, $\Gamma[\bar{\nu}]$ is a regular graph of even valency, say r. Set $\Sigma = \bigcup_{v \in V(\Gamma)} \Gamma[\bar{v}]$. Then $\Gamma' \cup \Sigma$ is of valency r + 1 and the automorphism group of every connected component of $\Gamma' \cup \Sigma$ contains $\langle z \rangle \times H'$ as a subgroup acting transitively on the vertex set. If $r \ge 4$, then by Theorem 1.1, every connected component of $\Gamma' \cup \Sigma$ is contained in \mathcal{NZ}_3 and therefore, $\Gamma' \cup \Sigma \in \mathcal{NZ}_3$. Since $\Gamma' \cup \Sigma$ is a parity subgraph of Γ , it follows from Lemma 2.2 that $\Gamma \in \mathcal{NZ}_3$. If $t - r \ge 4$, then the subgraph $\Gamma^* := \Gamma - E(\Sigma)$ of Γ is of odd valency at least five. Let $\overline{\Gamma^*}$ be the graph with vertex set $\{\overline{v} \mid v \in V\}$ and every pair of vertices \overline{u} and \overline{v} being joined by ℓ -edges if and only if $\bar{u} \cup \bar{v}$ induces a ℓ -regular subgraph of Γ^* . Then Γ^* is a cover of $\overline{\Gamma^*}$. Note that Aut($\overline{\Gamma^*}$) contains $QH'/H' \times H/H'$ as a subgroup acting transitively on the vertex set. Since $QH'/H' \times H/H'$ is nilpotent, it follows from [18] that $\Gamma^* \in \mathcal{NZ}_3$. By [11, Proposition 2.3], $\Gamma^* \in \mathcal{NZ}_3$. Since Γ^* is a parity subgraph of Γ , by Lemma 2.2, we have $\Gamma \in \mathcal{NZ}_3$. Now we assume that both *r* and *t* – *r* are less than four. Since $t \ge 4$ and r is even, we have r = t - r = 2. Then Σ and $\Gamma'' - E(\Sigma)$ are both spanning 2-regular subgraphs of Γ preserved by G. Note that Γ' is a perfect matching of which every edge is of the form $\{v, z(v)\}$. Note also that Γ is an edge-disjoint union of Γ', Σ and $\Gamma'' - E(\Sigma)$. By Lemma 2.4, $\Gamma \in \mathcal{NZ}_3$.

References

- [1] M. Ahanjideh and A. Iranmanesh, 'The validity of Tutte's 3-flow conjecture for some Cayley graphs', *Ars Math. Contemp.* **16** (2019), 203–213.
- [2] J. A. Bondy and U. S. R. Murty, Graph Theory (Springer, New York, 2008).
- [3] C. Godsil and G. Royle, Algebraic Graph Theory (Springer, New York, 2004).
- W. Imrich and R. Škrekovski, 'A theorem on integer flows on Cartesian products of graphs', J. Graph Theory 43 (2003), 93–98.
- [5] F. Jaeger, 'Flows and generalized coloring theorems in graphs', J. Combin. Theory Ser. B 26 (1979), 205–216.
- [6] M. Kochol, 'An equivalent version of the 3-flow conjecture', J. Combin. Theory Ser. B 83 (2001), 258–261.
- [7] L. Li and X. Li, 'Nowhere-zero 3-flows in Cayley graphs on generalized dihedral group and generalized quaternion group', *Front. Math. China* 10 (2015), 293–302.
- [8] L. M. Lovász, C. Thomassen, Y. Wu and C.-Q. Zhang, 'Nowhere-zero 3-flows and modulo k-orientations', J. Combin. Theory Ser. B 103 (2013), 587–598.
- [9] W. Mader, 'Minimale N-fach kantenzusammenhängende Graphen', Math. Ann. 191 (1971), 21–28.
- [10] M. Nánásiová and M. Škoviera, 'Nowhere-zero flows in Cayley graphs and Sylow 2-subgroups', J. Algebraic Combin. 30 (2009), 103–110.
- [11] P. Potočnik, M. Škoviera and R. Škrekovski, 'Nowhere-zero 3-flows in abelian Cayley graphs', Discrete Math. 297 (2005), 119–127.
- [12] J. J. Rotman, An Introduction to the Theory of Groups, 4th edn (Springer, New York, 1995).
- [13] J. Shu and C.-Q. Zhang, 'Nowhere-zero 3-flows in products of graphs', J. Graph Theory 50 (2005), 79–89.
- [14] C. Thomassen, 'The weak 3-flow conjecture and the weak circular flow conjecture', J. Combin. Theory Ser. B 102 (2012), 521–529.
- [15] F. Yang and X. Li, 'Nowhere-zero 3-flows in dihedral Cayley graphs', *Inform. Process. Lett.* 111 (2011), 416–419.
- [16] C.-Q. Zhang, Integer Flows and Cycle Covers of Graphs (Marcel Dekker Inc., New York, 1997).
- [17] J. Zhang and S. Zhou, 'Nowhere-zero 3-flows in Cayley graphs on supersolvable groups', Preprint, 2022, arXiv:2203.02971.
- [18] J. Zhang and S. Zhou, 'Nowhere-zero 3-flows in nilpotently vertex-transitive graphs', Preprint, 2022, arXiv:2203.13575.

JUNYANG ZHANG, School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, PR China e-mail: jyzhang@cqnu.edu.cn

YING TAO, School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, PR China e-mail: 2290682363@qq.com