L Fi B British Journal of Nutrition (2022), 128, 2510-2514 doi:10.1017/S000711452200109X © The Author(s), 2022. Published by Cambridge University Press on behalf of The Nutrition Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. ## Corrigendum ## Can individual fatty acids be used as functional biomarkers of dairy fat consumption in relation to cardiometabolic health? A narrative review—CORRIGENDUM Laury Sellem, Kim G. Jackson, Laura Paper, Ian D. Givens and Julie A. Lovegrove First published online on 28 Jan 2022 British Journal of Nutrition, First View, pp. 1-14 DOI: https://doi.org/10.1017/S0007114522000289 **Details of correction:** reformatted Table 2 supplied **Existing text:** See Table 2 Table 2. Prospective human studies investigating the associations between circulating levels of odd-chain or trans-fatty acids and incident CVD, CVD mortality or incident type 2 diabetes (T2D) | Reference | Fatty acid(s) of interest | biological
fraction
measured | Reported study and overall participants characteristics (e.g. n , sex, mean age, mean BMI) | Study design and mean follow-up | Outcomes | No. cases and/or no. of deaths | Confounders included | Summary of observed associations by fatty acid of interest* | |---|---|------------------------------------|---|--|---|--|--|---| | ncident CVD and CVD n
De Oliveira Otto <i>et al.</i>
(2018) ⁽⁷⁴⁾ | nortality
15:0, 17:0, tPA
(5 th v. 1 st
quintile) | Plasma
phospholipids | Cardiovascular Health Study
(USA)
n 2907 (36 % M, 64 % F)
Age: 74-8 y | Prospective cohort
study,
22 y | Incident CVD, CHD
and stroke
total and CVD mor-
tality | 1301 CVD
876 CHD
529 strokes
2428 deaths
614 CVD deaths | Age, sex, race, education, enrolment site at baseline, smoking status, alcohol, PA, BMI, drug-related hypertension, self-reported general health, circulating total <i>trans</i> -FA, consumption of dairy, dietary fibre, fruits, vegetables and red meat | C15:0, C:17:0 tPA | | aursen <i>et al.</i> (2018) ⁽⁷⁵⁾ | 15:0, 17:0, tVA
(95 th percentile <i>v</i> .
5 th percentile) | Adipose tissue | Danish Diet, Cancer and Health (Denmark) Cases (incident stroke) n 2108 (60.5 % M, 39.5 % F) Age: 60.5 y BMI: 26.2 kg/m2 Non-cases n 3186 (54 % M, 46 % F) Age: 56.3 y, BMI: 25.8 kg/m2 | Case-cohort study,
12-8 y | incident stroke and stroke subtypes | 2108 total strokes
1745 ischaemic
strokes
249 intracerebral
haemorrhages
(IH)
102 subarachnoid
haemorrhages
(SH) | Sex, date of inclusion, education,
BMI, waist circumference, PA,
smoking status, alcohol intake,
baseline hypertension, hypercho-
lesterolemia, diabetes and myo-
cardial infarction | C15:0 ↓ Total stroke (HR = 0.59 (95 % CI 0.47, 0.74)) ↓ Ischaemic stroke (HR = 0.55 (95 % CI 0.43, 0.71)) ↔ IH, SH C17:0 ↔ Total stroke, IH, SH ↓ Ischaemic stroke (HR = 0.74 (95 % CI 0.58, 0.94)) tVA ↓ Total stroke (HR = 0.34 (95 % CI 0.27, 0.44)) ↓ Ischaemic stroke (HR = 0.30; 95 % CI (0.24, 0.39)) ↓ IH (HR = 0.45; 95 % CI (0.26, 0.78)) ↔ SH | | leber <i>et al.</i> (2016) ⁽⁷⁸⁾ | tPA
(3 rd v. 1 st tertile) | Erythrocytes | Ludwigshafen Risk and
Cardiovascular Health Study
(Germany)
n 3259 (69.7 % M, 30.3 % F)
Age: 62.7 y
BMI: 27.5 kg/m2
Patients hospitalised for coronary
angiography | Prospective cohort
study,
10 y | All-cause and CVD mortality | 975 deaths
614 CVD deaths
254 sudden car-
diac deaths | Age, sex, BMI, LDL-C, HDL-C, log-
transformed TAG, log-transformed
fibrinogen, smoking status, hyper-
tension, diabetes, lipid-lowering
therapy, glomerular filtration rate,
HbA1c, anti-hypertensive medica-
tion, alcohol intake | tPA → All-cause mortality, CVD mortality ↓ Sudden cardiac death (HR = 0.65; 95 % CI (0.47, 0.90)) | | Varensjö <i>et al.</i>
(2003) ⁽⁷⁰⁾ | C15:0, C170 | | C15:0 + C17:0
(continuous) | Serum cholesteryl
esters,
Serum phospholi-
pids | Northern Sweden
Health and
Disease Study
n 1000 (61.5 % M,
38.5 % F)
Age: 49–64y
BMI: 23·2–29·4 kg/
m2 | Nested prospective case–control study,
3.1–3.9 y | Incident myocardial infarction | 444 cases
556 controls | Fatty acids as biomarkers of dairy fat consumption—CORRIGENDUM | Reference | Fatty acid(s) of interest | biological
fraction
measured | Reported study and overall participants characteristics (e.g. n, sex, mean age, mean BMI) | Study design and mean follow-up | Outcomes | No. cases and/or no. of deaths | Confounders included | Summary of observed associations by fatty acid of interest* | 2512 | |--|--|------------------------------------|---|--|--|----------------------------------|--|--|-------------------------| | PA, BMI, smoking status, intakes of fruits and vegetables, education, ApoB/ApoA-I ratio, systolic blood pressure, BMI, prevalence of diabetes Incident T2D | C15:0, C170 | | C15:0 + C17:0
↔ Myocardial infarction risk | | Calconic | | | 4.00 01 11.00 00.00 | _ | | Liu <i>et al.</i> (2018) ⁽⁷⁷⁾ | C15:0, C17:0 | | C15:0 + C17:0
(continuous) | Calculated dietary
intakes from FFQ | European Prospective Investigation into Cancer and Nutrition- Netherlands n 37 421 (25.6 % M, 74.4 % F) Age: 49 y BMI: 25.3–26.0 kg/m2 across quartiles of dietary SFA | Prospective cohort study, 10·1 y | Incident T2D | 893 T2D cases | | | Sex, age, sum of other SFA, education, smoking status, PA, BMI, waist circumference, energy-adjusted dietary intakes of: alcohol, animal protein, vegetable protein, trans-FA, vitamin E, fibre, cholesterol | % CI (0·73,
0·97))
C15:0 + C17:0 | | | | , | | | | L. Sellem <i>et al.</i> | | Liu <i>et al.</i> (2018) ⁽⁷⁹⁾ | tPA, tVA
(5 th v. 1 st
quintile) | Plasma total
lipids | National Health and Nutrition
Examination Survey (USA)
n 3801 (48 % M, 52 % F)
Age: 50.1 y (M), 50.0 y (F) | Prospective cohort
study,
11 y | Incident T2D | 505 T2D cases | Age, gender, race/ethnicity, education, family income, smoking status, PA, alcohol intake, family history of diabetes, total energy intake, Healthy Eating Index-2010, BMI | Tpa → T2D (OR = 1·37; 95 % CI (0·90, 2·06)) tVA → T2D (OR = 1·37; 95 % CI (0·95, 1·99)) | | C15:0, pentadecanoic acid; C17:0, heptadecanoic acid; tPA, trans-palmitoleic acid; M, male; F, female; y, year; T2D, type 2 diabetes; IH, intracerebral haemorrhage; SH, subarachnoid haemorrhage; Apo, apolipoprotein; FA, fatty acids; PA, physical activity; \uparrow , direct association; \downarrow , inverse association; \leftrightarrow , no association. ^{*} HR and OR presented as estimate (95 % confidence interval). ## Corrected text should read: See updated and reformatted Table 2 Table 2. Prospective human studies investigating the associations between circulating levels of odd-chain or trans-fatty acids and incident CVD, CVD mortality or incident type 2 diabetes (T2D) | Reference | Fatty acid(s) of interest | biological
fraction
measured | Reported study and overall participants characteristics (e.g. <i>n</i> , sex, mean age, mean BMI) | Study design
and mean
follow-up | Outcomes | No. cases and/or no. of deaths | Confounders included | Summary of observed associations by fatty acid of interest* | |---|---|--|---|--|---|--|--|---| | Incident CVD and De Oliveira Otto et al. (2018) ⁽⁷⁴⁾ | CVD mortality
15:0, 17:0, tPA
(5 th v. 1 st quintile) | Plasma phos-
pholipids | Cardiovascular Health Study
(USA)
n 2907 (36 % M, 64 % F)
Age: 74-8 y | Prospective
cohort
study,
22 y | Incident CVD, CHD
and stroke
total and CVD
mortality | 1301 CVD
876 CHD
529 strokes
2428 deaths
614 CVD deaths | Age, sex, race, education, enrolment site at baseline, smoking status, alcohol, PA, BMI, drug-related hypertension, self-reported general health, circulating total <i>trans</i> -FA, consumption of dairy, dietary fibre, fruits, vegetables and red meat | C15:0, C:17:0 tPA | | Laursen <i>et al.</i> (2018) ⁽⁷⁵⁾ | 15:0, 17:0, tVA
(95 th percentile <i>v</i> .
5 th percentile) | Adipose tissue | Danish Diet, Cancer and Health (Denmark) Cases (incident stroke) n 2108 (60.5 % M, 39.5 % F) Age: 60.5 y BMI: 26.2 kg/m2 Non-cases n 3186 (54 % M, 46 % F) Age: 56.3 y, BMI: 25.8 kg/m2 | Case-cohort
study,
12-8 y | incident stroke and
stroke subtypes | 2108 total strokes
1745 ischaemic
strokes
249 intracerebral
haemorrhages
(IH)
102 subarachnoid
haemorrhages
(SH) | Sex, date of inclusion, education,
BMI, waist circumference, PA,
smoking status, alcohol intake,
baseline hypertension, hypercho-
lesterolemia, diabetes and
myocardial infarction | Cl 0-61, 0-98)) Cl 0-61, 0-98)) Cl 5:0 ↓ Total stroke (HR = 0-59 (95 % Cl 0-47, 0-74)) ↓ Ischaemic stroke (HR = 0-55 (95 % Cl 0-43, 0-71)) ↔ IH, SH Cl7:0 ↔ Total stroke, IH, SH ↓ Ischaemic stroke (HR = 0-74 (95 % Cl 0-58, 0-94)) tVA ↓ Total stroke (HR = 0-34 (95 % Cl 0-27, 0-44)) ↓ Ischaemic stroke (HR = 0-30; 95 % Cl (0-24, 0-39)) ↓ IH (HR = 0-45; 95 % Cl (0-26, 0-78)) ↔ SH | | Kleber <i>et al.</i>
(2016) ⁽⁷⁸⁾ | tPA
(3 rd v. 1 st tertile) | Erythrocytes | Ludwigshafen Risk and Cardiovascular Health Study (Germany) n 3259 (69.7 % M, 30.3 % F) Age: 62.7 y BMI: 27.5 kg/m2 Patients hospitalised for coronary angiography | Prospective
cohort
study,
10 y | All-cause and CVD mortality | 975 deaths
614 CVD deaths
254 sudden car-
diac deaths | Age, sex, BMI, LDL-C, HDL-C, log-
transformed TAG, log-transformed
fibrinogen, smoking status, hyper-
tension, diabetes, lipid-lowering
therapy, glomerular filtration rate,
HbA1c, anti-hypertensive medica-
tion, alcohol intake | tPA → All-cause mortality, CVD mortality ↓ Sudden cardiac death (HR = 0.65; 95 % CI (0.47, 0.90)) | | Warensjö <i>et al.</i> (2003) ⁽⁷⁰⁾ | C15:0, C170,
C15:0 + C17:0
(continuous) | Serum choles-
teryl esters,
Serum phospho-
lipids | Northern Sweden Health and Disease Study | Nested pro-
spective
case-
control
study,
3-1-3-9 y | Incident myocardial infarction | 444 cases
556 controls | PA, BMI, smoking status, intakes of
fruits and vegetables, education,
ApoB/ApoA-I ratio, systolic blood
pressure, BMI, prevalence of dia-
betes | C15:0, C170, C15:0 + C17:0
↔ Myocardial infarction risk | | Table 2 | (Continued) | |---------|-------------| | | | | Reference | Fatty acid(s) of interest | biological
fraction
measured | Reported study and overall participants characteristics (e.g. <i>n</i> , sex, mean age, mean BMI) | Study design
and mean
follow-up | Outcomes | No. cases and/or no. of deaths | Confounders included | Summary of observed associations by fatty acid of interest* | |--|---|--|---|---|--------------|--------------------------------|--|--| | Incident T2D
Liu <i>et al.</i> (2018) ⁽⁷⁷⁾ | C15:0, C17:0,
C15:0 + C17:0
(continuous) | Calculated
dietary
intakes from
FFQ | European Prospective
Investigation into Cancer and
Nutrition-Netherlands
n 37 421 (25-6 % M, 74-4 % F)
Age: 49 y
BMI: 25-3–26-0 kg/m2 across
quartiles of dietary SFA | Prospective
cohort
study,
10-1 y | Incident T2D | 893 T2D cases | Sex, age, sum of other SFA, education, smoking status, PA, BMI, waist circumference, energy-adjusted dietary intakes of: alcohol, animal protein, vegetable protein, <i>trans</i> -FA, vitamin E, fibre, cholesterol | C15:0
↔ T2D
C17:0
↓ T2D (HR = 0.84; 95 % CI (0.73, 0.97))
C15:0 + C17:0
↓ T2D (HR = 0.88; 95 % CI (0.79, 0.99)) | | Liu <i>et al.</i>
(2018) ⁽⁷⁹⁾ | tPA, tVA (5 th ν . 1 st quintile) | Plasma total
lipids | National Health and Nutrition
Examination Survey (USA)
n 3801 (48 % M, 52 % F)
Age: 50-1 y (M), 50-0 y (F) | Prospective
cohort
study,
11 y | Incident T2D | 505 T2D cases | Age, gender, race/ethnicity, education, family income, smoking status, PA, alcohol intake, family history of diabetes, total energy intake, Healthy Eating Index-2010, BMI | Tpa → T2D (OR = 1·37; 95 % CI (0·90, 2·06)) tVA → T2D (OR = 1·37; 95 % CI (0·95, 1·99)) | C15:0, pentadecanoic acid; C17:0, heptadecanoic acid; tPA, trans-palmitoleic acid; M, male; F, female; y, year; T2D, type 2 diabetes; IH, intracerebral haemorrhage; SH, subarachnoid haemorrhage; Apo, apolipoprotein; FA, fatty acids; PA, physical activity; ↑, direct association; ↓, inverse association; ↔, no association. ^{*} HR and OR presented as estimate (95 % confidence interval).