TWO PROBLEMS ON FINITE GROUPS WITH k CONJUGATE CLASSES

JOHN POLAND¹

(Received 5 September 1966)

1. Introduction

Let G be a finite group of order g having exactly k conjugate classes. Let $\pi(G)$ denote the set of prime divisors of g. K. A. Hirsch [4] has shown that

 $g \equiv k \mod 2 \text{ G.C.D.}\{(p^2-1) | p \in \pi(G)\} \text{ (provided } 2 \nmid g).$

By the same methods we prove $g \equiv k \mod 0$ G.C.D. $\{(p-1)^2 \mid p \in \pi(G)\}$ and that if G is a p-group, $g \equiv k \mod (p-1)(p^2-1)$. It follows that k has the form $(n+r(p-1))(p^2-1)+p^e$ where r and n are integers ≥ 0 , p is a prime, e is 0 or 1, and $g = p^{2n+e}$. This has been established using representation theory by Philip Hall [3] (see also [5]). If

 $\delta = \text{G.C.D.} \{ (p-1)(p^2-1) \mid p \in \pi(G) \}$

then simple examples show (for $6 \nmid g$ obviously) that $g \equiv k \mod \delta$ or even $\delta/2$ is not generally true.

If G is a p-group, W. Burnside [2] and N. Blackburn [1] have shown that the statements G has a conjugate class of maximum order and G has maximum nilpotent class are equivalent. It seems reasonable that if G has minimum (conjugate) class number it would have classes of maximum order; indeed, we show that if $g = p^m$ (m = 2n+e) and $k = n(p^2-1)+p^e$ then G has maximum nilpotent class, and we calculate exactly how many classes G has of each order. Such strong conditions hold for these groups that we can show that they only exist for m < p+3. This extends some results we obtained in [5] for 2-groups.

2. Background

Let G denote a finite group of order g, where g has prime decomposition $g = \prod_{i=1}^{n} (p_i^{m_i})$, and let $\pi(G) = \{p_i \mid i = 1, \dots, n\}$ be the set of primes dividing g. The number of conjugate classes of G will be denoted by k(G);

¹ This work was done while the author held an N.R.C. (Canada) Postdoctoral Fellowship.

John Poland

often we will simply say that k is the number of classes of G. The classes of G are denoted K_i $(i = 1, \dots, k)$, as usual ordered, with $K_1 = \{1\}; K(x)$ means the class containing x. We denote the lower central series of G by $G \ge \gamma_2 \ge \gamma_3 \ge \cdots$ $(\gamma_1 \text{ is left undefined})$ and the upper central series by $\{1\} \le Z_1 \le Z_2 \le \cdots$. The group generated by x, y, \cdots is denoted $\langle x, y, \cdots \rangle$.

Most of this paper will be concerned with p-groups; that is, $\pi(G) = \{p\}$, $g = p^m$. The phrase "G of order p^m " will mean that G is a group, p a prime, and m a positive integer; we will write m = 2n + e to denote that m and n are integers ≥ 0 and e is 0 or 1. In this context we define the function f by $f(p^m) = n(p^2-1)+p^e$, an important expression. The ordered set $(a_0, a_1, \dots, a_{\lambda})$ is called the p-class vector of the p-group G and is used to indicate that G has exactly a_i classes of order p^i $(0 \leq i \leq \lambda)$ and no classes of order greater than p^{λ} .

If G has order p^m , it is well-known (Blackburn [1], p. 52) that G has nilpotent class at most m-1. If G has maximum nilpotent class (m-1) then we return to Blackburn (pp. 54 and 57) for the following concepts. Define $\gamma_1 = \gamma_1(G)$ by $\gamma_1/\gamma_4 = C_{G/\gamma_4}(\gamma_2/\gamma_4)$; then G has the characteristic series $G > \gamma_1 > \gamma_2 = Z_{m-2} > \gamma_3 = Z_{m-3} > \cdots > \gamma_{m-1} = Z_1 > 1$ in which successive distinct terms have factor groups of order p. G is said to have maximum degree of commutativity c(G) = c if $[\gamma_i, \gamma_j] \leq \gamma_{i+j+c}$ for all $i, j = 1, 2, 3, \cdots$ and c is the maximum such integer; obviously $c \geq 0$.

Burnside ([2], section 98) has shown that the conjugate classes of a non-abelian group G of order p^m all have order at most p^{m-2} . In fact the statements that G contains a class of maximum order and that G has maximum nilpotent class are equivalent:

2.1 THEOREM. (Burnside [2], section 98). If G is a non-abelian group of order p^m containing a conjugate class of order p^{m-2} then G has nilpotent class m-1.

2.2 THEOREM. Let G be a non-abelian group of order p^m with nilpotent class m-1. Then

(i) G has p-class vector (p, p^2-1) if m = 3, (p, p^2-1, p^2-p) if m = 4, and $(p, p-1, p^2-1, p^2-p)$ or $(p, p^3-1, 0, p^2-p)$ if m = 5,

(ii) (Blackburn [1], 2.11 and 3.8) c(G) > 0 if m is odd, m = 4, or $m \ge p+2$, and so

(iii) c(G/Z) > 0 if $m \ge 4$,

(iv) (Blackburn [1], 2.8) c(G) > 0 if and only if $\gamma_1 = C_G(Z_2)$, and

(v) (Blackburn [1], 2.14 and the corollaries of 2.15) G has exactly (p^2-p) conjugate classes of order p^{m-2} if c(G) > 0, and $(p-1)^2$ otherwise.

3. The relation $g \equiv k$

K. A. Hirsch [4] has shown $g \equiv k \mod 2(G.C.D.\{(p^2-1) \mid p \in \pi(G)\})$ if g is odd, and modulo 3 if g is even but $3 \nmid g$. Also, for p-groups, Philip Hall [3] proved by representation theory that $k = (n+r(p-1))(p^2-1)+p^e$, where $g = p^{2n+e}$ and $r \ge 0$. In this section we wish to use Hirsch's extremely elementary group-theoretic approach to establish Hall's theorem and, in some cases, improve Hirsch's results. Throughout, let $\delta = \delta(G) = G.C.D$. $\{(p^2-1)(p-1) \mid p \in \pi(G)\}$. We assume $6 \nmid g$, so that $\delta > 1$.

3.1 LEMMA. Let $\{\{1\} = H_1, H_2, \dots, H_{\lambda}\}$ be the set of all cyclic primary subgroups of G, $|H_i| = q^s$, $q \in \pi(G)$, for i > 1, and let $\rho(1) = 1$, $\rho(H_i) = q^{2(s-1)}$ (q^2-1) . Then $gk \equiv \sum_{i=1}^{\lambda} \rho(H_i)$ and $\rho(H_i) \equiv q^2-1$ (for i > 1) modulo δ .

PROOF. This is equivalent to a statement of Hirsch [4]; we outline the proof. We note first that $q(q^2-1) \equiv (q^2-1) \mod (q-1)(q^2-1)$ so that the last statement is proved.

The number of solutions $x, y \in G$ of the equation [x, y] = 1 is $\sum_{x \in G} (|C_G(x)|) = \sum_{i=1}^k (|K_i|) (g/|K_i|) = gk$. The pair $(x, y) \neq (1, 1)$ is a solution of [x, y] = 1 if and only if it is a generator of an abelian subgroup H of G, so $gk = \sum_{H \text{ abelian, } d(H) \leq 2} (\rho(H))$ where $\rho(H)$ is the number of pairs of generators of H. Let $H = \prod_{i=1}^n H_i$, H_i a p_i -group. Then $\rho(H) = \prod_{i=1}^n \rho(H_i)$ while if H_i is an abelian p_i -group of type $(p_i^s), (p_i^s, p_i^t)_{s=t}$, or $(p_i^s, p_i^t)_{s>t}$ then $\rho(H_i)$ is $p_i^{2s-2}(p_i^2-1), (p_i^{2s}-p_i^{2s-2}) = (p_i^{s-2}-p_i^{s-2}) - (p_i^s-p_i^{s-1})]$, or $\varphi(p_i^s)p_i^t\varphi(p_i^t)(p_i^s+p_i^{s-1})$. Since $(p_i^2-1)(p_i^2-j) \equiv 0$ modulo δ , we are done. Recall we defined $f(p^{2n+s}) = n(p^2-1) + p^s$.

3.2 LEMMA. $p^m \equiv f(p^m)$ modulo $(p^2-1)(p-1)$.

PROOF. This is trivially true if *m* is 1 or 2. If $m \ge 3 p^m = p^{m-2} + p^{m-2}$ $(p^2-1) \equiv p^{m-2} + (p^2-1) \mod (p^2-1)(p-1)$. Therefore $p^{2n+e} = (p^e)$ $(p^{2n}) \equiv (p^e)(p^0+n(p^2-1)) \equiv p^e + n(p^2-1) \mod (p^2-1)(p-1)$.

3.3 COROLLARY. If $g = \prod_{i=1}^{n} p_i^{m_i}$ then $g^2 \equiv 1 + \sum_{i=1}^{n} m_i (p^2 - 1)$ modulo δ .

PROOF. $g^2 = \prod_{i=1}^n p_i^{2m_i} \equiv \prod_{i=1}^n (1 + m_i(p^2 - 1)) \equiv 1 + \sum_{i=1}^n m_i(p_i^2 - 1)$ since $(p_i^2 - 1)(p_j^2 - 1) \equiv 0$ modulo δ .

The following lemma is of some interest in itself, and is modelled on one of Hirsch ([4], p. 99).

3.4 LEMMA. If $p^m || g, p$ odd, and t is the number of non-trivial cyclic p-subgroups of G then G contains exactly μp^m solutions of the equation $x^{p^m} = 1$, $(p-1) | (\mu-1)$, and $t \equiv m+(\mu-1)/(p-1)$ modulo (p-1).

PROOF. By Frobenius' Theorem, G has μp^m solutions of $x^{p^m} = 1$. Each non-trivial solution generates a non-trivial cyclic *p*-group. Let G have λ_i

cyclic subgroups of order p^{i} ; each has $\varphi(p^{i})$ generators. Therefore $\sum_{j>1} (\lambda_{j}p^{j-1}(p-1)) = \mu p^{m} - 1 = \mu(p^{m}-1) + (\mu-1)$. It follows that $(p-1) \mid (\mu-1)$ and $\sum_{j>1} (\lambda_{j}p^{j-1}) = \mu(p^{m-1}+p^{m-2}+\cdots+p+1) + (\mu-1)/(p-1)$. Since μ and p are congruent to 1 modulo (p-1), we have $\sum_{j>1} \lambda_{j} \equiv m + (\mu-1)/(p-1)$ modulo (p-1).

3.5 COROLLARY. If G has a normal p-Sylow subgroup of order p^m ($p \neq 2$) and t is the number of non-trivial cyclic p-subgroups of G, then $t \equiv m$ modulo p-1.

3.6 COROLLARY. If G is a nilpotent group, g odd, then $g \equiv k$ modulo δ .

PROOF. By Corollary 3.5, we have, in Lemma 3.1, $gk \equiv 1 + \sum_{i=1}^{n} m_i$ $(p_i^2 - 1)$. By Corollary 3.3, $gk \equiv g^2 \mod \delta$, and the corollary follows since $(g, \delta) = 1$.

By Corollary 3.5 and Lemma 3.2 we have shown that k = (n+r(p-1)) $(p^2-1)+p^e$ for a group G of order p^m (p odd, m = 2n+e) where r is an integer. By Hirsch's theorem, this is also true for p = 2. We will have proved Hall's theorem if we can show that $k \ge f(p^m)$. This is established in (5) but the following useful lemma, which is quite easy to prove, also shows that $r \ge 0$.

Let $f_r(p^{2n+e}) = (n+r(p-1))(p^2-1)+p^e$.

3.7 LEMMA. Let G have order p^m and let H be a normal subgroup of G of order p. If $k(G) \leq f_r(p^m)$, then $k(G/H) \leq f_r(p^{m-1})$; if $k(G/H) \geq f_r(p^{m-1})$, then $k(G) \geq f_r(p^m)$.

PROOF. It is straightforward that $f_r(p^m) = f_{r+1-e}(p^{m-1}) + (-1)^e(1-p)$. Hence $f_r(p^m) < f_{r+1}(p^{m-1})$, or $f_r(p^{m-1}) > f_{r-1}(p^m)$. Since k(G/H) < k(G), then, if $k(G) \leq f_r(p^m)$, $k(G/H) < f_r(p^m) < f_{r+1}(p^{m-1})$ and so $k(G/H) \leq f_r(p^{m-1})$. Similarly if $k(G/H) \geq f_r(p^{m-1})$ then $k(G) \geq f_r(p^m)$.

This latter statement, combined with the fact that (obviously) $k(G) \ge f(g)$ for groups of order p, p^2 , and p^3 gives us by induction

3.8 COROLLARY. If G has order p^m then $k(G) = (n+r(p-1))(p^2-1) + p^e$, $r \ge 0$.

We would like to show that $g \equiv k \mod \delta$ for all groups $(6 \nmid g)$. By Lemma 3.1 and Corollary 3.3, it seems we would need to extend Corollary 3.5: if $p^m \parallel g$, $p \neq 2$, and t is the number of cyclic non-trivial p-subgroups of G then $t \equiv m \mod p - 1$. We present some counterexamples to these conjectures.

Let p and q be primes such that $p \mid (q-1)$, and let $1 < \alpha < q$ be such that if $\alpha^{\beta} \equiv 1$ modulo q then $p \mid \beta$. Let $\operatorname{Fr}(p, q)$ denote the (Frobenius) group $G = \langle x, y \mid x^p = y^q = 1, y^x = y^x \rangle$. Then $G = \operatorname{Fr}(p, q)$ contains exactly q p-Sylow subgroups, g = pq, and the number of non-trivial cyclic

p-subgroups of G is q. But it is not necessarily true (for example: p = 7, q = 29) that $q \equiv 1 \mod p - 1$, or even modulo (p - 1/2), so Corollary 3.5 cannot be extended to all groups, except in the form of Lemma 3.4. If p = 61, q = 367, then g = 22,387, k = 67, $g - k = 22,320 = 16 \cdot 9 \cdot 5 \cdot 31$, while $\delta = 32 \cdot 9$ so that $g \equiv k \mod \delta/2$ but not δ . If p = 7, q = 71, then g = 497, k = 17, $g - k = 480 = 32 \cdot 3 \cdot 5$, while $\delta = 32 \cdot 9$ so that $g \equiv k \mod \delta/3$ but not δ .

Although we cannot show that $g \equiv k \mod \delta$ or even $\delta/2$ in general then, we can still extend Hirsch's result slightly.

3.9 PROPOSITION. $g \equiv k \mod G.C.D.\{(p-1)^2 \mid p \in \pi(G)\}$ if g is odd.

PROOF. Let

$$\tau = G.C.D.\{(p-1)^2 \mid p \in \pi(G)\} = [G.C.D.\{(p-1) \mid p \in \pi(G)\}]^2 \text{ say.}$$

As every element of G generates a cyclic subgroup of G,

$$g = \sum_{H \text{ cyclic}} \varphi(|H|) \equiv \sum_{i=1}^{\lambda} \varphi(|H_i|) \mod \tau$$
,

where H_i and λ are as in Lemma 3.1, taking $\varphi(1) = 1$. Note that if $|H_i| = q_i^{s_i}, q_i \in \pi(G)$, then $\varphi(|H_i|) = q_i^{s_i-1}(q_i-1) \equiv q_i-1 \mod \tau$. Therefore $g^2 \equiv [1+\sum_{i=2}^{\lambda}(q_i-1)]^2 \equiv 1+\sum_{i=2}^{\lambda}2(q_i-1) \equiv 1+\sum_{i=2}^{\lambda}(q_i+1)(q_i-1) \equiv gk \mod \tau$ by Lemma 3.1. Since $(g, \tau) = 1$, the proposition follows.

3.10 COROLLARY. $g \equiv k$ modulo $L.C.M.[G.C.D.\{(p-1)^2 \mid p \in \pi(G)\}, 2(G.C.D.\{(p^2-1) \mid p \in \pi(G)\})]$ if g is odd.

Proposition 3.9 says, for example, if $\pi(G) = \{19,37\}$, then $g \equiv k$ modulo $(18)^2$, whereas Hirsch's theorem states $g \equiv k$ modulo (16)(18).

4. k(G) = f(g)

In this section, G will always denote a group of order p^m , p prime. We have shown that if $f_r(p^m) = (n+r(p-1))(p^2-1)+p^e$ (where m = 2n+e), then $k(G) = f_r(p^m)$ for some integer $r \ge 0$. Denote $f_0(p^m)$ by $f(p^m)$; what is the structure of G if k(G) = f(g)?

4.1 LEMMA. Let N be a normal subgroup of G of order p. Let $k(G/N) = f_r(p^{m-1})$, $k(G) = f_r(p^m)$, and let G/N have p-class vector $(a_0, a_1, \dots, a_{\lambda})$. Then G has p-class vector $(p^{2-e}, (a_0-1)+(e-1)(p-1), a_1, a_2, \dots, a_{\lambda})$ or $(p, (a_0-1), a_1, \dots, a_{i-1}, a_i+(1-e)(p^2-p), a_{i+1}+(e-1)(p-1), (p-1), a_{i+2}, \dots, a_{\lambda})$ for some $0 \leq i < \lambda$.

PROOF. Let ξ be the canonical map of $G \to G/N$ and let \overline{K} be any conjugate class of G/N. If $1 \neq \xi(x) \in \overline{K}$ then $\xi^{-1}(\overline{K}) = K(x) \cdot N$ is a union of classes of G, and since |N| = p, $\xi^{-1}(\overline{K})$ then must be a single class of G

John Poland

or a union of p classes of G (obviously $\xi^{-1}(1) = N$ is a union of p classes of order 1). $\xi^{-1}(\overline{K}) \neq N$ is a union of p classes of G if and only if \overline{K}' is, where $\overline{x} \in \overline{K}$ and $\overline{x}^a \in \overline{K}'$ for some 1 < a < p, so this happens in sets of p-1 classes of the same order, over G/N. If we let β denote the number of such sets, then $k(G) = k(G/N) + (p-1) + \beta[p(p-1) - (p-1)]$. Straightforward substitution shows that if m = 2n + e, $\beta = 1 - e$, and we are done.

4.2 THEOREM. If G has order p^m (m > 1) and $k(G) = f(p^m)$ then G has nilpotent class m-1.

PROOF. The theorem is obviously true for m = 2 and 3, so suppose m > 3, $k(G) = f(p^m)$, and that the theorem is proved for all groups of order p^{m-i} $(1 \le i \le m-2)$. Take $N \le Z_1(G)$, |N| = p. By Lemma 3.7 and Corollary 3.8, $k(G/N) = f(p^{m-1})$. By the induction hypothesis, G/N has maximum nilpotent class, so by part (v) of Theorem 2.2, G has $p^2 - p$ classes of maximum order, or $(p-1)^2$ perhaps if p > 2. By Lemma 4.1 then G has $(p^2 - p) - (p-1)$, or $(p-1)^2 - (p-1)$ if p > 2, classes of order p^{m-2} , at least; that is, G has at least one class of maximum order. The theorem follows by Theorem 2.1.

The *p*-Sylow subgroup of $\text{Sym}(p^2)$ shows that the converse of Theorem 4.2 is not true. In fact, we must place rather strong conditions upon G in order that k(G) = f(g).

4.3 THEOREM. If $k(G) = f(p^m)$ for a group G of order p^m $(m \ge 3)$ then either

(i) c(G) = 0 and G has p-class vector

$$(p, p-1, \dots, p-1, p^2-1, p^2-p, \dots, p^2-p, 2(p^2-p), (p-1)^2)$$
 if $n \ge 4$,

or $(p, p-1, p-1, 2p^2-p-1, (p-1)^2)$ if n = 3; or

(ii) c(G) = 1; for $1 \leq i \leq m-2$, if $x \in \gamma_i - \gamma_{i+1}$ then $C_G(x) = \langle x, \gamma_{m-i-1} \rangle$ and $x^p \in \gamma_{m-i-1}$; and G has p-class vector

$$(p, p-1, \cdots, p-1, p^2-1, p^2-p, \cdots, p^2-p).$$

PROOF. Since each γ_i is a normal subgroup of G and so a union of conjugate classes of G, then $G - \gamma_1$ and $\gamma_i - \gamma_{i+1}$ (i > 0) are unions of classes of G. Note that $|\gamma_i| = p^{m-i}$.

First, suppose c(G) > 0. By part (v) of Theorem 2.2, $G - \gamma_1$ splits into $p^2 - p$ classes of p^{m-2} elements each. Since $[\gamma_i, \gamma_j] \leq \gamma_{i+j+1}$ then $[\gamma_i, \gamma_{m-i-1}] = 1$ so if $x \in \gamma_i - \gamma_{i+1}$ then $C_G(x) \geq \langle x, \gamma_{m-i-1} \rangle$. Now $x \in \gamma_{m-i-1}$ if and only if $\gamma_i \leq \gamma_{m-i-1}$ or $i \geq (m-1)/2$. Therefore if $1 \leq i < n$, then $|C_G(x)| \geq p \cdot p^{i+1}$ so $|K(x)| \leq p^{m-i-2}$. It follows that $\gamma_i - \gamma_{i+1}$ splits into at least $(p^{m-i} - p^{m-i-1})/p^{m-i-2} = p^2 - p$ classes of G if $1 \leq i \leq n$. In the same way if $n \leq i \leq m$, $\gamma_i - \gamma_{i+1}$ splits into at least p-1 classes. Finally $\gamma_m = \{1\}$ is a class of G. Therefore $k(G) \geq n(p^2-p) + (m-n)(p-1) + 1 = f(p^m)$, with equality only if $x \in \gamma_i - \gamma_{i+1}$ implies that $C(x) = \langle x, \gamma_{m-i-1} \rangle$ and $x^p \in \gamma_{m-i-1}$ for $i = 1, \dots, m-2$. In particular $[\gamma_2, \gamma_{m-3}] = 1$ but $[\gamma_1, \gamma_{m-3}] \neq 1$ so c(G) = 1. We note that we have $\gamma_{n-1} - \gamma_n$ splitting into $p^2 - p$ classes of order p^{m-n-2} and $\gamma_n - \gamma_{n+1}$ splitting into p-1 classes of the same order. To summarize, G must have p-class vector

$$(p, p-1, \dots, p-1, p^2-1, p^2-p, \dots, p^2-p).$$

Suppose now c(G) = 0. By part (ii) of Theorem 2.2 m = 2n and $6 \le m \le p+2$, while by part (iii), c(G/Z) > 0. By Lemma 3.7 and Corollary 3.8, $k(G/Z) = f(p^{m-1})$. Hence we can apply the above results and G/Z must have p-class vector

$$(p, p-1, \dots, p-1, p^2-1, p^2-p, \dots, p^2-p)$$

Now by part (v) of Theorem 2.2, G has exactly $(p-1)^2 = (p^2-p)-(p-1)$ classes of order p^{m-2} . The *p*-class vector of G now follows by Lemma 4.1, and we are done.

4.4 THEOREM. If G is a group of order p^m and $m \ge p+3$ then $k(G) \ge f_1(p^m)$.

PROOF. Suppose $g = p^m$, $m \ge p+3$, and $k(G) = f(p^m)$. Define s and s_1 as generators of G modulo γ_1 and γ_1 modulo γ_2 respectively; define $s_i = [s_{i-1}, s]$ for i > 1. Blackburn ([1], 2.9 and 3.8) has shown that s_i and γ_{i+1} generate γ_i then because of Theorem 4.2. By Theorem 4.3, $s_1^p \in \gamma_{m-2} \le \gamma_{p+1}$ since $m \ge p+3$. Therefore $s_1^p s_p \notin \gamma_{p+1}$, contradicting Lemma 3.3 of Blackburn. The theorem follows by Corollary 3.8.

The case of p = 2 and $k(G) = f_1(g)$ has been examined in [5].

Bibliography

- [1] N. Blackburn, 'On a special class of p-groups', Acta Math. 100 (1958), 45-92.
- [2] W. Burnside, Theory of Groups of Finite Order, (Dover, New York, 2nd ed. 1911).
- [3] Philip Hall, (unpublished).
- [4] K. A. Hirsch, 'On a theorem of Burnside', Quart. J. Math. 1 (1950), 97-99.
- [5] J. Poland, 'On the group class equation', Ph. D. thesis, McGill, 1966.

Institute of Advanced Studies Australian National University Canberra, A.C.T.