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Relations for quadratic Hodge integrals via
stable maps
Georgios Politopoulos

Abstract. Following Faber–Pandharipande, we use the virtual localization formula for the moduli
space of stable maps to P

1 to compute relations between Hodge integrals. We prove that certain
generating series of these integrals are polynomials.

1 Introduction

LetMg ,n be the moduli space of n-pointed genus g stable curves. It is a proper smooth
Deligne Mumford (DM) stack of dimension 3g − 3 + n. We denote by π ∶ Cg ,n →Mg ,n

the universal curve and by σi ∶Mg ,n → Cg ,n the sections associated with the marking
i for all 1 ≤ i ≤ n. We denote by ω

Cg ,n/Mg ,n
the relative dualizing sheaf of π. We will

consider the following classes in A∗(Mg ,n):
• For all 0 ≤ i ≤ g, λ i stands for the ith Chern class of the Hodge bundle, i.e., the

vector bundleE = π∗ω
Cg ,n/Mg ,n

. For all α ∈ C, we denote Λg(α) = ∑g
j=0 α g− j λ j , and

Λ∨g (α) = (−1)g Λg(−α).1
• For all 1 ≤ i ≤ n, we denote ψ i the Chern class of the cotangent line at the ith

marking Li = σ∗i (ωCg ,n/Mg ,n
).

A Hodge integral is an intersection number of the form:

∫
Mg ,n

ψk1
1 . . . ψkn

n Λg(t1) . . . Λg(tm),

where k1 , . . . , kn are nonnegative integers and t1 , . . . , tm are complex numbers. If m =
1, 2, or 3, then the above integral is called a linear, double, or triple Hodge integrals,
respectively. Relations between linear Hodge integrals where proved in [FP00a]
using the Gromov–Witten theory of P1 and the localization formula of [GP99]. This
approach was also used in [FP00b] and [TZ03] to prove certain properties of triple
Hodge integrals. Linear and triple Hodge integrals naturally appeared in the GW-
theory of Calabi–Yau 3-folds, thus explaining a more abundant literature on the
topic. However, double Hodge integrals have appeared recently in the quantization
of Witten–Kontsevich generating series (see [Blo20]), in the theory of spin Hurwitz
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Relations for quadratic Hodge integrals via stable maps 681

numbers (see [GKL21]), and in the GW theory of blow-ups of smooth surfaces (see
[GKLS22]).

In the present note, we consider the following power series in C[α][[t]] defined
using double Hodge integrals:

Pa(α, t) = ∑
g≥0

t g (∫
Mg ,n+1

Λ∨g (1)Λ∨g (α)
1 − ψ0

n
∏
i=1
(2a i + 1)!!(−4ψ i)a i) exp( t

24
) ,

where a = (a1 , . . . , an) is a vector of nonnegative integers. If n = 1, we use the
convention: ∫M0,2

ψa
1

Λ∨g (1)Λ∨g (α))
1−ψ2

= (−1)a .

Theorem 1.1 Pa(α, t) is a monic polynomial in C[α][t] of degree ∣a∣ in t.

Here, we provide the first values of Pa(−α − 1, t). In the list below, we omit the
variables −α − 1 and t in the notation:

P() = 1.

P(1) = t + 12.

P(2) = t2 − 10αt + 240.
P(1,1) = t2 − 12t.

P(3) = t3 + (−77/3α − 28)t2 + 280t + 6720.
P(2,1) = t3 + (−10α − 48)t2 + (240α + 240)t.
P(1,1,1) = t3 − 72t2 + 432t.

P(4) = t4 + (−43α − 72)t3 + (126α2 + 756α + 840)t2 + 10080t + 241920.
P(3,1) = t4 + (−77/3α − 100)t3 + (1232α + 1624)t2 .
P(2,2) = t4 + (20α + 100)t3 + (−100α2 − 1360α − 1680)t2 .
P(2,1,1) = t4 + (−10α − 132)t3 + (840α + 3120)t2 + (−8640α − 8640)t.
P(1,1,1,1) = t4 − 168t3 + 5616t2 − 20736t.

Considering these first values, we conjecture that Pa is a polynomial of total degree
∣a∣ in both variables t and α.

2 Preliminaries

We denote by Mg ,n(P1 , 1), the moduli space of stable maps of degree 1 to P
1. It is a

proper DM stack of virtual dimension 2g + n. Here, we can define in an analogous
way the Hodge bundle E, the cotangent line bundles Li and we denote again λ i and
ψ i the respective Chern classes. We also have the forgetful and evaluation maps

π∶Mg ,n+1(P1 , 1) →Mg ,n(P1 , 1), and ev i ∶Mg ,n+1(P1 , 1) → P
1 .
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682 G. Politopoulos

Throughout this note, the enumeration of markings starts from 0. Furthermore, π is
the morphism that forgets the marking p0 and ev i is the evaluation of a stable map to
the ith marked point. The vector bundle T ∶= R1π∗(ev∗0OP1(−1)) is of rank g and we
denote by y its top Chern class. We will denote:

⟨
n−1
∏
i=0

τa i (ω)∣y⟩P
1

g ,1 ∶= ∫
[Mg ,n(P1 ,1)]v ir

n−1
∏
i=0

ψa i
i ev∗i (ω)y,

where ω denotes the class of a point in P
1.

Theorem 2.1 (Localization Formula [GP99, FP00a]) Let g ∈ Z≥0, and let a ∈ Zn
≥0

such that ∣a∣ ≤ g. Then, for all complex numbers α, and t ∈ C∗, we have

⟨
n
∏
i=1

τa i (ω)∣y⟩P
1

g ,1 = ∑
g1+g2=g

∫
Mg1 ,n+1

tn
n
∏
i=1

ψa i
i

Λ∨g1
(t)Λ∨g1

(αt)
t(t − ψ0)

× ∫
Mg2 ,1

Λ∨g2
(−t)Λ∨g2

((α + 1)t)
−t(−t − ψ0)

.

Here, we use the convention ∫M0,1
ψa

0 = 1.

Proposition 2.2 (Proposition 4.1 of [TZ03]) For all complex numbers α, we have

F(α, t) = 1 + ∑
g>0

t2g ∫
Mg ,1

Λ∨g (1)Λ∨g (α)
1 − ψ0

= exp(− t2

24
) .

Besides, we have the String and Dilaton equation for Hodge integrals.

Proposition 2.3 Let g , n ∈ Z≥0 such that 2g − 2 + n > 0.
(i) [Dilaton equation for Hodge integrals] Let (a1 , . . . , an) ∈ Zn

≥0 and assume that
there exist i0 such that a i0 = 1. Then

∫
Mg ,n+1

ψ i0∏i≠i0 ψa i
i ∏

g
j=1 λbk

k

1 − ψ0
= (2g − 2 + n)∫

Mg ,n

∏n−1
i=1 ψa i

i ∏
g
j=1 λbk

k

1 − ψ0
.

(ii) [String equation for Hodge integrals] Let (a1 , . . . , an) ∈ Zn
≥0 and assume that there

exist i0 such that a i0 = 0. Then we have

∫
Mg ,n+1

∏n
i=1 ψa i

i ∏
g
j=1 λbk

k

1 − ψ0
= ∫

Mg ,n

∏n−1
i=1 ψa i

i ∏
g
j=1 λbk

k

1 − ψ0

+
n
∑
j=1
∫
Mg ,n

ψa j−1
j ∏i≠ j ψa i

i ∏
g
k=1 λbk

k

1 − ψ0
.

3 The calculation

Note that the GW-invariant ⟨∏n
i=1 τa i (ω)∣y⟩P

1

g ,1 is 0 unless ∣a∣ = g for dimensional
reasons. Indeed, dimC[Mg ,n(P1 , 1)]vir = 2g + n and the cycle we are integrating is
in codimension g + ∣a∣ + n. Using the above localization formula, and Lemma 2.1 of
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[TZ03] the intersection number ⟨∏n
i=1 τa i (ω)∣y⟩P

1

g ,1 is expressed as

∑
g1+g2=g

∫
Mg1 ,n+1

tn
n
∏
i=1

ψa i
i

Λ∨g1
(t)Λ∨g1

(αt)
t(t − ψ0)

⋅ ∫
Mg2 ,1

Λ∨g2
(−t)Λ∨g2

((α + 1)t)
−t(−t − ψ0)

= ∑
g1+g2=g

t∣a∣−g1(−t)−g2 ∫
Mg1 ,n+1

n
∏
i=1

ψa i
Λ∨g1
(1)Λ∨g1

(α)
1 − ψ0

× ∫
Mg2 ,1

Λ∨g2
(1)Λ∨g2

(−(α + 1))
1 − ψ0

= t∣a∣−g ∑
g1+g2=g

∫
Mg1 ,n+1

n
∏
i=1

ψa i
Λ∨g1
(1)Λ∨g1

(α)
1 − ψ0

⋅ ∫
Mg2 ,1

ψ3g2−2
0 .

In the last equation, we used Proposition 2.2 in order to replace ∫Mg2 ,1

Λ∨g2 (1)Λ∨g2 (−(α+1))
1−ψ0

with (−1)g2 ∫Mg2 ,1
ψ3g2−2

0 .
We define

Ag ,a(α) = ∑
g1+g2=g

∫
Mg1 ,n+1

n
∏
i=1

ψa i
Λ∨g1
(1)Λ∨g1

(α)
1 − ψ0

⋅ ∫
Mg2 ,1

ψ3g2−2
0 .

Then, we have

Ag ,a(α) = {
0, ∣a∣ < g ,

⟨∏n
i=1 τa i (ω)∣y⟩P

1

g ,1 , ∣a∣ = g .

By the definition of Λ∨g (t), we see that Λ∨g (1)Λ∨g (−(α + 1)) is a polynomial in α of
degree g, which actually determines the degree of Ag(α).

We now present a proof for the main result.

Proof (of Theorem 1.1) We begin by stating the well-known fact

1 + ∑
g>0

t g ∫
Mg ,1

ψ3g−2
0 = exp( t

24
)

proven in Section 3.1 of [FP00a]. Now, we consider the product of exp ( t
24) and

∑
g≥0

t g (∫
Mg ,n+1

Λ∨g (1)Λ∨g (α)
1 − ψ0

n
∏
i=1
(2a i + 1)!!(−4ψ i)a i)

to obtain a new power series whose coefficients in degree g are given by

∑
g1+g2=g

∫
Mg1 ,n+1

n
∏
i=1
(2a i + 1)!!(−4)a i

n
∏
i=1

ψa i
Λ∨g1
(1)Λ∨g1

(α)
1 − ψ0

⋅ ∫
Mg2 ,1

ψ3g2−2
0 .

This is exactly Ag ,a(α) ⋅ ∏n
i=1(2a i + 1)!!(−4)a i . Hence, we can rewrite the power

series Pa(α, t) in the form

Pa(α, t) =
n
∏
i=1
(2a i + 1)!!(−4)a i ∑

g≥0
t g Ag ,a(α).

As it is computed in the start of Section 3, we have that the numbers Ag ,a(α)
vanish when g > ∣a∣. Hence, we get that all coefficients of the power series Pa(α, t)
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684 G. Politopoulos

vanish when g > ∣a∣, i.e. Pa(α, t) is a polynomial of degree ∣a∣. Furthermore, the top
coefficient of Pa(α, t), i.e., the coefficient of t∣a∣ is given by

⟨
n
∏
i=1
(−4)a i (2a i + 1)!!τa i (ω)∣y⟩P

1

∣a∣,1 .

This value is computed in [KL11] and is actually equal to 1. In particular, the number
∏n

i=1(−4)a i (2a i + 1)!! is here to make the polynomial monic. ∎

We now prove several other properties of the polynomials Pa .

Proposition 3.1 The constant term c0 of Pa(α, t) is nonzero if and only if n = 1, where
then c0 = (−1)a∏n

i=1(−4)a i (2a i + 1)!! or if n > 1 and∑n
i=1 a i ≤ n − 2 where then

c0 =
n
∏
i=1
(−4)a i (2a i + 1)!! (n − 2)!

a1! . . . (n − 2 −∑ a i)!
.

Proof We only compute the integrals appearing in the constant term of this
polynomial since then we only have to multiply with ∏n

i=1(2a i + 1)!!(−4)a i . The
integral in the constant term of Pa(α, t) is given by ∫M0,n+1

∏
n
i=1 ψai

i
1−ψ0

. When n = 1, using

the convention ∫M0,2

ψa
1

1−ψ0
= (−1)a , we get that

c0 = (−1)a
n
∏
i=1
(−4)a i (2a i + 1)!!.

When n > 1, if∑n
i=1 a i > n − 2, then c0 is zero for dimensional reasons. Otherwise, we

have

∫
M0,n+1

∏n
i=1 ψa i

i
1 − ψ0

= ∫
M0,n+1

ψn−2−∑ a i
0

n
∏
i=1

ψa i
i =

(n − 2)!
a1! . . . (n − 2 −∑ a i)!

. ∎

Proposition 3.2 Let n ≥ 3. Then we have the following rules:
(i) [String equation]

P(a1 , . . . ,an−1 ,0)(α, t) = P(a1 , . . . ,an−1)(α, t) −
n
∑
i=1
(8a i + 4)P(a1 , . . ,a i−1, . . . ,an−1)(α, t).

(ii) [Dilaton equation]

P(a1 , . . . ,an−1 ,1)(α, t) = (t − 12n + 24)P(a1 , . . . ,an−1)(α, t) − 24tP′(a1 , . . . ,an−1)
(α, t)).

Proof We define the power series

P̃a(α, t) = ∑
g≥0

t g (∫
Mg ,n+1

n
∏
i=1

ψa i
Λ∨g (1)Λ∨g (α)

1 − ψ0
) .

Note that the following equation holds:

Pa(α, t) =
n
∏
i=1
(2a i + 1)!!(−4)a i P̃a(α, t) exp( t

24
) .
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We can rewrite the coefficients of P̃a(α, t) as
g

∑
k=0

g

∑
j=0
(−1)g+k(a + 1)g− j ∫

Mg ,n+1

∏n
i=1 ψa i

i λk λ j

1 − ψ0
.

(i) Applying the String equation for Hodge integrals, we obtain the following
formula:

P̃(a1 , . . . ,an−1 ,0)(α, t) = P̃(a1 , . . . ,an−1)(α, t) +
n
∑
i=1

P̃(a1 , . . ,a i−1, . . . ,an−1)(α, t).

Hence, multiplying with∏n−1
i=1 (2a i + 1)!!(−4)a i exp ( t

24), we obtain the desired
result after a straightforward calculation.

(ii) Applying Dilaton equation for Hodge integrals, we obtain the following formula:

P̃(a1 , . . . ,an−1 ,1)(α, t) = 2∑
g≥0

gt g ∫
Mg ,n−1

n−1
∏
i=1

ψa i
i

Λ∨g (1)Λ∨g (α)
1 − ψ0

+ (n − 2)P̃(a1 , . . . ,an−1)(α, t).

Note that the first term of the sum is equal to 2tP̃′(a1 , . . . ,an−1)
(α, t). Now,

multiplying both sides of the equation above with
n−1
∏
i=1
(2a i + 1)(−4)a i exp( t

24
) ,

we have
−1
12

P(a1 , . . . ,an−1 ,1)(α, t) = (n − 2)P(a1 , . . . ,an−1)(α, t)

+ 2t (
n−1
∏
i=1
(−4)a i(2a i + 1)!!) P̃′(a1 , . . . ,an−1)

(α, t)et/24

= (n − 2)P(a1 , . . . ,an−1)(α, t)

+ 2t(P′(a1 , . . . ,an−1)
(α, t) − 1

24
P(a1 , . . . ,an−1)(α, t)).

Finally, clearing the denominators, we obtain the desired result. ∎

We recall Mumford’s relation Λ∨g (1) ⋅ Λ∨g (−1) = 1 (see [Mum83]). In particular,
Pa(−1, t) is defined by integrals of ψ-classes.

Corollary 3.3 For any vector a ∈ Zn
≥0, the power series

Pa(−1, t) =
n
∏
i=1
(2a i + 1)!!(−4)a i exp( t

24
) ⋅ ∑

g≥0
(−t)g ∫

Mg ,n+1

∏n
i=1 ψa i

i
1 − ψ0

is a polynomial of degree ∣a∣.

In this case, the polynomiality as well as a closed expression were proved in [LX11].
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