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ABSTRACT• 

Present ideas concerning the electric heating of the solar corona are 
reviewed. We consider in some more detail the dissipation of MHD waves in 
strong horizontal gradients of the Alfven velocity. Then we consider the 
evolution of DC currents in the solar corona. Some theories aiming at the 
evaluation of the net rate of energy dissipation by such mechanisms will 
be described. A short account will be given of a recent analytical study 
based on a generalization of Taylor's hypothesis concerning the evolution 
of magnetic helicity in plasma with a large magnetic Reynolds number. 

1. INEFFICIENCY OF ACOUSTIC HEATING 

The fact that the solar corona is made of a very hot (2 10 6 K), tenuous 
plasma (n = 10 1 0 cm - 3) has been an intriguing fact for a number of years. 
The heating of this outer atmosphere of the sun, and of other stars as 
well, poses a theoretical question that has not yet received an answer. 
This heating results from the dissipation of mechanical motions, as for 
example MHD waves generated by the subphotospheric convection zone of the 
star, or from the continuous release of magnetic energy pumped into the 
solar corona by the stresses exerted in the photosphere and convection 
zone on the low lying parts of coronal magnetic field lines. Up to some 
five years ago, the standard belief was that chromospheric and coronal 
heating were the result of the dissipation of sound waves emanating from 
the sun's convection zone, steepening into shocks when reaching the 
tenuous top of the atmosphere. This classical scenario (Schatzman, 1949) 
has been elaborated in great detail, and is still a very viable candidate 
for understanding the heating of the sun's chromosphere. For a review, 
see Kuperus et al. (1981) and Ulmschneid.er (1981). However, this view has 
been strongly modified, concerning the corona, when the Skylab X-ray pic­
tures have shown a solar corona heavily structured by its magnetic field 
in the form of loops. Also, when reasonably reliable measures of the flux 
of accoustic energy emanating from the dense atmosphere towards the corona 
were made, they revealed that this energy flux is insufficient by a factor 
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approximately 10 to feed the energy lost by the X and UV radiating corona 
Athay and White, 1978 ; Mein et al. 1980 ; Schmieder and Mein, 1980). 
Results by Mein's and Schmieder include phase information and give a mea­
sured flux of 4 10 3 ergs/cm2/fi at 1500 km, to be compared to the 3 10 5 

ergs cm - 2 s"1 needed to feed the radiative losses above this level. 

2. DISSIPATION OF CURRENTS REQUIRES ENHANCED DAMPING 

Currents are driven in the solar corona as a consequence of the motions of 
the heavy atmosphere (6 > 1) which move the footpoints of coronal field 
lines more or less at random. If the characteric time of these motions is 
longer than the Alfven transit time along closed loops, the coronal mag­
netic configuration continuously adapts to these changes at the boundary 
through series of magnetohydrostatic equilibria, at least if such equi­
libria can be found. These configurations normally carry currents, and 
the permanent dissipation of these permanently re-created currents could 
be the cause of coronal heating. If motions of the boundary are faster 
than an Alfven transit time, MHD oscillations are set up in the corona. 
These carry (A.C.) currents too. Of course these oscillations may propa­
gate, be evanescent or form standing waves according to the nature of the 
coronal environment. The dissipation of these oscillations could also 
give rise to coronal heating. 

However, both of these ideas share a common difficulty: dissipation 
is impossible by "normal" dissipative processes. This is particularly ob­
vious for DC currents. The time scale for dissipating currents by Joule 
effect is not less than 10 6 years. Similarly, MHD waves in an homogeneous 
medium having the properties of the solar corona are damped on very long 
time scales (Uchida and Kaburaki, 1974). In brief, if the corona is really 
heated by electric currents, nature must have invented some trick to 
hasten their dissipation. Much of the recent and past work on solar coro­
nal heating has been concerned with the understanding of that trick. 

It is not possible to review here most of the ideas which have been 
considered, some of which were marginally successful, as, far example the 
theory based on the non-linear interaction of counterstreaming Alfven 
waves, coupling to form a slow mode wave which is efficiently damped 
(Wentzel, 1974 ; Kabuaki and Uchida, 1971, 1974 ; Chin and Wentzel, 1972). 
This theory was not pursued after Wentzel (1976), recognized that it could 
meet the observational requirements only for loops having magnetic fields 
less than 10 G., the effect being extremely sensitive to the value of the 
magnetic field. 

In a similar way Hollweg et al. (1982) have studied the possibility 
that Alfven waves in flux tubes could non-linearly steepen into shock 
waves in the chromosphere and enter in the corona as so called switch-on 
shocks. The heating due to trains of such shocks give rise to the follow­
ing heating rate per unit volume (Hollweg, 1982): 

Qswitch on shocks = B^/(32TTT) . (Av/v A) 4 
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where Av is the transverse velocity jump in the shock and x is the period 
of wave trains. The effect scales as B~ 2 and is then found effective only 
in weak field regions, like coronal holes, if T is small (lOCs) and Av 
.large enough (200 km/s, say) (Hollweg, 1983b). The situation in this 
respect is similar to that reported by Wentzel for weak turbulence effect 
on Alfven waves. The present trend in research is to improve on the geo­
metrical aspects of all these phenomena, because of the strong coronal 
structuration due to gravitationnal and magnetic fields. WKB, as a rule, 
is a very poor approximation, and quasi static evolution is heavily domi­
nated by the magnetic configuration. 

3. WAVE ACCESS TO THE SOLAR CORONA: REFRACTION AND REFLECTION 

Ignoring for conciseness the problem of wave generation (Unno, 1964 ; 
Stein, 1968 ; Ulmschneider, 1981), it is important to recognize the ex­
treme importance of wave reflection and refraction at the chromosphere-
corona interface. In a low 6 plasma, for example, fast modes obey the 
dispersion relation w 2 = k 2 v̂ . Splitting k into an horizontal (conserved) 
component k H and a vertical component k v yields k 2 = u)2/vy - kfj. This implies 
wave evanescence for large enough v A, which is actually the case for the 
solar corona. Fast waves are trapped in the sun's low atmosphere. Slow 
mode and Alfven waves on the other hand are chanelled by the magnetic 
field. 

However, even for field-aligned waves, non WKB effects produce strong 
reflection. Actually the wave length of oscillations of any given period 
increases enormously as it propagates into a more tenuous plasma, because 
c s and v A increase. As a rule, the wavelength becomes much larger than 
the scale height, and a full wave description should be considered. These 
effects have been considered in a series of papers by B. Leroy, S.Schwarz 
and N. Bel (Leroy and Bel (1979); Leroy (1980), (1981); Bel and Leroy 
(1981); Leroy and Schwarz (1982); Schwarz and Leroy (1982) in A model in­
cluding gravity and a vertical magnetic field. These authors found that 
the escaping flux does not exceed some 10^ ergs cm"2 s _ 1 in the form of 
slow modes for large vertical photospheric motions of lOOm/s in a field 
of 3000 G, and is smaller for weaker fields. They similarly found a high 
reflectivity for Alfven waves of periods in excess of 100 to 1000 seconds. 

The medium has also large horizontal gradients and coronal loops 
have two feet. Hollweg (1983) has studied wave propagation in loop models 
consisting of tubes of constant Alfven velocity (the coronal part) and 
two ends where the Alfven velocity increases exponentially to infinity. 
He considers a transmission-reflection problem, with outgoing waves only 
on one side. The interesting new result is that the transmission coeffi­
cient in the region of incoming waves is very large at resonances of the 
coronal section, defined by u) R e s = n TT v A c o p/L. The transmission resonances 
have a width which reflects the rate at which energy leaks out of the 
Alfven-resonant cavity. The associated quality Q = a)Res/Au), is found equal 
TO L / 4 i T h , where H I S the scale height of the atmosphere bordering the 
CORONAL S E C T I O N , AND I S T Y P I C A L L Y OF THE order of 50. Hollweg estimates 
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that, though the loop picks a small part of the incoming spectrum, due 
to the resonance, the energy flux entering it may be sufficient for feed­
ing its radiative losses. Actually if P is the incident power, with band-
with B, T the maximum transmission coefficient, the loop receives a ' max ' ^ power : 

F = P T ^ 1 
max B 2 

P may be estimated from photospheric fluctuations and flux divergence: 
o / 2 \ Bcor c fi -2 -1 P = 2 ( p , , v , , ) v A , , - 1.5 10 ergs cm s phot phot Aphot Bphot & 

With B = 0.1 s - 1 , Q = 1/50, F/P = 0.02 and 27r/o)Res = 1000 seconds, 
Hollweg finds F - 3 10 6 ergs cm - 2 s _ 1 for the first resonance, which is 
large enough. 

An interesting effect of refraction of fast mode waves in the corona 
has been discussed by Habbal, Leer and Holtzer (1979). These authors pos­
tulate the presence of coronal fast modes with very short periods, of the 
order of several seconds, and show that these waves tend to focus into 
regions of smaller v A. So, even if the wave flux were uniform at the base 
of the corona, it could converge to heat selective regions. This would 
solve the apparent paradox that an isotropically propagating wave-mode 
could produce field-aligned heterogeneities. This is beautifully shown 
by Zweibel (1980). However, as shown before, the presence of a high flux 
of fast modes in the corona is questionable. 

4. WAVES IN MAGNETICALLY STRUCTURED MEDIA 

Much of the recent literature has been concerned with wave motions in a 
magnetically structured corona, with large horizontal gradients of the 
Alfven velocity. The new feature, in its simplest expression, is that two 
media with different Alfven velocity, in contact at a discontinuity may 
propagate surface waves along their interface. These modes decay exponen­
tially on both sides of the interface, and propagate along the interface, 
in the limit c^ >> v A at a velocity given by: 

w Bl + B 2 

k% ^ o ( p l + p 2 } 

See Uberoy (1972), Wentzel (1979 a-b), Ionson (1978). More elaborate struc­
tures (sheets or tubes) have been examined for wave properties (Spruit 
(1981), Roberts (1981); Edwin and Roberts (1982); Roberts and Webb (1979); 
Webb and Roberts (1980a-b)). These waves are dispersive in the presence 
of gravity, and obey a Klein-Gordon type of equation (Rae and Roberts 
(1982). They turn non-linearly into solitons (Roberts and Mangeney, 1982), 
which propagate at velocities in excess of cT = VA cs / ̂  V A + C S ^ * This 
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phenomenon may delay shock formation. But for effects considered in the 
next chapter, surface waves dissipate little in the body of the plasma it­
self (Gordon and Hollweg, 1983). 

5 EFFECT OF A FINITE GRADIENT OF ALFVEN VELOCITY 

New important effects arise if we consider wave propogation in a region 
where the Alfven velocity is inhomogeneous. The standard case considered 
is an inhomogeneity in the x-direction, with straight field lines in the 
z-direction. If we consider approximately incompressible motions, the wave 
equation splits into two parts, according to the polarization of velocity 
fluctuation (along e"y or along e~x). 

(a) v = ey v(x) exp i (k^y+kj, z-cot) 
2,2 2, 

7A ( • ( a) -k,j v A (x) ) v (x ) = 0 

(b) v = ex v(x) exp i (k^y+k^ z-tut) 
d / 2 i 2 2 t w (^ 2 , 2 ^ t 2 i 2 2 ( \ ^ ^ — (a) -k t | v (x)) — = (k̂ +kg, ) (u) -k ) ( v A(x)) v 

We refer to (a) as shear Alfven waves and (b) as MHD waves. The solution 
for case (a) is simply: 

A 

v(x) = v w 6 (x-xj 

where x is the location of the Alfven resonance, defined by: 
03 

03 = k . v (x ) 
•I A 03 

This means that each magnetic surface oscillates at its own eigenfrequency, 
independently of the neighbouring surface. For a given k u, there is then 
a continuum of (singular) modes, with frequencies between 03 = k„ v̂ (-°°) 
and 0 3 + = k ̂  v̂ (+°°) . The case (b) (MHD waves) is more tricky; because the 
wave equation is singular in the vicinity of the Alfven resonant point. 
It is noteworthy that this equation also arises in the study of plasma 
oscillations in an inhomogeneous plasma. Simply k ,| v A(x) is replaced by 
the local plasma frequency, u)p(x). Barston (1964) has shown that this 
equation admits also a continuum of modes for a given k ̂  , with 03 between 
03_ and 0 3 + . These modes, however, are singular in the vicinity of their 
Alfven resonant point, where they behave like 

"v = log I x - x I (x>x ) 
03 03 

V = log I X - X I + i 7T (x<x ) 
03 03 

As in other similar problems, these singular modes can be used to con­
struct mode packets which are perfectly regular. Now, how do we recover 
the surface mode in the limit of an infinitely sharp interface? This point 
has given rise to some controversy in the literature. It all started with 
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the work of Sedlacek, who solved the initial value problem for the 
equation: 

3x 3 t 8x 3 t ' 

by Laplace transform method. Disregarding mathematical details, it suf­
fices here to say that the continuum of modes introduces cuts in the com­
plex Laplace variable plane. On inverting the Laplace transform of the 
solution, the Bromwich contour is displaced from the original plane into 
other Riemann sheets connected to it. Sedlacek has found that one of these 
sheets contains a pole given approximately, for a sharp but finite tran­
sition (kj/ a << 1) , by: 

In the limit k a o, this pole obviously represents the surface wave. 
So any surface wave propagating on a finite thickness discontinuity damps 
in time. There has been some controversy in the literature concerning the 
question as to whether this damping coefficient really represents "true" 
damping (Lee, 1980) because the equations from which we start are non 
dissipative. It is fair to say that this controversy is now quite com­
pletely resolved. Perhaps the best account of it is the paper by Rae and 
Roberts (1981) which gives a detailed description of the evolution of an 
initial disturbance. It is shown there that the surface wave decays be­
cause it couples to ordinary, field aligned, Alfven modes in the inner 
part of the interface. There is no dissipation of the wave strictly 
speaking, but a conversion to the continuum of Alfven waves. However these 
waves rapidly phase-mix, and eventually damp, even if the dissipative 
coefficients like viscosity are very small. This behaviour is well known 
to laboratory plasma physicists (see for example Tataronis and Grossmann, 
1973). We come back to wave damping by phase mixing, for the simpler case 
of shear Alfven waves, below. At this point, it is perhaps useful to 
trace a parallel between these phenomena and the Van Kampen treatment of 
plasma waves propagation in hot plasmas (see Ecker, 1972, Ch. III). In 
this case too, eigenmodes form a continuum for a given k. They can be 
used to solve initial value problems, where the Laplace method discovers 
a damping (Landau damping) which is not dissipation in the thermodynamical 
sense of the word, but results from phase mixing of Van Kampen modes. Of 
course, for most practical purposes, Landau damping behaves like true 
damping. So does the dissipationless damping found here. Barston modes 
play the role of Van Kampen modes. Phase mixing is due to a spread of 
phase velocity with x, instead of v in the Landau problem. Sedlacek's 
solution is akin to Landau's. 

Phase mixing in inhomogeneous structures is an ubiquitous phenomenon, 
which is in no way related exclusively to surface wave damping. The really 
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relevant problem to treat is to find the response of an inhomogeneous 
structure excited at its base by random given motions. This problem is 
considered in the next section in more detail, for the simple case of 
shear Alfven waves (Heyvaerts and Priest, 1983). 

6. HEATING BY PHASE MIXING OF SHEAR ALFVEN WAVES 

We consider an equilibrium which is laterally stratified, with an Alfven 
velocity v A(x), and a field B 0(x) ez. Modeling open structures we con­
sider a boundary surface at z = o, where the fluid motion, in the y direc­
tion, is assumed to be prescribed, or, when we model closed loops, we add 
a second boundary at z = I , where the fluid motion is also prescribed. 
We assume the coronal fluid (region z > o or o < z < H for, resp., open 
and closed configurations) to be weakly dissipative. The equation of 
motion, for small dissipation is then found to write: 

2 2 2 2 3 v 2, , 3 v ,3 3 , 3v 
~2 = V X ) ~2 + V

 ( ~ 2 + ~Z ] it 3t 3z 3x 3z 
where v is the sum of kinematic viscosity and ohmic diffusity. In the case 
of an open configuration, it is convenient to consider an harmonic excita­
tion, coherent on the inhomogeneity scale, at z = o. Neglecting dissipa­
tion, this excitation will propagate at the velocity v A(x), and as the 
altitude z grows these oscillations will become more and more out of 
phase. In closed configurations, it is the parallel wavelength which is 
fixed, and stationnary oscillations excited in this resonant cavity pro­
gressively phase-mix when time elapses. These oscillators are coupled by 
weak friction. It is possible to approximately solve equation above. The 
most interesting case is perhaps that of a closed structure with imposed 
boundary motions. Separating the boundary motion by putting: 

v(x,z,t) = v(x,o,t) + ^ (v(x,&,t) - v(x,o,t))+ w(x,z,t) 

and analyzing w in Fourier series in z on the interval (o,H) (only sine 
terms contribute), we get for the time dependent coefficients b (x,t) 
the equation (fin = 2 n i T v (x)/I) : 

9 2 d 2 n+1 2 

— + fl2(x) b - v ^ — — b = 1 ^ 1 (v(x,o,t) - v(x,*,t)) 
3t 3x 3t nir 3t 

This is the equation of a continuum of forced oscillators (indexed by x), 
weakly coupled by friction. An approximate solution can be found, because 
in the limit of small damping and large phase mixing (ftn(x)t»l), the 
Green function is approximately given by: 

2 
. sinfi(x)t f v 3 . dft. , 

G ( t ) = a(x)t exp ( - - t ( - ) ) 
Waves of frequency Q damp in a time 
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R = 6 1/ 3 (v(^) 2) Damp dx 
-1/3 

Putting dft/dx = Aw/a, where a is the thickness of the inhomogeneous re­
gion, we see that the damping time is a multiple of the phase coherence 
loss time, (Aw) - 1 : 

2 1/3 ,6A(joa x 1 
T = ( ) — 
Damp v AGO 

The dimensionless quantity in parentheses above is a Reynolds number, 
R e - 6oja2/v, approximately equal to 10 5, typically. The damping time is 
then around 10 periods, and the quality factor near 10-20. However, as 
shown below, this laminar calculation gives an upper limit to the damping 
time. Having obtained the solution for b 's, and hence for v(x,z,t) in 
terms of its drive v(x,o,t) and v(x,&,t), it is a simple matter to cal­
culate the average rate of energy dissipation: 

- 1 / x i dz ,3v 2 

w = - P(x) v ;o — (— ) 
The calculation gives the time Fourier transform of (3v/3x) in terms of 
that of its drive in the form of a response-function: 

(|̂ ) = Z(x,u>) (v(z=o) - v (z=l))w 

When (v(z=o)-v(z=£)) is a stationnary random process with a power spec­
trum Pv(x,o>) the time average of W can be expressed as: 

W = 2 /°° doj | Z(x,u>) | 2 P (x,a>) 
o v 

After some algebra, we get the total heating rate of a slab of width L 
in they direction: 

CO + C O 

W = Z U L f dx) - p(x) SI (x) P (x,ft (x)) 
_ o o TT n v n 

n=l 
M is a pure number of order unity, and P v is the power spectrum of velo­
city at the border. This is an important result. It shows that in this 
limit of strong phase mixing and weak damping, the average rate of energy 
dissipation is independent of viscosity, confirming earlier results of 
Ionson (1982). The heating rate, in that case, depends only on the pro­
perties of the photospheric drive. Ionson's view sheds another light on 
this question. We review it now. 

7. THE LRC CIRCUIT ANALOGY 

Ionson (1982) took another, simplified, look at the same problem. His 
starting point is also our basic equation, with two-sided boundary con­
ditions, except that he expressed the equation for the z component of 
the electric current, instead of velocity. As we do, he also separates 
that part which describes the corona from that part which describes the 
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photospheric drive. For the coronal part, he obtains the equation: 
3 2j 2/ \ 3 2j 3 2 3j — - = v (x) — - + v — 2 A 2 2 3t dz dx 8t 

which is just the same as Heyvaerts and Priest's (1983). He then proceeds 
to average this equation over the entire loop volume. Taking into account 
the photospheric driving terms, he reduced his wave equation into an 
oscillating LRC equivalent circuit equation. 

_ d 2I n dl I dE L — - + R — + - = — 
dt dt C dt 

where L - R = R , , , + jjnftv/a2, C = & / M ^ T T 2 V 2 and E = TT a v , . B . „ po » photosphere ' » po A phot phof 
These are respectively the inductance of the loop circuit, its total 
resistance (photospheric plus coronal), its capacity (mainly storage of 
mechanical energy), and the applied equivalent driving voltage. The cir­
cuit has an eigen frequency OJ q = (LC)"1/2, obviously the basic period of 
coronal Alfven waves, and it has a quality factor due to dissipation: 

Q " R V C V c 

Note that the effect of the radial structure in the loop (different 
Alfven velocity as a function of radius, effects of phase mixing) have 
been blurred in the averaging procedure. However the formulation has the 
advantage of simplicity and globality. For example the average rate of 
energy dissipation in the loop is given by: 

W = < R, I 2 > = R.. 2 /°° P X ( O J ) dw loop loop o I 
where P J ( O J) is the power spectrum of I, which is related to that of the 
drive by the resonant circuit equation: 

E u ) , 2 

PT(o>) - I I(a>) 
1 + l Q ( — ) 

a>0 
0) 

Putting this is the expression for W, and taking into account the fact 
that the resonance function has bandwith which scales as R, we find again 
the result that underdamped loops dissipate at a rate independent of 
viscosity. Both these results show that, for underdamped loops, the velo­
city power spectrum of the photosphere maps into the loop properties. 
Given such a spectrum and solving the thermal equilibrium problem we ob­
tain satisfactory results (Ionson, 1982), which obey the well known 
scalling laws (Rosner et al. 1978; Serio et al. 1981). Martens and Kuperus 
(1982) show that such a heating causes a surprising behaviour of loops 
thermal equilibrium, with catastrophic changes in the X-ray visibility 
of loops as they lengthen. 
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8. PHASE MIXING AND TURBULENCE 

The phase-mixed flow in the Alfven waves may well not remain laminar es­
pecially when the mixing is quite complete. This flow has been examined 
for stability to the Kelvin-Helmholtz and tearing perturbations. The 
analysis has been restricted to perturbations developing faster than the 
wave period, and was local. Without going into details, it suffices to 
say that propagating waves are stable, but that standing waves very 
easily suffer the K.H. instability at velocity antinodes. The order of 
magnitude of the growth rate is (Heyvaerts and Priest, 1983): 

loop direction. This flow ceases then to be laminar when kj_has increased 
due to phase mixing up to the point y K H > u). This defines naturally a 
Kelvin-Helmholtz stability time. After that time the flow becomes turbu­
lent. For any reasonable set of parameters this time is less than, or 
equal to a couple of wave periods. The important consequence is that 
standing Alfvenic oscillations in inhomogeneous loops must be turbulent. 
This of course should reduce quite substantially the effective damping 
time (Heyvaerts and Priest, 1983). Hollweg (1983) has estimated the 
volumetric heating rate to be expected from a Kolmogoroff cascade. For 
an observed <v 2> 1/ 2 in the corona of 30 km/s, this rate is 8 10 - Z f ergs 
cm - 3 s_1,or an equivalent flux of 8 10^ ergs cm - 2 s _ 1 , of the right order 
of magnitude to heat active region coronal loops. 

9. HEATING BY D.C. CURRENTS: GLOBAL ENERGY BALANCE 

An alternative class of theories of coronal heating is based on the idea 
that a part of the energy stored in the corona as a result of slow, quasi-
static evolution be permanently released. It is easy to convince one self 
that the energy flux which flows to the corona in that form ( i t is actu­
ally a Poynting flux) may be just of the right order of magnitude, i f the 
corona were able to get rid of that energy into heat at the same pace. 
Consider for example a loop of length £, radius R and longitudinal field 
B . Assume that as a result of boundary motions this loop is twisted 
by an angle y It acquires an azimutal component of B, B 0 say, approxi­
mately equal to xB || (R/&) and the stored magnetic energy augments by 
AW = (Bjj/8TT) (R2/fi,2) T TR 2 £ X 2- This process takes place in a time t = Rx/Av 
where Av is the difference in velocity between the two sides of the loop, 
i.e. that part which induces twist. Then t = xR/(R|Vv|) ~ | W | _ 1 , and 
the rate of energy transfer to that loop is (<t> is the loop's flux): 

W - AW/t = * - B g « _ |W | 
8 T T I 8 T T I 

which corresponds to an average flux: 
? ? 

F = W / T T R = ( x / 8 I R ) B J ( R / O R | V V | 
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For B = 100 G, R = 5000 km, 1 = 50 000 km, | Vv | = (1km s-^/lOOO km = 
10" 3s" 1, x = 2TT, we get F = 10 7 ergs cm"3 s" 1. The energy is sufficient. 
The problem is how to dissipate it quickly enough. Some authors simply 
assume the possibility to exist. Sturrock and Uchida (1981) elaborate on 
the preceding derivation by recognizing that boundary motions are not 
persistent but stochastic, so that loops are successively twisted and un­
twisted. If the correlation time tc of the boundary motion is short as 
compared to the dissipation time tD, the state of twist of the loop ran­
dom walks instead of increasing continunously. The stored magnetic energy 
of a loop twisted by an angle x» i s : 

w(x) = \ x2 

8TT I 

as this quantity is quadratic in x> it increases in time when x random 
walks at the rate : 

2 2 d<w> _ 1 <j> <Ax > 

2 
dt 8TT i At 

where <Ax2/At> is given in terms of the correlation function of the local 
angular velocity of the fluid at the base of the loop. If the coherence 
time of these motions is t Q : 

. _ o „ A < > = 2 <OJ > t, At c 
Hence the heating rate is: 

d<w> ^ 2 , 
— - — = <U) > t d t IT y & c r o 

When entered into a thermal balance equation, scaling laws in agreement 
with data are also obtained. 

Parker (1981a-b,1983a-b) makes it convincing that complex boundary 
motions must tangle the coronal field in such a way that a great many 
current sheets spontaneously form in the overlying corona. These sheets 
must suffer rapid reconnection, so relaxing continuously the amount of 
energy brought to the corona as a result of work done on the foot points 
of magnetic field lines. The estimation of this work is straightforward. 
If B is the vertical component of the field and Bj_ its horizontal com­
ponent which, after stresses have accumulated for a time t, is of order 
B^_= Bxt/Jl, where w is a typical velocity in the photosphere, then the 
work done per unit surface against the stress B^/y0 is: 

T - . BBx B 2 2 F = w = w t 

This is the vertical component of the Poynting flux as well. Parker es­
timates, from observation w = 0.4 km/s, using Smithon studies (1973) of 
the motion of field knots in the photosphere, and he estimates the time 
by the condition that reconnection has time enough to relax the stress 
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due to field line tangling. He finds, putting t = h/v R g c, where h is the 
tube thickness and v R e c some reconnection velocity, an equivalent heating 
flux (Parker 1983b): 

B 2 , w N / h N F = w — -y v % o Rec 

Perhaps the most interesting contribution of this series of papers is the 
detailed demonstration that complex boundary motions must create current 
singularities and lead to fast dissipation. These results should be put 
in parallel to those of Syrovatskii (1978) and Bobrova and Syrovatskii 
(1979) who have obtained similar conclusion for force free fields. In 
interchange (Uchida and Sakurai, 1977) or the tearing in closed magnetic 
structures (Galeev et al. 1981) could concur to create fine scale struc­
tures and provoque fast magnetic energy release by reconnection. 

10. HEATING BY COMPLEX RECONNECTION: THE ROLE OF GLOBAL INVARIANTS 

Very turbulent fusion machines were built in the past. May be one of the 
most intriguing are so called reversed z-pinches, which after a turbulent 
phase, show a reversal of the sense of the axial magnetic field as compa­
red to the initial situation. Surprisingly enough, the field profile, in 
the final state is just a constant-a force-free field. Obviously recon­
nection operates in such discharges during some first phase efficiently 
enough to change totally the topology of magnetic configuration, but 
still the field does not relax to a potential field. Only a certain frac­
tion of the magnetic energy can be released quickly to accomodate the 
topological restructuration of the magnetic field, but not all of it. How 
much ? Taylor (1974) has suggested that the field will rearrange inter­
nally, in such a way as to find itself in the minimum energy state com­
patible with the conservation of some global invariants, or, more pre­
cisely, quasi-invariants, because, as we shall see shortly the quantity 
which Taylor advocated should be conserved, is in fact not a strict in­
variant. That quantity is the so called total magnetic helicity: 

K = / (A.B) d 3r vol 
where A is a vector potential for B. In perfect MHD, the magnetic heli­
city is an invariant for each closed flux tube (Woltjer, 1958), and it 
has the property that the state of minimum magnetic energy subject to 
a prescribed distribution of magnetic helicity is some general force-free 
field. It has not been mathematically proved that the helicity should be 
more conserved in a dissipative system than other quantities conserved 
in perfect MHD, though some arguments can be given in favour of this idea 
(see Heyvaerts and Priest, 1983b, and Norrnan and Heyvaerts (1983)). 
Taylor's conjecture has led to a success in explaining the behaviour of 
the Zeta machine, because the state of lowest magnetic energy having a 
given total helicity is just a constant-a (linear) force-free field, as 
observed. Heyvaerts and Priest (1983b) have adapted the same idea to the 
calculation of the heating of the corona by DC currents. The simplest way 
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is to first assume, that, at each moment of its evolution, complex recon­
nection phenomena occur very rapidly in the magnetic configuration, so 
that it is also always observed in the lowest energy state compatible 
with helicity. The latter evolves according to the equation: 

^7 = fu A (A.v) (B.dS) 
dt Boundary 

Care must be taken of the fact that for an open-ended flux tube K is not 
a gauge invariant quantity, so that some precise gauge condition has to 
be imposed. We have treated in detail the specific example of the evolu­
tion through the series of force-free configurations given by: 

B = - B U/k) cos kx exp - Iz 
x o 

B = - B (l-ft 2/k 2) 1 / / 2 cos kx exp - Iz 
y . o 
B = + B sin kx exp - Iz z o 

This represents a series of linear force-free fields endowed with trans-
lational symetry in the y-direction. Some shear motion along y is pre­
scribed at the boundary. So, the flux distribution keeps the same at the 
base, as it is (for fixed k and different ft) for the series of equilib­
ria described above. The evolution of helicity is then calculated and 
used to find the parameter % as a function of time. Then, comparing the 
rate of increase of the stored magnetic energy with the integral of the 
Poynting flux through the boundary gives the heating rate, which is just 
the difference between the two. It has been found that this difference 
is systematically zero! This is a consequence of the time it takes for 
stresses to relax by dissipation being implicitely taken to be zero in 
this formulation. This result can be understood: Assume that the system 
performs an ideal MHD displacement during a very small time tD, and then 
relaxes by reconnection. During the perfect MHD step, the magnetic energy 
increases due to the work performed by boundary motions by an amount 
which is 0(£) where £ is the fluid displacement (£=v.tD). In the ensuing 
relaxation, the displacement will also be 0(£ 2) but, as the final state 
is an equilibrium, the change in potential energy is only 0(£ 2). In the 
limit £ o, (tD+o), a negligible part of the energy increase goes into 
heat. 

It was then felt necessary to develop a second order calculation 
based on the scheme sketched above: small perfect MHD displacements, 
lasting a phenomenological "stress relaxation time" tD are followed by 
episodes of relaxation to the minimum energy state compatible with the new 
value of the magnetic helicity. The change in magnetic energy of the 
configuration in the last step be then calculated. It represents the 
heating during the time tD. This procedure (see details in the paper) 
yields an explicit analytical expression for the rate of heating for the 
particular displacement field considered. This expression is not useful 
in itself, but in its structure. It shows the following features, a - If 
the boundary motion is such as to keep the field force-free with con-
stant-a (this may happen if the scale of the magnetic field 1% is much 
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less than that of the velocity, £ v, no heating ensues, b - The rate of 
heating is proportional to the small parameters: (tD.v/JlB), where tD is 
the phenomenological relaxation time, v the velocity of boundary motions, 
and Hg the scale of magnetic structures on the boundary. As we noted, 
heating vanishes when this parameter vanishes. On the other hand boundary 
motions such that v >> £B/tD just do not relax, and evolve according to 
perfect MHD, also with no heating, c - The equivalent heating flux may 
be written in order of magnitude: 

2 ^ 
F = — B 

B v 
) ( 

D.v 

This analysis gives again the order of magnitude estimates of other theo­
ries namely B 2/y 0.v, but this maximum is limited by the rapidity of 
stress-relaxation (factor tD.v/£g),and by the geometrical factor, which 
measures the importance of relaxable stresses accumulated in each step. 
The same idea of relaxation with conservation of global invariants can 
also be used to predict the end result of catastrophic phenomena, like 
flares (Norman and Heyvaerts, 1983): after a flare, the coronal magnetic 
configuration should be a constant-a force-free field with the helicity 
of the configuration prior to flare. Also this analysis traces an in­
teresting border between flares and coronal heating. Both phenomena would 
result from magnetic stress relaxation by reconnection, but heating 
achieves this result continuously, because boundary motions are slow and 
stresses never accumulate very much, while flares occur in configurations 
which have evolved so quickly that stresses could not relax at the same 
pace as they were built, and ultimately relax very violently. 

11. UNIFICATION: THE LRC CIRCUIT ANALOGUE AGAIN 

There is something common to the various processes considered in this 
review. They all deal with the dissipative response of coronal electric 
circuits driven at various low or high frequencies by the photospheric 
driver. So it should be possible to formulate a unique simplified theory 
incorparating them all. Ionson (1984), also in these proceedings, pro­
poses such an unifying scheme: the LRC circuit analogue. See his communi­
cation . 
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DISCUSSION 

£>. Smith: What do you consider the best candidate for coronal heating 
on the basis of your calculations? 

Heyvaerts: Our calculations of DC current heating contain a phenom-
enological parameter which is unfortunately very ill defined. The 
maximum conceivable equivalent flux from such mechanisms (B2V/8TT) is of 
a confortable order of magnitude, but the factors which reduce this 
efficiency, and which appear in all theories developed so far (geometical 
factors £g/^ v, loop aspect ratio, R/i£, dissipation time scale (xnv/£g)) 
are all not known with enough precision. If we include the most trivial 
geometrical factors, the predicted flux still keeps larger than the 
necessary flux by a factor between 5-10 (Heyvaerts and Priest 1983b). 
So 1^ should really be just a bit shorter than (£g/v) to meet the require­
ment, which is not impossible if we judge from linear tearing times. To 
reach a firmer conclusion we need simultaneous observations of all the 
physical parameters of some coronal loop, a more detailed understanding 
of the dissipation time T^, and also a more detailed knowledge of the 
spectrum of the horizontal velocity which enters in the resonant heating 
theory. Probably both type of heating are active simultaneously (see 
Jim Ionson's communication, but in different structures). 

Sturrock: Most of your talk has been concerned with loop structures. 
How are we to understand coronal heating in open-field structures such 
as coronal holes? 

Heyvaerts: Any variation imposed at the foot point of an open field 
line must result in propagating or evanescent oscillations in the over­
lying corona. Hence wave mechanisms should be responsible for coronal 
hole heating. It is important to stress that due to solar wind losses, 
the energy needs of coronal holes are by no means smaller than those of 
closed field line regions. The subject of coronal hole heating is less 
developed than that of loop heating. Nevertheless some specific 
suggestions have been made (Hollweg 1983), namely the conversion of twist 
Alfven wave trains in flux tubes into some type of perturbations which 
dissipate. In a more speculative way, we suggested (Heyvaerts and Priest, 
1983) that phase mixing of evanescent MHD waves in the corona could drive 
the Kelvin-Helmholtz instability, and trigger a turbulent cascade. If 
that idea is correct, holes and loops could be heated by similar mechanisms. 

Drake: Most of the energy absorbed by Alfven waves in closed loops 
will flow down into the photosphere. How is the energy transferred to 
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the open field regions? 
Heyvaerts: The open field regions must be subject to special heating 

mechanisms, evocated in my answer to Dr. SturrockTs question. Loop 
heating can definitely not be transferred to open regions, at least not 
deep into them. 

Benford: How can observations best distinguish between direct current 
heating and resonant, or AC heating? 

Heyvaerts: The scale of structures involved in subtelescopic; 
resonant heating by waves should give rise to motions detectable as 
"microturbulent" line broadening, i.e. to broadening in excess of Doppler. 
Unfortunately, it is quite difficult to measure lines high enough in the 
corona, and, on the other hand, the reconnections associated with DC 
current dissipation also show up as motions. These, however, are expected 
to be more bursty, and perhaps it would be possible to detect the effect 
of some modest particle acceleration likely to be associated with this 
reconnection process (permanent weak X-ray noise, small, but bursty, 
component on top of the thermal radio emission). 
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