TWO PROBLEMS ON FINITE GROUPS WITH k CONJUGATE CLASSES

JOHN POLAND ${ }^{1}$
(Received 5 September 1966)

1. Introduction

Let G be a finite group of order g having exactly k conjugate classes. Let $\pi(G)$ denote the set of prime divisors of g. K. A. Hirsch [4] has shown that

$$
\left.g \equiv k \text { modulo } 2 \text { G.C.D. }\left\{\left(p^{2}-1\right) \mid p \in \pi(G)\right\} \text { (provided } 2 \nmid g\right) .
$$

By the same methods we prove $g \equiv k$ modulo G.C.D. $\left\{(p-1)^{2} \mid p \in \pi(G)\right\}$ and that if G is a p-group, $g \equiv k$ modulo $(p-1)\left(p^{2}-1\right)$. It follows that k has the form $(n+r(p-1))\left(p^{2}-1\right)+p^{e}$ where r and n are integers $\geqq 0$, p is a prime, e is 0 or 1 , and $g=p^{2 n+e}$. This has been established using representation theory by Philip Hall [3] (see also [5]). If

$$
\delta=\text { G.C.D. }\left\{(p-1)\left(p^{2}-1\right) \mid p \in \pi(G)\right\}
$$

then simple examples show (for $6 \dagger g$ obviously) that $g \equiv k$ modulo δ or even $\delta / 2$ is not generally true.

If G is a p-group, W. Burnside [2] and N. Blackburn [1] have shown that the statements G has a conjugate class of maximum order and G has maximum nilpotent class are equivalent. It seems reasonable that if G has minimum (conjugate) class number it would have classes of maximum order; indeed, we show that if $g=p^{m}(m=2 n+e)$ and $k=n\left(p^{2}-1\right)+p^{e}$ then G has maximum nilpotent class, and we calculate exactly how many classes G has of each order. Such strong conditions hold for these groups that we can show that they only exist for $m<p+3$. This extends some results we obtained in [5] for 2 -groups.

2. Background

Let G denote a finite group of order g, where g has prime decomposition $g=\prod_{i=1}^{n}\left(p_{i}^{m_{i}}\right)$, and let $\pi(G)=\left\{p_{i} \mid i=1, \cdots, n\right\}$ be the set of primes dividing g. The number of conjugate classes of G will be denoted by $k(G)$;

[^0]often we will simply say that k is the number of classes of G. The classes of G are denoted $K_{i}(i=1, \cdots, k)$, as usual ordered, with $K_{1}=\{1\} ; K(x)$ means the class containing x. We denote the lower central series of G by $G \geqq \gamma_{2} \geqq \gamma_{3} \geqq \cdots$ (γ_{1} is left undefined) and the upper central series by $\{1\} \leqq Z_{1} \leqq Z_{2} \leqq \cdots$. The group generated by x, y, \cdots is denoted $\langle x, y, \cdots\rangle$.

Most of this paper will be concerned with p-groups; that is, $\pi(G)=\{p\}$, $g=p^{m}$. The phrase " G of order p^{m} " will mean that G is a group, p a prime, and m a positive integer; we will write $m=2 n+e$ to denote that m and n are integers $\geqq 0$ and e is 0 or 1 . In this context we define the function f by $f\left(p^{m}\right)=n\left(p^{2}-1\right)+p^{e}$, an important expression. The ordered set ($a_{0}, a_{1}, \cdots, a_{\lambda}$) is called the p-class vector of the p-group G and is used to indicate that G has exactly a_{i} classes of order $p^{i}(0 \leqq i \leqq \lambda)$ and no classes of order greater than p^{λ}.

If G has order p^{m}, it is well-known (Blackburn [1], p. 52) that G has nilpotent class at most $m-1$. If G has maximum nilpotent class ($m-1$) then we return to Blackburn (pp. 54 and 57) for the following concepts. Define $\gamma_{1}=\gamma_{1}(G)$ by $\gamma_{1} / \gamma_{4}=C_{G / \gamma_{4}}\left(\gamma_{2} / \gamma_{4}\right)$; then G has the characteristic series $G>\gamma_{1}>\gamma_{2}=Z_{m-2}>\gamma_{3}=Z_{m-3}>\cdots>\gamma_{m-1}=Z_{1}>1$ in which successive distinct terms have factor groups of order $p . G$ is said to have maximum degree of commutativity $c(G)=c$ if $\left[\gamma_{i}, \gamma_{j}\right] \leqq \gamma_{i+j+c}$ for all $i, j=1,2,3, \cdots$ and c is the maximum such integer; obviously $c \geqq 0$.

Burnside ([2], section 98) has shown that the conjugate classes of a non-abelian group G of order p^{m} all have order at most p^{m-2}. In fact the statements that G contains a class of maximum order and that G has maximum nilpotent class are equivalent:
2.1 Theorem. (Burnside [2], section 98). If G is a non-abelian group of order p^{m} containing a conjugate class of order p^{m-2} then G has nilpotent class $m-1$.

2.2 Theorem. Let G be a non-abelian group of order p^{m} with nilpotent class $m-1$. Then

(i) G has p-class vector $\left(p, p^{2}-1\right)$ if $m=3,\left(p, p^{2}-1, p^{2}-p\right)$ if $m=4$, and $\left(p, p-1, p^{2}-1, p^{2}-p\right)$ or $\left(p, p^{3}-1,0, p^{2}-p\right)$ if $m=5$,
(ii) (Blackburn [1], 2.11 and 3.8) $c(G)>0$ if m is odd, $m=4$, or $m \geqq p+2$, and so
(iii) $c(G / Z)>0$ if $m \geqq 4$,
(iv) (Blackburn [1], 2.8) $c(G)>0$ if and only it $\gamma_{1}=C_{G}\left(Z_{2}\right)$, and
(v) (Blackburn [1], 2.14 and the corollaries of 2.15) G has exactly $\left(p^{2}-p\right)$ conjugate classes of order p^{m-2} if $c(G)>0$, and $(p-1)^{2}$ otherwise.

3. The relation $\boldsymbol{g} \equiv \boldsymbol{k}$

K. A. Hirsch [4] has shown $g \equiv k$ modulo 2 (G.C.D. $\left\{\left(p^{2}-1\right) \mid p \in \pi(G)\right\}$) if g is odd, and modulo 3 if g is even but $3 \nmid g$. Also, for p-groups, Philip Hall [3] proved by representation theory that $k=(n+r(p-1))\left(p^{2}-1\right)+p^{e}$, where $g=p^{2 n+e}$ and $r \geqq 0$. In this section we wish to use Hirsch's extremely elementary group-theoretic approach to establish Hall's theorem and, in some cases, improve Hirsch's results. Throughout, let $\delta=\delta(G)=$ G.C.D. $\left\{\left(p^{2}-1\right)(p-1) \mid p \in \pi(G)\right\}$. We assume $6 \dagger g$, so that $\delta>1$.
3.1 Lemma. Let $\left\{\{1\}=H_{1}, H_{2}, \cdots, H_{\lambda}\right\}$ be the set of all cyclic primary subgroups of $G,\left|H_{i}\right|=q^{s}, q \in \pi(G)$, for $i>1$, and let $\rho(1)=1, \rho\left(H_{i}\right)=q^{2(s-1)}$ $\left(q^{2}-1\right)$. Then $g k \equiv \sum_{i=1}^{\lambda} \rho\left(H_{i}\right)$ and $\rho\left(H_{i}\right) \equiv q^{2}-1($ for $i>1)$ modulo δ.

Proof. This is equivalent to a statement of Hirsch [4]; we outline the proof. We note first that $q\left(q^{2}-1\right) \equiv\left(q^{2}-1\right)$ modulo $(q-1)\left(q^{2}-1\right)$ so that the last statement is proved.

The number of solutions $x, y \in G$ of the equation $[x, y]=1$ is $\sum_{a \epsilon G}\left(\left|C_{G}(x)\right|\right)=\sum_{i=1}^{k}\left(\left|K_{i}\right|\right)\left(g /\left|K_{i}\right|\right)=g k$. The pair $(x, y) \neq(1,1)$ is a solution of $[x, y]=1$ if and only if it is a generator of an abelian subgroup H of G, so $g k=\sum_{H \text { abelian, } \alpha(H) \leq 2}(\rho(H))$ where $\rho(H)$ is the number of pairs of generators of H. Let $H=\prod_{i=1}^{n} H_{i}, H_{i}$ a p_{i}-group. Then $\rho(H)=\prod_{i=1}^{n} \rho\left(H_{i}\right)$ while if H_{i} is an abelian p_{i}-group of type $\left(p_{i}^{s}\right),\left(p_{i}^{s}, p_{i}^{t}\right)_{s=t}$, or $\left(p_{i}^{s}, p_{i}^{t}\right)_{s>t}$ then $\rho\left(H_{i}\right)$ is $p_{i}^{2 s-2}\left(p_{i}^{2}-1\right), \quad\left(p_{i}^{2 s}-p_{i}^{2 s-2}\right)\left[\left(p_{i}^{2 s}-p_{i}^{2 s-2}\right)-\left(p_{i}^{8}-p_{i}^{s-1}\right)\right]$, or $\varphi\left(p_{i}^{s}\right) p_{i}^{i} \varphi\left(p_{i}^{t}\right)\left(p_{i}^{s}+p_{i}^{s-1}\right)$. Since $\left(p_{i}^{2}-1\right)\left(p_{j}^{2}-j\right) \equiv 0$ modulo δ, we are done.

Recall we defined $f\left(p^{2 n+e}\right)=n\left(p^{2}-1\right)+p^{e}$.
3.2 Lemma. $p^{m} \equiv f\left(p^{m}\right)$ modulo $\left(p^{2}-1\right)(p-1)$.

Proof. This is trivially true if m is 1 or 2 . If $m \geqq 3 p^{m}=p^{m-2}+p^{m-2}$ $\left(p^{2}-1\right) \equiv p^{m-2}+\left(p^{2}-1\right)$ modulo $\left(p^{2}-1\right)(p-1)$. Therefore $p^{2 n+e}=\left(p^{e}\right)$ $\left(p^{2 n}\right) \equiv\left(p^{e}\right)\left(p^{0}+n\left(p^{2}-1\right)\right) \equiv p^{e}+n\left(p^{2}-1\right)$ modulo $\left(p^{2}-1\right)(p-1)$.
3.3 Corollary. If $=\prod_{i=1}^{n} p_{i}^{m_{i}}$ then $g^{2} \equiv 1+\sum_{i=1}^{n} m_{i}\left(p^{2}-1\right)$ modulo δ.

Proof. $g^{2}=\prod_{i=1}^{n} p_{i}^{2 m_{i}} \equiv \prod_{i=1}^{n}\left(1+m_{i}\left(p^{2}-1\right)\right) \equiv 1+\sum_{i=1}^{n} m_{i}\left(p_{i}^{2}-1\right)$ since $\left(p_{i}^{2}-1\right)\left(p_{j}^{2}-1\right) \equiv 0$ modulo δ.

The following lemma is of some interest in itself, and is modelled on one of Hirsch ([4], p. 99).
3.4 Lemma. If $p^{m} \| g$, p odd, and t is the number of non-trivial cyclic p-subgroups of G then G contains exactly μp^{m} solutions of the equation $x^{p^{m}}=1$, $(p-1) \mid(\mu-1)$, and $t \equiv m+(\mu-1) /(p-1)$ modulo ($p-1$).

Proof. By Frobenius' Theorem, G has μp^{m} solutions of $x^{p^{m}}=1$. Each non-trivial solution generates a non-trivial cyclic p-group. Let G have $\lambda_{\text {j }}$
cyclic subgroups of order p^{j}; each has $\varphi\left(p^{j}\right)$ generators. Therefore $\sum_{j>1}\left(\lambda_{j} p^{j-1}(p-1)\right)=\mu p^{m}-1=\mu\left(p^{m}-1\right)+(\mu-1)$. It follows that $(p-1) \mid(\mu-1)$ and $\sum_{j>1}\left(\lambda_{i} p^{j-1}\right)=\mu\left(p^{m-1}+p^{m-2}+\cdots+p+1\right)+(\mu-1) /(p-1)$. Since μ and p are congruent to 1 modulo ($p-1$), we have $\sum_{i>1} \lambda_{j} \equiv m+$ $(\mu-1) /(p-1)$ modulo ($p-1$).
3.5 Corollary. If G has a normal p-Sylow subgroup of order $p^{m}(p \neq 2)$ and t is the number of non-trivial cyclic p-subgroups of G, then $t \equiv m$ modulo $p-1$.
3.6 Corollary. If G is a nilpotent group, g odd, then $g \equiv k$ modulo δ.

Proof. By Corollary 3.5, we have, in Lemma 3.1, $g k \equiv 1+\sum_{i=1}^{n} m_{i}$ ($p_{i}^{2}-1$). By Corollary $3.3, g k \equiv g^{2}$ modulo δ, and the corollary follows since $(g, \delta)=1$.

By Corollary 3.5 and Lemma 3.2 we have shown that $k=(n+r(p-1))$ $\left(p^{2}-1\right)+p^{e}$ for a group G of order p^{m} (p odd, $m=2 n+e$) where r is an integer. By Hirsch's theorem, this is also true for $p=2$. We will have proved Hall's theorem if we can show that $k \geqq f\left(p^{m}\right)$. This is established in (5) but the following useful lemma, which is quite easy to prove, also shows that $r \geqq 0$.

Let $f_{r}\left(p^{2 n+e}\right)=(n+r(p-1))\left(p^{2}-1\right)+p^{e}$.
3.7 Lemma. Let G have order p^{m} and let H be a normal subgroup of G of order p. If $k(G) \leqq f_{r}\left(p^{m}\right)$, then $k(G / H) \leqq f_{r}\left(p^{m-1}\right)$; if $k(G / H) \geqq f_{r}\left(p^{m-1}\right)$, then $k(G) \geqq t_{r}\left(p^{m}\right)$.

Proof. It is straightforward that $f_{r}\left(p^{m}\right)=f_{r+1-e}\left(p^{m-1}\right)+(-1)^{e}(1-p)$. Hence $f_{r}\left(p^{m}\right)<f_{r+1}\left(p^{m-1}\right)$, or $f_{r}\left(p^{m-1}\right)>f_{r-1}\left(p^{m}\right)$. Since $k(G / H)<k(G)$, then, if $k(G) \leqq f_{r}\left(p^{m}\right), k(G / H)<f_{r}\left(p^{m}\right)<t_{r+1}\left(p^{m-1}\right)$ and so $k(G / H) \leqq f_{r}\left(p^{m-1}\right)$. Similarly if $k(G / H) \geqq f_{r}\left(p^{m-1}\right)$ then $k(G) \geqq f_{r}\left(p^{m}\right)$.

This latter statement, combined with the fact that (obviously) $k(G) \geqq f(g)$ for groups of order p, p^{2}, and p^{3} gives us by induction
3.8 Corollary. If G has order p^{m} then $k(G)=(n+r(p-1))\left(p^{2}-1\right)$ $+p^{e}, r \geqq 0$.

We would like to show that $g \equiv k$ modulo δ for all groups ($6 \nmid g$). By Lemma 3.1 and Corollary 3.3, it seems we would need to extend Corollary 3.5: if $p^{m} \| g, p \neq 2$, and t is the number of cyclic non-trivial p-subgroups of G then $t \equiv m$ modulo $p-1$. We present some counterexamples to these conjectures.

Let p and q be primes such that $p \mid(q-1)$, and let $1<\alpha<q$ be such that if $\alpha^{\beta} \equiv 1$ modulo q then $p \mid \beta$. Let $\operatorname{Fr}(p, q)$ denote the (Frobenius) group $G=\left\langle x, y \mid x^{p}=y^{q}=1, y^{x}=y^{\alpha}\right\rangle$. Then $G=\operatorname{Fr}(p, q)$ contains exactly $q p$-Sylow subgroups, $g=p q$, and the number of non-trivial cyclic
p-subgroups of G is q. But it is not necessarily true (for example: $p=7$, $q=29$) that $q \equiv 1$ modulo $p-1$, or even modulo ($p-1 / 2$), so Corollary 3.5 cannot be extended to all groups, except in the form of Lemma 3.4. If $p=61, q=367$, then $g=22,387, k=67, g-k=22,320=16 \cdot 9 \cdot 5 \cdot 31$, while $\delta=32 \cdot 9$ so that $g \equiv k$ modulo $\delta / 2$ but not δ. If $p=7, q=71$, then $g=497, k=17, g-k=480=32 \cdot 3 \cdot 5$, while $\delta=32 \cdot 9$ so that $g \equiv k$ modulo $\delta / 3$ but not δ.

Although we cannot show that $g \equiv k$ modulo δ or even $\delta / 2$ in general then, we can still extend Hirsch's result slightly.
3.9 Proposition. $g \equiv k$ modulo G.C.D. $\left\{(p-1)^{2} \mid p \in \pi(G)\right\}$ if g is odd.

Proof. Let

$$
\tau=G . C . D .\left\{(p-1)^{2} \mid p \in \pi(G)\right\}=[G . C . D .\{(p-1) \mid p \in \pi(G)\}]^{2} \text { say. }
$$

As every element of G generates a cyclic subgroup of G,

$$
g=\sum_{H \text { cyclic }} \varphi(|H|) \equiv \sum_{i=1}^{\lambda} \varphi\left(\left|H_{i}\right|\right) \text { modulo } \tau
$$

where H_{i} and λ are as in Lemma 3.1, taking $\varphi(1)=1$. Note that if $\left|H_{i}\right|=q_{i}^{i_{i}}, q_{i} \in \pi(G)$, then $\varphi\left(\left|H_{i}\right|\right)=q_{i}^{s_{i}-1}\left(q_{i}-1\right) \equiv q_{i}-1$ modulo τ. Therefore $g^{2} \equiv\left[1+\sum_{i=2}^{\lambda}\left(q_{i}-1\right)\right]^{2} \equiv 1+\sum_{i=2}^{\lambda} 2\left(q_{i}-1\right) \equiv 1+\sum_{i=2}^{\lambda}\left(q_{i}+1\right)\left(q_{i}-1\right) \equiv$ $g k$ modulo τ by Lemma 3.1. Since $(g, \tau)=1$, the proposition follows.
3.10 Corollary. $g \equiv k$ modulo L.C.M. $\left[G . C . D .\left\{(p-1)^{2} \mid p \in \pi(G)\right\}\right.$, $\left.2\left(G . C . D .\left\{\left(p^{2}-1\right) \mid p \in \pi(G)\right\}\right)\right]$ if g is odd.

Proposition 3.9 says, for example, if $\pi(G)=\{19,37\}$, then $g \equiv k$ modulo (18) ${ }^{2}$, whereas Hirsch's theorem states $g \equiv k$ modulo (16)(18).

$$
\text { 4. } k(G)=f(g)
$$

In this section, G will always denote a group of order p^{m}, p prime. We have shown that if $f_{r}\left(p^{m}\right)=(n+r(p-1))\left(p^{2}-1\right)+p^{e}$ (where $\left.m=2 n+e\right)$, then $k(G)=f_{r}\left(p^{m}\right)$ for some integer $r \geqq 0$. Denote $f_{0}\left(p^{m}\right)$ by $f\left(p^{m}\right)$; what is the structure of G if $k(G)=f(g)$?
4.1 Lemma. Let N be a normal subgroup of G of order p. Let $k(G / N)=f_{r}\left(p^{m-1}\right), \quad k(G)=f_{r}\left(p^{m}\right), \quad$ and let G / N have p-class vector $\left(a_{0}, a_{1}, \cdots, a_{\lambda}\right)$. Then G has p-class vector $\left(p^{2-e},\left(a_{0}-1\right)+(e-1)(p-1)\right.$, $\left.a_{1}, a_{2}, \cdots, a_{\lambda}\right)$ or $\left(p,\left(a_{0}-1\right), a_{1}, \cdots, a_{i-1}, a_{i}+(1-e)\left(p^{2}-p\right), a_{i+1}+(e-1)\right.$ $\left.(p-1), a_{i+2}, \cdots, a_{\lambda}\right)$ for some $0 \leqq i<\lambda$.

Proof. Let ξ be the canonical map of $G \rightarrow G / N$ and let \bar{K} be any conjugate class of G / N. If $1 \neq \xi(x) \in \bar{K}$ then $\xi^{-1}(\bar{K})=K(x) \cdot N$ is a union of classes of G, and since $|N|=p, \xi^{-1}(\bar{K})$ then must be a single class of G
or a union of p classes of G (obviously $\xi^{-1}(\mathbf{1})=N$ is a union of p classes of order 1). $\xi^{-1}(\bar{K}) \neq N$ is a union of p classes of G if and only if \bar{K}^{\prime} is, where $\bar{x} \in \bar{K}$ and $\bar{x}^{a} \in \bar{K}^{\prime}$ for some $1<a<p$, so this happens in sets of $p-1$ classes of the same order, over G / N. If we let β denote the number of such sets, then $k(G)=k(G / N)+(p-1)+\beta[p(p-1)-(p-1)]$. Straightforward substitution shows that if $m=2 n+e, \beta=1-e$, and we are done.
4.2 Theorem. If G has order $p^{m}(m>1)$ and $k(G)=f\left(p^{m}\right)$ then G has nilpotent class $m-1$.

Proof. The theorem is obviously true for $m=2$ and 3 , so suppose $m>3, k(G)=f\left(p^{m}\right)$, and that the theorem is proved for all groups of order $p^{m-i}(1 \leqq i \leqq m-2)$. Take $N \leqq Z_{1}(G),|N|=p$. By Lemma 3.7 and Corollary 3.8, $k(G / N)=f\left(p^{m-1}\right)$. By the induction hypothesis, G / N has maximum nilpotent class, so by part (v) of Theorem 2.2, G has $p^{2}-p$ classes of maximum order, or $(p-1)^{2}$ perhaps if $p>2$. By Lemma 4.1 then G has $\left(p^{2}-p\right)-(p-1)$, or $(p-1)^{2}-(p-1)$ if $p>2$, classes of order p^{m-2}, at least; that is, G has at least one class of maximum order. The theorem follows by Theorem 2.1.

The p-Sylow subgroup of $\operatorname{Sym}\left(p^{2}\right)$ shows that the converse of Theorem 4.2 is not true. In fact, we must place rather strong conditions upon G in order that $k(G)=f(g)$.
4.3 Theorem. If $k(G)=f\left(p^{m}\right)$ for a group G of order $p^{m}(m \geqq 3)$ then either
(i) $c(G)=0$ and G has p-class vector

$$
\begin{aligned}
& \left(p, p-1, \cdots, p-1, p^{2}-1, p^{2}-p, \cdots, p^{2}-p, 2\left(p^{2}-p\right),(p-1)^{2}\right) \text { if } n \geqq 4 \text {, } \\
& \text { or }\left(p, p-1, p-1,2 p^{2}-p-1,(p-1)^{2}\right) \text { if } n=3 \text {; or } \\
& \quad \text { (ii) } c(G)=1 ; \text { for } 1 \leqq i \leqq m-2, \text { if } x \in \gamma_{i}-\gamma_{i+1} \text { then } C_{G}(x)=\left\langle x, \gamma_{m-i-1}\right\rangle
\end{aligned}
$$ and $x^{y} \in \gamma_{m-i-1}$; and G has p-class vector

$$
\left(p, p-1, \cdots, p-1, p^{2}-1, p^{2}-p, \cdots, p_{n-2+e}^{2}-p\right) .
$$

Proof. Since each γ_{i} is a normal subgroup of G and so a union of conjugate classes of G, then $G-\gamma_{1}$ and $\gamma_{i}-\gamma_{i+1}(i>0)$ are unions of classes of G. Note that $\left|\gamma_{i}\right|=p^{m-i}$.

First, suppose $c(G)>0$. By part (v) of Theorem 2.2, $G-\gamma_{1}$ splits into $p^{2}-p$ classes of p^{m-2} elements each. Since $\left[\gamma_{i}, \gamma_{j}\right] \leqq \gamma_{i+j+1}$ then $\left[\gamma_{i}, \gamma_{m-i-1}\right]=1$ so if $x \in \gamma_{i}-\gamma_{i+1}$ then $C_{G}(x) \geqq\left\langle x, \gamma_{m-i-1}\right\rangle$. Now $x \in \gamma_{m-i-1}$ if and only if $\gamma_{i} \leqq \gamma_{m-i-1}$ or $i \geqq(m-1) / 2$. Therefore if $1 \leqq i<n$, then $\left|C_{G}(x)\right| \geqq p \cdot p^{i+1}$ so $|K(x)| \leqq p^{m-i-2}$. It follows that $\gamma_{i}-\gamma_{i+1}$ splits into at least $\left(p^{m-i}-p^{m-i-1}\right) / p^{m-i-2}=p^{2}-p$ classes of G if $1 \leqq i \leqq n$. In the same
way if $n \leqq i \leqq m, \gamma_{i}-\gamma_{i+1}$ splits into at least $p-1$ classes. Finally $\gamma_{m}=\{1\}$ is a class of G. Therefore $k(G) \geqq n\left(p^{2}-p\right)+(m-n)(p-1)+1=f\left(p^{m}\right)$, with equality only if $x \in \gamma_{i}-\gamma_{i+1}$ implies that $C(x)=\left\langle x, \gamma_{m-i-1}\right\rangle$ and $x^{p} \in \gamma_{m-i-1}$ for $i=1, \cdots, m-2$. In particular $\left[\gamma_{2}, \gamma_{m-3}\right]=1$ but $\left[\gamma_{1}, \gamma_{m-3}\right] \neq 1$ so $c(G)=1$. We note that we have $\gamma_{n-1}-\gamma_{n}$ splitting into $p^{2}-p$ classes of order p^{m-n-2} and $\gamma_{n}-\gamma_{n+1}$ splitting into $p-1$ classes of the same order. To summarize, G must have p-class vector

$$
\left(p, p-1, \underset{n-2+e}{\cdots}, p-1, p^{2}-1, p^{2}-p, \underset{n-1}{\cdots}, p^{2}-p\right) .
$$

Suppose now $c(G)=0$. By part (ii) of Theorem $2.2 m=2 n$ and $6 \leqq m \leqq p+2$, while by part (iii), $c(G / Z)>0$. By Lemma 3.7 and Corollary 3.8, $k(G / Z)=f\left(p^{m-1}\right)$. Hence we can apply the above results and G / Z must have p-class vector

$$
\left(p, p-1, \underset{n-2}{\cdots}, p-1, p^{2}-1, p^{2}-p, \underset{n-2}{\cdots}, p^{2}-p\right) .
$$

Now by part (v) of Theorem 2.2, G has exactly $(p-1)^{2}=\left(p^{2}-p\right)-(p-1)$ classes of order p^{m-2}. The p-class vector of G now follows by Lemma 4.1, and we are done.
4.4 Theorem. If G is a group of order p^{m} and $m \geqq p+3$ then $k(G) \geqq f_{1}\left(p^{m}\right)$.

Proof. Suppose $g=p^{m}, m \geqq p+3$, and $k(G)=f\left(p^{m}\right)$. Define s and s_{1} as generators of G modulo γ_{1} and γ_{1} modulo γ_{2} respectively; define $s_{i}=\left[s_{i-1}, s\right]$ for $i>1$. Blackburn ([1], 2.9 and 3.8) has shown that s_{i} and γ_{i+1} generate γ_{i} then because of Theorem 4.2. By Theorem 4.3, $s_{1}^{p} \in \gamma_{m-2} \leqq \gamma_{p+1}$ since $m \geqq p+3$. Therefore $s_{1}^{p} s_{p} \notin \gamma_{p+1}$, contradicting Lemma 3.3 of Blackburn. The theorem follows by Corollary 3.8.

The case of $p=2$ and $k(G)=f_{1}(g)$ has been examined in [5].

Bibliography

[1] N. Blackburn, 'On a special class of p-groups', Acta Math. 100 (1958), 45- 92.
[2] W. Burnside, Theory of Groups of Finite Order, (Dover, New York, 2nd ed. 1911).
[3] Philip Hall, (unpublished).
[4] K. A. Hirsch, 'On a theorem of Burnside', Quart. J. Math. 1 (1950), 97--99.
[5] J. Poland, 'On the group class equation', Ph. D. thesis, McGill, 1966.
Institute of Advanced Studies
Australian National University
Canberra, A.C.T.

[^0]: ${ }^{1}$ This work was done while the author held an N.R.C. (Canada) Postdoctoral Fellowship.

