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1. Introduction

Let G be a finite group of order g having exactly k conjugate classes.
Let n(G) denote the set of prime divisors of g. K. A. Hirsch [4] has shown
that

g = k modulo 2 G.C.D.{(£2-l) \p e n{G)} (provided 2f g).

By the same methods we prove g = k modulo G.C.D. {(p — I)2 | p e n{
and that if G is a />-group, g = k modulo (p—l)(p2— 1). It follows that &
has the form (n-\-r(p—l))(p2—l)-1rpe where r and n are integers 2£ 0,
p is a prime, e is 0 or 1, andg = p2n+e. This has been established using repre-
sentation theory by Philip Hall [3] (see also [5]). If

d = G.C.D. {(p-l)(p*-i) \p en(G)}

then simple examples show (for 6 -f g obviously) that g = k modulo 6
or even (5/2 is not generally true.

If G is ap-growp, W. Burnside [2] and N. Blackburn [1] have shown that
the statements G has a conjugate class of maximum order and G has
maximum nilpotent class are equivalent. It seems reasonable that if G
has minimum (conjugate) class number it would have classes of maximum
order; indeed, we show that if g = pm (m = 2n-\-e) and k = n(p2—l)+pe

then G has maximum nilpotent class, and we calculate exactly how many
classes G has of each order. Such strong conditions hold for these groups
that we can show that they only exist for m < />+3. This extends some
results we obtained in [5] for 2-groups.

2. Background

Let G denote a finite group of order g, where g has prime decomposition

g = IT"-i(^r'). a n d l e t niG) = {Pi \i — x- " " "' n) b e t h e s e t of P r i m e s

dividing g. The number of conjugate classes of G will be denoted by k(G);

1 This work was done while the author held an N.R.C. (Canada) Postdoctoral Fellowship.
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often we will simply say that k is the number of classes of G. The classes
of G are denoted K{ (i = 1, • • •, k), as usual ordered, with Kx = {1}; K(x)
means the class containing x. We denote the lower central series of G by
G S: y2 ^ y3 ^ • • • (y1 is left undefined) and the upper central series
by {1} ^ Zx ^ Z2 5S • • •. The group generated by x, y, - • • is denoted
(x, y, • • •>•

Most of this paper will be concerned with ^-groups; that is, n(G) = {p},
g = pm. The phrase "G of order pm" will mean that G is a group, >̂ a prime,
and m a positive integer; we will write m = 2n-\-e to denote that m and
« are integers S: 0 and e is 0 or 1. In this context we define the function
/ by f(pm) = n(p2—l)-\-pe, an important expression. The ordered set
(a0, «! , -•- , aA) is called the ^-class vector of the p-group G and is used to
indicate that G has exactly a,- classes of order pi (0 5̂  i ^ A) and no classes
of order greater than^>A.

If G has order ^m, it is well-known (Blackburn [1], p. 52) that G has
nilpotent class at most m—1. If G has maximum nilpotent class (m— 1) then
we return to Blackburn (pp. 54 and 57) for the following concepts. Define
7i = Yi(G) by YilYt = Ca/y^yjyt); then G has the characteristic series
G>y1>y2 = Zm_2 > y3 = Zm_3 > • • • > ym_x = Zx > 1 in which suc-
cessive distinct terms have factor groups of order p. G is said to
have maximum degree of commutativity c(G) — c if [yt, yt] ^ yi+i+c

for all i, j = 1, 2, 3, • • • and c is the maximum such integer; obviously
c ^ 0 .

Burnside ([2], section 98) has shown that the conjugate classes of a
non-abelian group G of order pm all have order at most pm~2. In fact the
statements that G contains a class of maximum order and that G has maxi-
mum nilpotent class are equivalent:

2.1 THEOREM. (Burnside [2], section 98). / / G is a non-abelian group
of order pm containing a conjugate class of order pm~2 then G has nilpotent
class m—1.

2.2 THEOREM. Let G be a non-abelian group of order pm with nilpotent
class m—1. Then

(i) G hasp-class vector (p, p2—l) ifm = Z, (p, p2—l, p2-p) if m = 4,
and (p,p — l,p2—l,p2—p) or (p,pz — l, 0,p2—p) if m = 5,

(ii) {Blackburn [1], 2.11 and 3.8) c{G) > 0 if m is odd, m = 4, or
m ^p+2,andso

(iii) c{GjZ) > 0 if m ^ 4,
(iv) (Blackburn [1], 2.8) c(G) > 0 if and only if yx = CG(Z2), and
(v) (Blackburn [1], 2.14 and the corollaries of 2.15) G has exactly

(p2—p) conjugate classes of order pm~2 if c(G) > 0, and (p—1)2 otherwise.
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3. The relation g = k

K. A. Hirsch [4] has shown £ = k modulo 2(G.C.D.{(^2-1) | p e n(G)})
if g is odd, and modulo 3 if g is even but 3 -f g. Also, for /(-groups, Philip
Hall [3] proved by representation theory that k = (»+r(/>—1)) (p2~l)+pe,
where g — pin+' and r >̂ 0. In this section we wish to use Hirsch's extremely
elementary group-theoretic approach to establish Hall's theorem and, in
some cases, improve Hirsch's results. Throughout, let 8 = 8(G) = G.C.D.
{(p2—l)(p-l) |/>£:*((;)}. We assume 6 f g, so that 5 > 1.

3.1 LEMMA. Let {{1} = Hlt H2, • • •, Hx} be the set of all cyclic primary
subgroups of G, \Ht\ = q',qe TI{G), for i > 1, and let p(l) = 1, p(H,) = ?2(«-1)

(?2-l). Then gk = 2?_i p{H{) and P{Ht) = q*-l (for i > 1) modulo 8.

PROOF. This is equivalent to a statement of Hirsch [4]; we outline the
proof. We note first that q{q2-l) = (?2-l) modulo (q—l)(q2-l) so that
the last statement is proved.

The number of solutions x,y eG of the equation [x, y] = 1 is
Z,.o(\Co(x)\) = 2Z.i{\Ki\)(gl\Ki\)=gk- The pair (x, y) # (1, 1) is a
solution of [x, y] = 1 if and only if it is a generator of an abelian subgroup
H of G, so gk = 2Habeiian,<f(H)£2(p(̂ )) where p(H) is the number of pairs
of generators of H. Let H = IJ"-i H{, H{ a.prgroup. Then p (H) = TJ"=i P (Hi)
while if Ht is an abelian />rgroup of type (#), (#,.#•),=«, or ( # , $ ) , > t

then p(^) is /»f-2(^2-l), (# '-£2 '-2) [ ( ^ ' - ^ - • ) - ( « - ^ r 1 ) L or
<p(Pl)PW(Pl) (Pi+PV1)- Since ($ -1) (/>2—/) = 0 modulo <5, we are done.

Recall we defined f(J>*n+') = n(p2-l)+pe.

3.2 LEMMA. pm = f(pm) modulo (p*—l)(p—l).

PROOF. This is trivially true if m is 1 or 2. If m S: 3 pm = p™-2+p™-z
(p2-l) =:pm-*+(p*—1) modulo (P2-I)(p—1). Therefore pin+° = (pe)
(p*n) = (^•)(/)0+w^2_1)) = ^ + w ( ^ , 2 _ i ) modulo (/>2-l)(/>—1).

3.3 COROLLARY. J/g = TYLiP7itheng* = !+2"=i ^iiP2—1) modulo 8.

PROOF, g* = TILiP*"1' ^TI?=i (1 + m ^ - l ) ) ^
since (/>?-l)(/>2-l) = 0 modulo 6.

The following lemma is of some interest in itself, and is modelled on one
of Hirsch ([4], p. 99).

3.4 LEMMA. If pm \\ g, p odd, and t is the number of non-trivial cyclic
p-subgroups of G then G contains exactly fipm solutions of the equation x"" = 1,
(p-l) | (fi-1), and t = m+[ft-l)l(p—l) modulo (p-l).

PROOF. By Frobenius' Theorem, G has fipm solutions of x"" = 1. Each
non-trivial solution generates a non-trivial cyclic ^>-group. Let G have A,
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cyclic subgroups of order p}; each has <p(ps) generators. Therefore
ls>i (hf'1 (£-!)) = f*pm-I = APm~l) + (/"-!)• It follows that
#-1)1(^-1) and 2 , > x (^ - 1 )=^ ' n - 1 + / ' r o - 2 + - -
Since n and p are congruent to 1 modulo (p—1), we have
(fi—l)l(p—l) modulo (^-1).

3.5 COROLLARY. / / G has a normal p-Sylow subgroup of order pm (/> # 2)
and t is the number of non-trivial cyclic p-subgroups of G, then t = m modulo
p~\.

3.6 COROLLARY. / / G is a nilpotent group, g odd, then g = k modulo d.

PROOF. By Corollary 3.5, we have, in Lemma 3.1, ^ s
[p\—1). By Corollary 3.3, gk =g2 modulo d, and the corollary follows since
(2,<5)=1.

By Corollary 3.5 and Lemma 3.2 we have shown that k = (n+r(p—1))
(p2—1)+/>* for a group G of order pm {p odd, m = 2n-\-e) where r is an
integer. By Hirsch's theorem, this is also true for p = 2. We will have
proved Hall's theorem if we can show that k ^>f(pm). This is established
in (5) but the following useful lemma, which is quite easy to prove, also
shows that r ^ 0.

3.7 LEMMA. Let G have order pm and let H be a normal subgroup of G
of order p. If k(G) ^ fr{p™), then k(G/H) ^fr{pm-^); if k{GjH) ^/ r{^n-1) ,
thenk(G) ^fr(p

m).

PROOF. It is straightforward that fr(p
m) = fr+i-eiPm~1)

Hence fr(p
m) < /r+1(/>

m-1), or fr(p
m^) > fr^{pm). Since £(G/#) < k(G), then,

if k(G)^fr(P
m),k(GIH)<fr{pm)<fr+1(p^) and so k(GIH) :£/,#—*).

Similarly if k(G/H) ^ fr{pm-x) then k{G) ^ fr(p
m).

This latter statement, combined with the fact that (obviously)
k (G) ̂  f(g) for groups of order p, p2, andp3 gives us by induction

3.8 COROLLARY. If G has order pm then k{G) = (n+r(p-l))(p2-l)
+pe, r^O.

We would like to show that g ES k modulo d for all groups (6 \ g).
By Lemma 3.1 and Corollary 3.3, it seems we would need to extend Corol-
lary 3.5: if pm || g, p ^z 2, and t is the number of cyclic non-trivial ^-sub-
groups of G then t = m modulo p—l- We present some counterexamples
to these conjectures.

Let p and q be primes such that p \ {q— 1), and let 1 < a < q be such
that if â  = 1 modulo q then p | /?. Let Fr (p, q) denote the (Frobenius)
group G = (x, y \ xv = y" = 1, y" = y1}. Then G = Fr (p, q) contains
exactly q />-Sylow subgroups, g = pq, and the number of non-trivial cyclic
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^-subgroups of G is q. But it is not necessarily true (for example: p = 7,
q — 29) that q = 1 modulo p—1, or even modulo (p—1/2), so Corollary 3.5
cannot be extended to all groups, except in the form of Lemma 3.4. If
p = 61, q = 367, then g = 22,387, k = 67, g—k = 22,320 = 16 • 9 • 5 • 31,
while 8 = 32 • 9 so that g = k modulo (5/2 but not <5. If p = 7, q = 71, then
g = 497, & = 17, g—k = 480 = 32 • 3 • 5, while 8 = 32 • 9 so that g == A
modulo (5/3 but not (5.

Although we cannot show that g = k modulo 8 or even <5/2 in general
then, we can still extend Hirsch's result slightly.

3.9 PROPOSITION, g = k modulo G.C.D.{(p—l)2 \pen(G)} if g is odd.

PROOF. Let

r = G.C.D.{{p-l)*\pen{G)}= [G.C.D.{(p~l) \p en(G)}]* say.

As every element of G generates a cyclic subgroup of G,

g = SflcyciicHltfl) = S L i 9(\Ht\) modulo T,

where H( and A are as in Lemma 3.1, taking <p(l) = 1. Note that if
\H(\ = cfc, qteniG), then <p(|#<l) = Ŝ Mfc—1) = ?*—1 modulo T. There-
fore g* = [i+2i2(«7<-i)]2 = i + 2 i 2 2fo-i) = i + 2 i 2 fo+i)fo-i) =
gA modulo r by Lemma 3.1. Since (g, r) = 1, the proposition follows.

3.10 COROLLARY, g = & m o ^ Z..C.M.[G.C.Z>.{^>—I)2 \p en{G)},
2{G.C.D.{(p*-l) \pen(G)})] if g is odd.

Proposition 3.9 says, for example, if n(G) = {19,37}, then g == k
modulo (18)2, whereas Hirsch's theorem states g = k modulo (16)(18).

4. k(G) = f(g)

In this section, G will always denote a group of order pm, p prime. We
have shown that if fr(p

n) = (n+r(p—l))(p2—l)+pe (where m = 2w+e),
then A(G) = fr(p

m) for some integer r 5: 0. Denote fo(P
m) by f(pm)', what is

the structure of G if £(G) = /(g)?

4.1 LEMMA. Zrf N be a normal subgroup of G of order p. Let
k{GjN) = Up™-1), k(G) = fT{pm), and let GjN have p-class vector

G Aas ^>-c/ass vector (^>2-e, ( a o - l ) + (e—1)(/»—1),
i 2 A ) ( # K ) , i , , 4 1 (

(p—1), a,+2, • • •, aA) for some 0 ^ i < A.

PROOF. Let | be the canonical map of G -> G/iV and let X be any
conjugate class of GjN. If 1 =£ |(x) e ^ then f " 1 ^ ) = K(a;) • 2V is a union
of classes of G, and since |2V| = p, ^(K) then must be a single class of G
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or a union of p classes of G (obviously i~x(l) = N is a union of p classes of
order 1). ^(K) # N is a union of /> classes of G if and only if K' is, where
j e l and xa eK' for some 1 < a <p, so this happens in sets of p—1
classes of the same order, over GjN. If we let /? denote the number of such
sets, then k(G) = k(GIN) + (p-l)+p[j>(p—1) — (p-1)]. Straightforward
substitution shows that if m = 2n-\-e, /J = 1—0, and we are done.

4.2 THEOREM. If G has order pm (m > 1) <mrf £(G) = f(pm) then G
has nilpotent class m—1.

PROOF. The theorem is obviously true for m = 2 and 3, so suppose
m > 3, k(G) = f(pm), and that the theorem is proved for all groups of order
pm~< (1 ^ i ^ m—2). Take 2V ̂  ZX(G), \N\ = />. By Lemma 3.7 and
Corollary 3.8, k(G/N) = {(p™'1). By the induction hypothesis, GjN has
maximum nilpotent class, so by part (v) of Theorem 2.2, G has p2—p
classes of maximum order, or (p—I)2 perhaps if p > 2. By Lemma 4.1
then G has (p*—p) — (p—l), or (̂ >—I)2—(/>—1) if p > 2, classes of order
^>m~2, at least; that is, G has at least one class of maximum order. The
theorem follows by Theorem 2.1.

The^>-Sylow subgroup of Sym(̂ >2) shows that the converse of Theorem
4.2 is not true. In fact, we must place rather strong conditions upon G
in order that k(G) — f(g).

4.3 THEOREM. / / k(G) = f(pm) for a group G of order pm (m ^ 3) then
either

(i) c(G) = 0 and G has p-class vector

(P,P-1, • • .,p-l,p*-l,p*-p, • • ;p*-p, 2(p*-p), (P-1)2) if n>4,

or (p,p-1,p-1, 2p*-p-l,(p-l)!i) if n = 3; or

(ii) c(G) = 1; for l^i^m—2, if xeyt—yi+1 then CG{x) = <x,/„_,_!>
and xp e ym_,_i; and G has p-class vector

(p, p-1," -, p-1, p*-l, p*-p, • • •, p*-p).
n-2+e n-1

PROOF. Since each yt is a normal subgroup of G and so a union of
conjugate classes of G, then G—yx and y{—y{+1 (i > 0) are unions of classes
of G. Note that \yt\ = pm~{.

First, suppose c(G) > 0. By part (v) of Theorem 2.2, G—yx splits
into p2—p classes of pm~2 elements each. Since \y{, y}] ^ Yi+i+i then
[yt, ym-i-i\ = 1 so if x e yt—yi+l then CG(x) ^ <x, ym_f_1>. Now x e ym_f_!
if and only if yt ^ ym_4_i or i 2: (w—1)/2. Therefore if 1 f£ * < », then
|Ce(*)| ^p-pw so |^(a;)| ^ ^ m - ' - 2 . It foUows that y,—y<+1 splits into at
least (p™-<—p'»-*-i)lp™-i-2 = _£2_£ classes of G if 1 ^ t ^ n. In the same
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way if n 5S i 5S m, yt—yi+1 splits into at least p—1 classes. Finally ym = {1}
is a class of G. Therefore k(G) ^n(p2—p) + (m—n)(p—l) + l = f(pm),
with equality only if xey{—y(+1 implies that C(x) = (x,ym_i_1

s) and
xv e ym_,_! for i = 1, • • •, m—2. In particular [y2, ym_z] = 1 but
[ylt ym_3] # 1 so c(G) = 1. We note that we have yn^x—yn splitting into

p2— p classes of order pm-"-* and yn—yn+1 splitting into p—1 classes of
the same order. To summarize, G must have ^>-class vector

(p.p-1, • • ;P-l,p*-l,p*-p, • • -,p*-p).
n—2+« n—1

Suppose now c(G) = 0. By part (ii) of Theorem 2.2 m = 2n and
6 ^ m <:p+2, while by part (iii), c(G/Z) > 0. By Lemma 3.7 and Corol-
lary 3.8, k(G/Z) = f(pm~1)- Hence we can apply the above results and
GfZ must have ^>-class vector

(P.p-l, • • ;P-l,p*-l,p*-p, • • -.p^-p).
n—2 n—2

Now by part (v) of Theorem 2.2, G has exactly (p—I)2 = (p2—p) — (p~l)
classes of order pm~2. The ^>-class vector of G now follows by Lemma 4.1,
and we are done.

4.4 THEOREM. If G is agroup of order pm and m^p+3 thenk{G) Sg Uip"1).

PROOF. Suppose g = pm, m ^p+3, and k(G) =f(pm). Define s and
s1 as generators of G modulo yx and y± modulo y2 respectively; define
s{ = [st_lt s] for i > 1. Blackburn ([1], 2.9 and 3.8) has shown that sf

and yi+1 generate yt then because of Theorem 4.2. By Theorem 4.3,
si e ym-2 = 7»+i since m ^ p+3. Therefore s\sv^yv+1, contradicting
Lemma 3.3 of Blackburn. The theorem follows by Corollary 3.8.

The case of p — 2 and k(G) = /x(g) has been examined in [5].
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