[ 26 ]

THE ESTIMATION OF BACTERIAL DENSITIES
FROM DILUTION SERIES

By D. J. FINNEY
Lecturer tn the Design and Analysis of Scientific Experiment,
University of Oxford

(1) INTRODUCTION

The dilution technique for estimating the density of a bacterial suspension involves
taking samples of constant size from each of several dilutions of the suspension,
incubating these under standard conditions, and recording presence or absence of
bacterial growth for each sample. From the numbers of sterile samples at each
dilution an estimate of the number of organisms per unit volume of the original
suspension is formed and its precision is assessed. That precision will be much lower
than for an estimate based on direct bacterial counts (e.g. by colony counts) in the
same samples, but the dilution technique is much simpler and can be used in
circumstances that make counts impracticable. Many methods of statistical
analysis have been proposed for dilution series; these were excellently reviewed by
Eisenhart & Wilson (1943) and by Cochran (1950).

The simplest method is undoubtedly that suggested by Fisher (1922) on which
is based Table VIII, of Fisher & Yates’s collection (1948). This method is exceedingly
ingenious, and of remarkably high efficiency, but it cannot always be applied and the
conditions for its applicability may sometimes be opposed to the best interests of
experimental design. Halvorson & Ziegler (1933) suggested the use of the principle
of maximum likelihood for estimating the density, and suggestions for the
systematic computation of the maximum likelihood estimate have been made by
Barkworth & Irwin (1938) and Finney (1947). Mather’s (1949) solution to a closely
related problem leads to an ideal method of computing the maximum likelihood
estimate for a dilution series. This paper is written to show the application of
Mather’s ‘loglog’ transformation and to compare the new proposals with Fisher’s
method.

(2) THE LOGLOG TRANSFORMATION

For convenience of notation the unit of volume may be taken as the size of the
sample used in the dilution series. Suppose that,in the original bacterial suspension,
the mean density of organisms is # per unit volume. In a suspension diluted by
a factor z (in general z < 1, but the statistical theory remains applicable with z> 1)
the density will be yz. Two important assumptions must now be made if any
statistical estimation procedure is to be valid; these are:

(i) The organisms are distributed entirely at random in the original suspension
and in all dilutions used.

(ii) The nature of the culture medium and incubation are such as to ensure
visible growth for every sample containing one or more organisms,
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By virtue of the first assumption the number of organisms per sample at dilution
z follows a Poisson distribution with mean 2. The probability of a sterile sample is,
by the second assumption, the probability that a sample contains no organisms;
this is the first term of the Poisson series,

P =4, (1)

The general form of experiment will consist of tests of n; samples at a dilution
z;(t = 1,2,3,..., k), with records of r;, the number sterile. The probability of the
result observed for dilution z; is

N
Prob. (r;) = s L. PG (11— P)riri, (2)

ril(n;—r)!

where P, is defined by equation (1). Moreover

Py = 1iln; (3)
is an estimate of P, from the data for the corresponding dilution. Write now
x = log, 2, (4)
and, following Mather (1949),
Y =log,(—log, P); (5)

Y is termed the loglog of P. Natural logarithms are more convenient here than
logarithms to base 10, and are easily read from Fisher & Yates’s Table XX VI (1948).
Table 1, an abbreviated form of a table given by Mather, shows the loglog function
to sufficient accuracy for the present method. Equation (1) may now be expressed as

Y =log, p+z. (6)

Consequently, the estimation of log, # can be regarded as a form of regression
calculation of the loglog of the proportion of sterile plates on z, subject to the
restriction that the regression coefficient is unity.

Table 1. The transformation of proportions to loglogs
P 0-000 0-001 0-002 0003 0-004 0-005 0006 0-007 0-008 0-009

0-00 — 1.93 1-83 1-76 1-71 1-67 1-63 1-60 1-57 1-55
P 0-00 0-01 0-02 0-03 0-04 0-05 0-06 0-07 0-08 0-09
0-0 — 1-53 1-36 1-25 117 1-10 1-03 0-98 0-93 0-88

0-1 0-83 0-79 0:75 0-71 0-68 0-64 0-61 0-57 0-54 0-51
0-2 0-48 0-45 0-41 0-39 0-36 0-33 0-30 0-27 0-24 0-21
0-3 0-19 0-16 0-13 0-10 0-08 0-05 002 —-001 -003 —0-06
04 -009 -011 -014 ~-017 -020 -023 -025 —-028 -031 -—-0-34
05 —037 —040 —-042 —-045 -—-048 —-051 -055 —058 —061 —0-64
06 —-067 —-070 -—-074 -077 —-081 -084 -—-088 —-092 -—-095 —099
o7 -103 -1}07 -1-11 -116 -120 -1.25 -129 —1-3¢4 -139 —1-45
08 -150 -—-1-56 -—-1.62 -—-168 —-1.75 —1-82 —1-89 —1.97 —2-06 -—2:15
09 -—-225 —-2-36 —248 —2:62 —-2.78 —-297 —3-20 —349 -390 —4-60
P 0-000 0-001 0-002 0-003 0-004 0-005 0-006 0-007 0-008 0-009
097 -349 -353 —36H66 -—-3.60 —3-64 —-368 —372 -376 -381 -—385
098 —390 —-395 —401 —407 —413 —419 426 —4-34 —442 —4.50
099 -460 —471 -—-482 —496 511 -530 —552 --581 -621 -—691
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(3) THE METHOD OF CALCULATION

The calculations are not quite those of an ordinary regression, and are closely
related to the standard procedure for probit analysis (Finney, 1951), as generalized
to tolerance distributions of various types (Finney, 1949)—though the notion of
a tolerance distribution is not relevant here. Mather has given most of the theory,
and all that need be presented here is the set of rules for computation.

The first step is to tabulate 2, n, r and p for each dilution. The empirical loglog
of each p is then found from Table 1; if p=0 or p=1, the empirical loglog is
infinite and must be omitted. A column of expected loglogs, Y, is then added. This is
constructed by guessing the density of organisms in the original suspension (or in
any of the dilutions), calculating the densities for every dilution to correspond to
this guessed value, and writing the ¥ values as the natural logarithms of these. The
differences between successive values of ¥ will then be equal to the differences be-
tween successive values of x (in general, one decimal place in Y suffices). The agree-
ment between values of ¥ and the empirical loglogs is a check that the guessed
density is near the truth. Though a good choice for Y will expedite the calculations, it
does not affect the final estimate, and therefore no more objective rule need be given.

Two additional columns, nw and 7, are next completed. The weight, nw, is the
product of n and a weighting coefficient, w, defined by

2y
g 0
The working deviate, 3, is obtained from any one of the formulae
N = 1o+P (1), (8)
7 =1,—(1=p) (9, — 1), (9)
7 = (1=2) %o+ P71 (10)
where 7, is defined by No=—eY, (11)

and is known as the minimum working deviate; 3, is defined by
py =T D, (12)

and is known as the maximum working deviate, and (5, — 7,) is known as the range.
Table 2* shows the minimum and maximum working deviates, the range, and the
weighting coefficient as functions of Y.

The next step is to find the weighted mean deviate, 7, as

7 = Snawn/Snw. (14)
This quantity is subtracted from the logarithm of the guessed density that was

used in initiating the calculations, in order to give a revised value for the density
at that dilution. A new column of expected loglogs is then based on the revision,

* In his analysis, Mather used a working loglog, y, defined by
but 7 is more convenient here. Mather’s table corresponding to Table 2 is inaccurate at
extremes of Y, perhaps because it was calculated from an inadequate table of logarithms.
Table 2 has therefore been based on new and independent calculation from the New York
Works Projects Administration tables of the exponential function (1939).

https://doi.org/10.1017/50022172400015333 Published online by Cambridge University Press


https://doi.org/10.1017/S0022172400015333

The estimation of bacterial densities from dilution series

Table 2. Minimum and maximum working deviates, range,
and weighting coefficients

Y Mo T
25 —0-0821 —
24 —0-0907 —
2-3 —0-1003 -
2-2 —0-1108 —
2-1 —0-1225 —
2-0 —0-1353 —
1-9 —0-1496 —
1-8 —0-1653 69-915
1-7 —0-1827 43-369
1-6 —0-2019 28-387
1-5 —0-2231 19-498
1-4 —0-2466 13-981
1-3 —0-2725 10-417
1-2 —0-3012 8-0309
1-1 —0-3329 6-3809
1-0 —0-3679 5-2071
09 —0-4066 4-3097
0-8 —0-4493 3-7108
0-7 —0-4966 3-2235
0-6 —0-5488 2-8456
05 — 0-6065 2:5476
0-4 —0-6703 2-3094
0-3 — 07408 2-1164
0-2 —0-8187 1-9584
0-1 —0-9048 1-8275
0-0 —1-0000 1-7183
—0-1 —1-1052 1-6263
—0-2 —1-2214 1-5483
—-03 —1-3499 1-4817
—04 —1-4918 1-4245
—0-5 — 1-6487 1-3751
—-0:6 —1-8221 1-3323
—07 - 2:0138 1-2950
—-08 —2-2255 1-2625
—0-9 —2:4596 1-2339
—-1-0 —2-7183 1-2087
—1I-1 —3-0042 1-1865
—1-2 —3-3201 1-1669
—-1-3 — 3-6693 1-1495
—1-4 —4-0552 1-1341
- 15 —4-4817 1-1203
—1-6 —4:9530 1-1081
—-1-7 — 5-4739 1-0972
—1-8 —6-0496 1-0874
—-1-9 — 6-6859 1-0787
—2-0 —7-3891 1-0708
-2-1 — 81662 1-0638
—2-2 -—9:0250 1-0575
—2:3 —9-9742 1-0518
—24 —11-023 1-0468
—25 —12-182 1-0422
—2-6 —13-464 1-0381
— 27 —14:880 1-0344
—2-8 —16-445 1-0310
—29 —18-174 1-0280
-30 —20-086 1-:0253
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Range
16,034-
5,559-0
2,152-1
920-59
431-03
219-00
119-81
70-080
43-552
28-589

19-721

14-228

10-689
8-3321
6-7138

5-5750
4:7163
4-1601
3-7201
3-3944

3-1541
2-9797
2-8572
2:7771
2-7323

2-7183

2-7315
2-7697
2-8316
2-9163
3-0238

3-1544
3-3088
3-4880
3-6935
3-9270

4-1907
4-4870
4-8188
5-1893
5-6020

6-0611
6-5711
7-1370
7-7646
8-4599

9-2300
10-083
11-026
12-070
13-224

14-502
15-914
17-476
19-202
21-111

w

0-00076
0-00198
0-00463
0-00980
0-01895

0-03376
0-05587
0-08653
0-12622
0-17448

0-22985
0-29005
0-35223
0-41342
0-47080

0-52204
0-57071
0-59975
0-62471
0-64034

0-64716
0-64598
0-63780
0-62369
0-60473

0-58198

0-55638
0-52880
0-49999
0-47057
0-44107

0-41192
0-38345
0-35592
0-32951
0-30435

0-28054
0-25811
0-23708
0-21744
0-19916

0-18220
0-16650
0-15201
0-13866
0-12638

0-11511
0-10478
0-09532
0-08667
0-07876

0-07155
0-06497
0-05898
0-05352
0-04856

29
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Table 2 (continued)

Y %o T
- 31 —22-198 1-0229
-32 -~ 24-533 1-0207
-33 —27-113 1-0187
- 34 —29-964 1-0169
- 35 —33-115 1.0153
—36 —36-598 1-0138
—-37 —40-447 1-0125
— 38 —44-701 1-0113
-39 —49-402 1-0102
—4-0 — 54-598 1-:0092
—-4-1 — 60-340 1-0083
—4-2 - 66-686 1-0075
—4-3 —173-700 1-0068
—4-4 —81:451 1-0062
—4-5 —90-017 1-0056
— 46 —99-484 1-0050
—4-7 — 1-0046
—4-8 —_ 1-0041
—4-9 —_ 1-0037
—50 — 1-0034
— 51 — 1-0031
—52 — 1-0028
—53 — 1-0025
— 54 — 1-0023
- 55 - 1-0020
— 56 — 1-0018
— 57 —_— 1-0017
— 58 —_ 1-0015
- —59 — 1-0014
— 60 —_ 1-0012
—6-1 — 1-0011
—6-2 — 1-0010
—6-3 —_— 1-:0009
—6-4 — 1-0008
—6-5 — 1-0008
—6-6 — 1-0007
—6-7 — 1-0006
—6-8 —_ 1-0006
—6-9 — 1-0005
—-7-0 — 1-0005
-7-1 — 1-0004
-7-2 — 1-0004
-173 — 1-:0003
—-7-4 f— 1-0003
—75 — 1-0003
—7-6 — 1-0003
- 77 — 1-0002
-7-8 — 1-0002
—-79 —_ 1-0002
— 80 —_— 1-0002
—81 — 1-0002
— 82 —_ 1-0001
- 83 — 1-0001
—84 —_— 1-0001
— 85 — 1-0001
- 86 —_— 1-0001
— 87 —_ 1:0001
— 88 — 1-0001
-89 — 1-0001
-9-0 —_ 1-0001
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Range
23-221

25-554 -

28-132
30-981
34-130

37-612
41-459
45-712
50-412
55-607

61-348
67-694
74707
82-457
91-023

100-49
110-95
122-51
135-29
149-41

165-02
182-27
201-34
222-41
245-69

271-43
299-87
331-30
366-04
404-43

446-86
493-75
545-57
602-85
666-14

736-10
- 81341
898-85
993-28
1,097-63
1,213-0
1,340-0
1,481-3
1,637-0
1,809-0
1,999-2
2,209-3
2,441-6
2,698-3
2,982-0

w

0-04404
0-03994
0-03621
0-03282
0-02974

0-02695
0-02442
0-02212
0-02004
0-01815

0-01644
0-01488
0-01348
0-01220
0-01105

0-01000
0-00905
0-00820
0-00742
0-00672

0-00608
0-00550
0-00498
0-00451
0-00408

0-00369
0-00334
0-00302
0-00274
0-00248
0-00224
0-00203
0-00183
0-00166
0-00150

0-00136
0-00123
0-00111
0-00101
0-00091

0-00082
0-00075
0-00068
0-00061
0-00055

0-00050
0-00045
0-00041
0-00037
0-00034

0-00030
0-00027
0-00025
0-00022
0-00020

0-00018
0-00017
0-00015
0-00014
0-00012
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and the whole cycle of computation is repeated; the process is iterated until the
adjustment 7 is negligible.

The final version of the Y column, which may be calculated to additional places
of decimals, gives maximum likelihood estimates of the densities at each dilution.
In particular, the value of Y corresponding to z = 1 (whether or not samples were
taken at this level) is, by equation (1), log, m, where m is the maximum likelihood
estimate of u. Moreover, the precision of the estimate may be expressed by the

variance V (log,m) = 1/Snw, (15)

where the weights are from the last cycle computed. To a first approximation,
fiducial limits to x may be obtained by assuming a normal distribution of errors and
the variance as given in equation (15)

(4) A NUMERICAL EXAMPLE

An example will show how very simple Tables 1 and 2 make this apparently com-
plicated process. Fisher & Yates (1948, Example 5-1) reported a series of dilution
tests for estimating the numbers of ‘rope’ spores (Bacillus mesentericus) in a potato
flour. A suspension of the flour containing 0-04 g./c.c. was diluted by nine successive
factors of 2, and five samples of 1 c.c. were withdrawn at each level. The samples
were plated and incubated, and the resulting data on numbers of sterile plates are
recorded in Table 3. The proportions sterile, p, and the empirical loglogs of p have
been entered in the table. The general run of values in the empirical loglog column
suggests that an expected value of — 0-1 for z = 1/32, corresponding to a density

e 01 = 0-91

at this dilution, would be about correct. The densities at other dilutions may be
calculated by considering their ratios to 1/32, and their logarithms are the entries
for Y. Since the ratio of successive dilutions is always 2, and log, 2 = 0-69, the
Y column is most easily constructed by additions or subtractions of 0-69 to the
value —0-1.

Table 3. A dilution series for the estimation of the density of
rope spores in a potato flour

Dilution (z)

of original ) First cycle Second cycle
suspension of Empirical , A — - A S\
0-04g./jec. n r P loglog Y w i Y w i
1 5 0 00 — 3-4 0-000 — 3-4 0-000 —
1/2 5 0 00 — 2-7 0-000 — 2-7 0-000 —_
1/4 5 0 00 — 2-0 0-03¢ —0-135 2:0 0-03¢ —0-135
1/8 5 0 00 — 1-3 0-352 —0-272 13 0-352 —0-272
1/16 5 1 02 0-48 0-6 0-640 0-130 0-6 0-640 0-130
1/32 5 2 04 —-009 -—-01 0-556 —0-013 0-0 0-582 0-087
1/64 5 3 06 —-067 —-08 0-356 —0-133 —0-7 0-383 —0-029
1/128 5 3 06 —067 —-15 0199 —1-120 -—-1-4 0-217 —0-942
1/256 5 5 10 — =22 0-105 1.058 —2-1 0-115 1-064
1/512 5 5 10 — =29 0-054 1-028 —2-8 10-059 1-031
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When each dilution has the same n, the calculations can be performed with
a weight w, instead of nw; the factor n must be introduced at the end, before the
variance is evaluated. In Table 3, the w column has been filled by direct entry of
weighting coefficients from Table 2. The working deviates were found from equation
(8). The first two spaces in the column can be left blank, because the associated
weights are negligible. For 2 = 1/32, for example,

=—1-1052+0-4 x 2-7315
= —0-013.
By summations of w, and of the products w,
Sw = 2296, Swy = —0-1280.
_ 01280
7= ""3:306
= —0-0557.
Subtraction of this from the provisional ¥ = —0-1 at z = 1/32 gave a revised
expected loglog of —0-044 at this dilution. A second cycle of calculations was then
performed with a new Y column based on this value but rounded to the nearest
0-1 (interpolation for more exact arithmetical working will seldom be necessary).
From the second cycle, details of which are shown in Table 3,
Sw = 2-382, Swy = 0-0012,
and therefore 7 = 0-0005.
The further revision of the expected loglog at z = 1/32 is ¥ = —0-0445. The last
adjustment is so small that no more cycles need be computed, as will be apparent
from the use to which the calculations are now put.

If 4 is the mean number of spores per unit sample (i.e. per c.c.) of the original
suspension, the estimate of x is given by

log, (m/32) = — 0-0445,

Therefore

or m = 30-6.
Also, since Snw = 5 x Sw

= 1/(0-0290)2,
the standard error to be attached to log, (m/32) is 0-290. For 5 %, fiducial limits,

this standard error should be multiplied by 1-960 and subtracted from or added to
log, (m/32); the limits are — 0-6129, 0-5239. Hence

Lower fiducial limit to g = 32¢~06129
=173,
and Upper fiducial limit to g = 3205239
= 54-0.
The suspension contained 1g. of flour per 25c.c.; the flour is therefore estimated

to contain 765 ‘rope’ spores per g., and may be confidently asserted to have not less
than 432 nor more than 1350.
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(5) COMPARISON WITH FISHER’S METHOD

A common procedure in estimation by a dilution series is to test equal numbers of
samples at each of many dilutions arranged in a geometrical progression; dilution
factors of 2, 4 and 10 are the favourites. The series is made long enough to ensure
that at one extreme the samples are almost always fertile, and at the other they are
almost always sterile. Fisher (1922) pointed out that, for such an experiment,
a highly efficient estimate is obtainable by equating the total number of sterile
plates to its expectation. If z; is the first dilution tested, and a the dilution factor,
this involves writing

n (e~ 4 emr2le L e—p2a” 4| ) = S (r), (16)

and taking the solution of this equation as the estimate of x. The method is 87:7 9,
efficient, in the sense that the maximum likelihood estimate has a variance which
is 877 9, of the variance of the solution of equation (16). Strictly, this statement
applies to the limit of the ratio of the two variances as » is made large, and the
theory of what happens for small » (or even of what magnitude of » may be con-
sidered ‘large’) has not been studied. Fisher’s method is thus equivalent to a dis-
carding of 12-3 9/ of the data. Its advantage is that, with the aid of special tables,
equation (16) can be very easily solved. Fisher & Yates (1948, Table VIII,) have
given such tables for a = 2, 4, 10, and have described how the precision of the
estimate may be assessed. For the data used in Table 3, they obtained an estimate
of 760 spores per g., with limits at 407 and 1440 spores per g., a range about 13 9
wider than that in §4.

When circumstances require that a long series of dilutions be tested, the decision
between Fisher’s method and maximum likelihood estimation is primarily one of
economics. If the same number of samples is tested at each dilution, use of the
Fisher and Yates table with eight samples per dilution will give the same precision
as maximum likelihood estimation with seven per dilution. Though Mather’s loglog
transformation makes the maximum likelihood calculations less laborious than
before, the experimental technique might be so simple as to make the use of extra
samples the easier way of gaining precision. Nothing in this paper is intended to
imply that Fisher’s method is now out-moded, for it must always retain certain
advantages of speed.

Data from a dilution series experiment, however, are sometimes not suitable for
application of Fisher’s method. This may happen either by accident or by design.
If the total span of dilutions does not extend from the almost certainly fertile to the
almost certainly sterile, the theory breaks down. Even in Table 3, the lowest
dilutions are scarcely low enough for theoretical justification of the method (as is
shown by the fact that w is by no means negligible in the last line of the table), and
another two dilutions at least are desirable in order to make use of Fisher & Yates’s
table valid. Moreover, though Fisher & Yates have explained how their table may
be applied when not all the #, are equal, much of the simplicity of the method is
then lost; its use for an experiment with different numbers of samples at each
dilution would be difficult to justify theoretically and laborious to compute. Again,
the construction of tables for the solution of the generalized form of equation (16)

J. Hygiene 3
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required when successive dilution factors are not all equal is scarcely likely to be
attempted.

Some of these criticisms may seem trivial, but they have important bearings on
experimental design. If nothing is known about the value of 4 at the time the
experiment is planned, a long dilution series of the kind to which Fisher’s method
may be applied is perhaps ideal. On the other hand, if the experimenter has some
idea of the density in his suspension, he will employ his efforts most profitably in
tests of samples containing about 1-6 organisms each: at this level, for which the
probability of a sterile sample is about 0-20, w is a maximum. For example, if the
experimenter had guessed the density of ‘rope’ spores in the suspension discussed
in §4 to be about 40 per c.c., he might have restricted his attention to the dilutions
z = 1/8, 1/16, 1/32, 1/64, 1/128, in which there would be about 5, 2-5, 1-2, 0-6, 0-3
spores per c¢.c. With the same amount of labour as in the actual experiment, he
could have taken 10 samples from each of these five dilutions. The second cycle
in Table 3 indicates that he might then have found

Snw = 10 x (0-352 + 0-640 + 0-582 + 0-383 + 0-217)
= 21-74,
so that his estimate of # would have been almost twice as precise as that in fact
obtained. Had he had still more confidence in his guess, and assigned 5, 10, 20, 10,
5 samples to the five dilutions, Snw would have been further increased to 24-72.
In such circumstances adoption of an experimental design that will permit the
use of Fisher’s method is clearly far from efficient.

As in most fields of research the present state of knowledge about the subject of
experimentation determines the best type of experimental design. To choose
a design because of the simplicity of the statistical analysis required, rather than
because of its efficiency for the job in hand, is seldom wise. Equally undesirable,
however, is a choice based upon excessive confidence in unreliable information.
For example, if the experimenter investigating the numbers of ‘rope’ spores had
guessed the density to be about 4 spores per c.c., he might have taken 10 samples
at each of the dilutions z = 1, 1/2, 1/4, 1/8, 1/16; Snw would then have been only
10-26, and his precision would have been rather less than that resulting from use
of Fisher’s method with the original design. A guess of 1 spore per c.c., or of
1000 spores per c.c. might have had disastrous consequences, unless the experi-
menter had appreciated its unreliability and adopted a wide span of dilutions.

(6) SUMMARY

A transformation devised by Mather is applied to give a new scheme for computing
the maximum likelihood estimate of a bacterial density from the evidence of
a dilution series. Tables are provided to expedite the application of the method;
with their aid, the calculations take a form similar to, but much simpler than, those
for probit analysis of quantal responses.

Maximum likelihood estimation is compared with the method proposed by
Fisher. The latter has the advantage of extreme simplicity, at least for series to
which existing tables can be applied, and the loss of information involved in its
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use may often be compensated by the saving of time in calculation. An experimenter
who has fairly reliable prior indications of an approximate value for the density,
however, ought to concentrate his attention on dilutions that he believes will
contain between 4 and 1/4 organisms per sample; he must not apply Fisher’s
method to his results, but the maximum likelihood estimate will be so much more
precise than any estimate from an experimental design using more extreme
dilutions as to repay the small additional labour in computation.

I am indebted to Miss M. Callow and Miss H. M. Wild for the computation of
Table 2,
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