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FUNCTIONS OF BOUNDED MEAN SQUARE, AND 
GENERALIZED FOURIER-STIELTJES TRANSFORMS 

J. H E N N I G E R 

1. Introduction. A complex function on the real line is said to be bounded 
in mean square if it is locally in L2 (i.e. on each finite interval) and satisfies 

(i.i) 11/11* = s u p r n r f \f(t)\*dt < ». 
The set of all such functions clearly forms a linear space over the complex 
numbers and is a Banach space B under the norm ||-||B defined by (1.1). This 
space, among others, has been discussed by Beurling in [1], where it was 
shown to be the dual, in the Banach space sense, of a certain Banach (con­
volution) algebra of functions. We have used Beurling's characterization of B 
and others of his results throughout this paper, and indeed the essence of one 
or two of the proofs has been derived from his theorems. 

Our aim in this paper is to provide the basic theory for the harmonic 
analysis of functions in B. One would therefore expect some similarity between 
the present attempt and Wiener's [6], and indeed we follow Wiener in using 
the integrated Fourier transform s(u) of functions in B [6, §§ 5, 6; 7, § 20]. 
But in this part of his theory, Wiener's interest was confined mainly to the 
behaviour of the functions in a neighbourhood of infinity, and to functions for 
which the limit of the expression in (1.1) exists as T—*co, whereas we shall 
deal with the full space B} and with various topologies on B including that 
given by the norm of B. 

The Banach algebra A of which B is the dual is a subset of L1 so that one 
can take Fourier transforms in A to form a new Banach algebra A with 
pointwise multiplication as product. As is done in the theory of distributions, 
we can define the Fourier transform / of / G B to be the functional on A 
defined by jQ>) = f(<j>), <t> G A. It turns out that f can be expressed as a 
(generalized) measure on Â, 

/ ( $ ) = h{u)ds{u) = lim f * ( « ) ^ - ± - ^ ^ ^ d w , 
J ê Q J € 

where the function s(u) generating the measure ds is the integrated Fourier 
transform of / mentioned above. The Fourier transformation can be reversed 
to yield / a s a generalized Fourier-Stieltjes transform, 

f (x) = J - fe
ixuds(u) = lim^- (e**»?bL±A- -^du. 

Received December 5, 1969. This research was partially supported by a Grant in Aid of 
Research from the Department of University Affairs, Ontario. 

1016 

https://doi.org/10.4153/CJM-1970-118-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-118-9


FUNCTIONS OF BOUNDED MEAN SQUARE 1017 

where the limit can be taken to be in mean square over each finite interval 
(cf. Wiener 's integration by par ts and Cesàro summation procedure [6, § 6]). 
T h e functions s(u) generating measures ds in B are characterized in 
Theorem 3.1. 

T h e Poisson integral can be used to extend a n y / Ç B to a harmonic function 
in the half-plane Re(z) > 0, and this fact leads to the definition of a space Ba 

of analytic functions bearing the same relationship to the H a r d y class H2 of 
the half-plane as B does to L2. The main theorems concerning H2 (see e.g. [4]) 
can be extended to Ba, culminating in a Paley-Wiener type theorem for Ba 

(Theorem 4.4) to the effect t h a t / ( z ) 6 Ba if and only if 

/(2) = ~- f «-•«<&(«) 

for some ds Ç B such t ha t ds = 0 for u < 0. 
In § 5 the general theory developed so far is applied to Dirichlet series 

J^ane~*nZ, where an = a(n), \n = \(n) for suitable functions a(x), \(x). A 
method is given enabling one to show, under certain conditions, t h a t the 
Dirichlet series represents the sum f(z) + c(z) of a function / , analytic in 
Re (is) > 0 and belonging to B on each line Re(js) = a > 0, and a function 
c(z) having singularities perhaps, bu t expressible as the limit of a sequence of 
Fourier transforms of known functions. Fur thermore , / is almost periodic in 
the sense of Besicovitch on each line Re (2) = o* > 0. These results are given 
in Theorem 5.1 and its corollary. An application of these results to the 
Riemann f-function yields information on it generalizing a result due to 
H a r d y and Littlewood. 

This paper provides the background theory for certain results concerning 
the closure in B of trigonometric polynomials, which I intend to publish a t a 
later da te . These results lead to new characterizations of Besicovitch almost-
periodic functions, and to questions concerning ergodic properties of functions 
in B. T h e theory so developed should also provide a natural sett ing for a 
theory of harmonic analysis of weighted sequences, as introduced by Guinand 
in [3]. 

2. S o m e propert ies of t h e B a n a c h spaces A a n d B. W e require the 
following from Beurling's paper [1]. Let 12 denote the set of strictly positive 
summable functions co(x) which are non-increasing functions of \x\ and for 
which 

co(0) = lim (Û(X) < 00. 

Le t N(œ) = co(0) + jcodx. If coi and co2 belong to 12, then the sum coi + co2 

and the convolution o>i * co2 also belong to 12, and N(<ai + co2) ^ iV(coi) + N(œ2) 
and N(o)i * w2) S N(wi)N(w2) hold true. (12 is the family 12i defined in [1, p . 9].) 
W e denote by 120 the subset of 12 consisting of those co such t h a t iV(co) = 1. 
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Wi th 12 we associate the set A of functions </> satisfying the condition t h a t 

* G L2[ — dx J 

for a t least one co £ 12, and we set 

(2.1) ||*|| = ||*|U = inf { f l *M!^} 1 / 2 . 

A is a Banach algebra under ordinary addit ion and convolution with the norm 
(2.1), and | | * i * * 2 | | S | | * i | | | |*2 | | [1, Theorem I] . 

W e let A* denote the set of functions / such t h a t for all co Ç 12 we have 
/ £ L2(œdx), and we set 

/ f 2 \ 1 / 2 

= sup ) \ \f (x)\2œ(x) dx( . (2.2) H/ll = ||/m* 

Under this norm A* is a Banach space and is the dual of A in the sense t ha t 
each linear functional F(<j>) on A has the form 

H*) =Sf(x)ct>(x)dx 

for a unique e l e m e n t / £ .4*, and conversely e a c h / G A* yields in this manner 
a functional on A, and 

sup \f(x)<t>(x)dx= | | / | 
M0ii=i J 

Then Beurling proved t h a t the space A* is identical with the space B defined 
in the introduction, and || \\A* = || \\B [1, Theorem I I ] . 

A is a subset of L1 and thus the Fourier transform 

Joo 
d/ 

exists for all </> G A, so t h a t 4̂ is mapped thereby onto a subset of the cont inuous 
functions vanishing a t infinity, which becomes a Banach space when equipped 
with the norm | | * | | A = 11*11 A- T h e members of A belong to L2 and satisfy a 
sort of smoothness condition [1, Theorems V I I I and I I I ] which yields a 
quan t i t y equivalent to the norm of Â, bu t which will not be used in the 
remainder of the paper. 

I t should be noted t ha t any co G 12 also belongs to A and t h a t it is an imme­
dia te consequence of the definition of the norm of A t h a t ||co||A ^ Judx < N(œ) 
if co ?* 0. 

T h e following theorem shows the relationship between certain types of 
convergence which will be considered in B, all of which are weaker t han 
convergence in norm. 

T H E O R E M 2.1. Let fn be a sequence in B. Consider the statements that fn be a 
Cauchy sequence in (a) the weak-star topology {A topology) of B; (b) L2(œdt) 
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for each co G 12; (c) L2(xdt/(x2 + t2)) for x > 0; (d) L2(-T} T) for each 
T > 0. Then (a) «= (b) => (c) => (d). / / {fn) is a bounded set in B, then 
(b), (c), and (d) are equivalent. Furthermore, if fn is bounded, and is a Cauchy 
sequence in any of (a)-(d), then there exists an f G B toward which fn converges 
in the respective topology. 

Proof. If <f> G A and/ G B and co is an element of 12 such that 0 G L2((l/co) dx), 
then Holder's inequality can be written as 

(2.3) |J7(*)*(*) dx |2 g { J | / | W x H / | 0 | 2 A o ^ } . 

Thus if /w — fm —> 0 as w, m —»oo in L2(cocix), it follows that \f fn<l> dx — 
lfm$ dx\ —> 0 also, which proves that (b) => (a), (b) =» (c) since x/(x2 + t2) G 12 
for x > 0. That (c) => (d) is evident. 

Now suppose that/n is bounded in B. We shall prove that then (d) =» (b). 
If (d) is true, there exists a function/ such that/w —>/ in L2 on each interval 
(— T, T). Furthermore, f £ B since 

and so 

ll/ll ^ limsup ll/.ll. 
w->oo 

We can assume without restriction that / = 0, so that we must prove that 
fn-*0 in L2(œdt) for each co G 12. Suppose on the contrary that there is an 
rj > 0 such that J|/w|2co dt > 2t\ for an infinite number of values of n, where 
co is a fixed member of 12. This means, in view of our assumption (d), that, 
given any T > 0, we can find an n(T) such that 

(2.4) I \fn(T)(t)\
2œ(t)dt> rj. 

We shall show that this implies the unboundedness of {fn} in B. 
For each T we construct an wT G 12o by putting o)T(t) = C\ for |/| ^ T and 

coT(t) = Ctfû(t) for t ^ T. The constants C\ and C2 are chosen so that 
d = C2Co(T), which ensures that 00 T is non-increasing, and then C2 is chosen 
so that N(œT) = 1. This implies that 

c2 = c2(r) = [(1 + 27>(r) +jlt]>Mt) dt]-1. 
We also have 

f\fn(T)\2<*>Tdt > C2j\t\>T\fn(T)\2udt 

> C2(T)rj by (2.4). 

Since o)T G 12o, this means that ||/w(:r)|| > Cz(T)r). But since co(/) is summable, 
it must be true that co(/) = o(l/t) for at least a sequence of values /<,•—> 00. 
But by the formula for C2(T) this means that C2(/;) —>oo, which shows that 
fn(tj) is unbounded as tj —» 00 . 
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This contradiction then shows that if fn is bounded and is a Cauchy sequence 
under any of the topologies in (b), (c) or (d), then there exists an / £ B 
toward which fn converges in any of the topologies (a)-(d). However, by a 
theorem of Alaoglu [2, Theorem V.4.2] the closed unit sphere in B is compact 
in the A topology of B. Thus if fn is a bounded set under the norm of B and a 
Cauchy sequence in the weak-star topology, there exists an / £ B such that 
fn —•»/ in the weak-star topology of B. 

The following two theorems concern the existence of approximate identities 
in B, and will be useful at various stages in the theory. Theorem 2.3 will be 
central in the discussion of the extension of B to the half-plane. 

THEOREM 2.2. Let 121 denote the subset of 12 such that iV^co) = Jco dx ^ 1 if 
co e Û1. / / / € B, 0 6 A, then f* 4>{x) = jf(x + 0</>(0 dt belongs to B, and 

(2.5) l l / * * I U ^ 11/11 inf (\4>\2/<*dx 

^ ll/IUII^IU-
Proof. If co is an element of 12 such that 4> Ç L2((l/co) dt), then 

(2.6) J\f*<l>(x)\2œ1(x)dx ^ Jdxcoi(x){JV(x + t)\2œ(t) dt} {/|</>|2/co dt} 

= {J dt\f(t)\2j^(x)c(t - x) dxWfW/vdt], 

the last step being provided by the Fubini theorem. Now if coi £ 12, and 
co2 = coi * co, then iV(co2) < œi(0) jw dx-\-Jœi dx Jw dx = NÇœ^N1^). Thus 
if coi Ç 120 and ^(co) = 1, then iV(coi * co) ^ 1. If on the right side of (2.6) we 
take the infimum over co £ 121, and then the supremum on both sides over 
coi £ 120, we obtain 

| | / * 0 l U ^ 11/11* inf {f\<p\2/o:dt}. 

The second inequality of (2.5) follows from the fact that 120 C 121. 

THEOREM 2.3. 

is an approximate identity for B as x —+ 0 in each of the topologies listed in 
Theorem 2.1, in the sense that if fx = / * Px, then fx —>/ as x —» 0. Furthermore, 

ll/xll ^ 11/11-
Proof. In view of Theorem 2.1 we need only prove that {fx} is a bounded 

set in B and/ x —»/ in L2( — T} T) for each T > 0. (It is clear that the integer n 
can be replaced by a real continuous parameter x.) Since jPx(t) dt = 1 and 
Pz G 12, we have by Theorem 2.2 that fx G B and | | /x | | ^ | | / | | . Thus fx is 
bounded in B. 
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Since fx — f = j[f(y + t) — f(t)]Px(y) dy, an application of the Holder 
inequality and then the Fubini theorem yields 

(2.7) f \fx -f\*dt é fdyPAy) r \f(y + t)- f(t) 

We now divide the range of integration over y into the two ranges \y\ S à 
and \y\ ^ ô. Given any e > 0 we can find a 5 > 0 such that 

2dt. 

s: \f(y + t)-f(t)\2dt<e 
-T 

if \y\ < ô since functions in L2(—T, T) are continuous under translation. 
Hence for all x, 

(2.8) f dyPx(y) f\f(y + t) - f (t)\2dt < e. 

For the range \y\ ^ Ô, we note that \f(y + /) - / ( 0 | 2 ^ 2[\f(y + /) |2 + |/(/)|2] 
and that J\y\>8 Px(y) dy —> 0 as x —> 0. Thus it only remains to show that 

f <tyP*(y) f |/(y + OI2*-^o asx->o. 

In order to deal with this double integral let us put Rx(y) equal to Px(y) for 
\y\ è ô and equal to Px(<5) for |y| < 5. Then Rx £ Q and 

iV(i^) = (1 + 25)P*(5) +S\y\^Px(y) dy, 

which tends to zero as x —* 0. It follows then that the double integral is less than 

f dt fRx(y)\f(y + t)\2dt<N(Rx) f \\ft\\dt 

—* 0 as x —» 0. 

This fact, taken together with (2.8), shows that the right side of (2.7) is 
less than e for sufficiently large x. Thus 

limsup \fx -f\2dt<e, 
x,0 « / — T x->0 *J-T 

and since e was arbitrarily chosen, the theorem follows. 

3. Basic properties of B. Let^"(0) = 0 denote the Fourier transform of a 
function <t> G 4̂ as defined in § 2. If A = ̂ (A) and A is given the norm 
Iml = 1 1 ^ 1 1 » t n e n ^~ 1S a n isometric isomorphism from A onto the Banach 
space A. Then the equation/(<£) = /(<£) defines an isometric isomorphism £F 
between the dual B of A and the dual B oi A, a n d / will be called the Fourier 
transform of/ (we are denoting both the linear functional on A and the function 
in B representing it by the same symbol / ) . 

We can now proceed to characterize the elements of B as measures. 
If/ G B, then 

d dt \ 
\1 + t2) f € L \ 1 a\ ,2 ) since 2 G Œ. 
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Thus by the Plancherel theorem, 

(3.1) s(u) = ^(j_l + £)f^^Utdt + jj(t) eiut - 1 ^ 
at 

(3.2) ~[s(u + e) -s(u)] = U.m. f / ( * ) * " ' • , * eiut dt 

X->oo \ ^ - X « / l / ™ « / - l ^ 

exists for almost all w, and 5 is locally in L2. Furthermore, 

Jet 

X->co « / - X ^ 

if e ^ 0, where l.i.m. denotes convergence in L2(—oo,oo), since /£(x) = 
/(x)[Vea: — l]/iex belongs to L2(— oo,oo). Since any 0 in A belongs to L2, 
the Parseval equation yields 

(3.3) / /« (*)*(*) <& = ^ / * ( " ) ~ l + e\~s{u)-du. 

Clearly | |/e | | ^ | | / | | so that jfe is a bounded set in B, and furthermore f€ —>/ 
in L2(-T, T) as € -» 0. Thus by Theorem 2.1, the left side of (3.3) tends to 
/ ( * ) , and 
/« .x î/î\ i- 1 P î / \ s(u + e) — s(w) , 
(3.4) j (4>) = lim — «(«) - A — — ^ dw. 

The relation (3.4) justifies our saying that / is represented by the measure 
ds on Â generated by the function s(u). For (3.4) we also write 

'<»>-£/ 
A similar expression can be given for the inverse Fourier transform from 

B to B. By the Plancherel theorem, for each e ^ 0, 

/« -x /• / \ i • 1 Cx s(u -\- e) — s(u) _iux _ 
(3.5) /€(x) = l.i.m.— -^—i—-^ ^Le ™xdu. 

/€ —»/ in L2(— T, T) for each T > 0 and {/e} is bounded in B, so that we have 

/^ x̂ /•/ \ T • 1 f°° s(w + e) — s(w) _iWX 7 

(3.6) / ( * ) = Lim-— ——!—- K--L e du 

where Lim means convergence in any one of the four types of convergence 
given in Theorem 2.1. For (3.6) we shall write 

f(x)=±fe-i™ds(u). 

In order to characterize those functions s(u) generating measures in B we 
require the following result. 

LEMMA 3.1. If f is a function locally in L2, then f belongs to B if and only if 

(3.7) S(J) = sup i f | / ( 0 | 2 ^ V ^ < » . 
0<n<h M «/ * 
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Furthermore, there exist constants kL and k2, independent off such that 

(3.8) h\\f\\ ^ S(f) è h\\f\l 

Proof. A straightforward integration by par t s yields the identi ty 

(3.9) IS\H^T\^-J\W"T 
2 

dx 

Let t ing | | / | | = M, the first expression on the right side is a t most ( 3 / 2 ) M if 
0 < M < h since sin2 IJLX ^ ju2x2. In order to est imate the second expression 
we divide the range of integration into the ranges from 1 to 1/'fi and from l//x 
to oo. For the first range we use the approximation sin2 fit ^ n2x2, valid for 
\t\ S \x\j and obtain 

- dx - - T 3 ^ - - • 7 ^ \f (t) sin fxt\2 dt ^ Mtx \ (2 + l/x) dx 
fJL J i X 1 + AX J-x J i 

< SM. 

For the range of integration from 1/JJL to oo we simply use the approximation 
|sin iit\ ^ 1, and thereby obtain a similar result with upper bound 3M. T h u s 
we can take k2 to be 8. 

In order to prove the converse, suppose t ha t for some T1, 

I \f(t)\2dt> (1 + 2T1)M, 

where M> 0. We can assume tha t T1 ^ 2, since if j _ T \f{t)\2 dt > M (I + 2T) 
for T < 2 then | 2 _ 2 | / ( 0 | 2 dt > M so t h a t we could take M/5 instead of M. 
If M = T/4:T\ then 0 < M < £ and sin2

 M* ^ i for T1 ^ / S 2T\ Also because 
of the definition of T1, 

~t~2T J '/(/)'2 * > M/2 f ° r T* = T = 2T*' 
•ession on the right side of (3.9) is 

a r(i,+4).#«f-. 
7T JTi \x x / 2 2ir 

1 + 2T J-T 

T h u s the second expression on the right side of (3.9) is greater than 

As a result, if the mean square of / is unbounded, then S(f) = oo , and further­
more we can take ki to be I/IO71-. 

T H E O R E M 3.1. A function s(u) generates a measure ds in B if and only if it is 
locally in L2 and satisfies 

1 r°° 
(3.10) J/(s) = sup - \s(u + e) - s(u)\2du < 00. 

0<e<l C J-œ 
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Under these conditions s defines a member f of B through equation (3.4), corre­
sponding to a function f in B, say, defined by (3.6). Furthermore, there exist 
constants c\ and c2} independent of s, such that 

(3.11) Cl\\ds\\ S^Hs) ^c2\\ds\l 

so that JV* is equivalent to the norm of B. 

Proof. We have just seen that a n y / £ B can be represented by equation (3.4) 
for some function s(u) which is locally in L2. [s( — u + e) — s( — u)]/e is the 
Fourier transform of f€y and by the Parseval equation, 

I \f€\ dx — -—2 I \s(u — e) — s(u)\ du. 

But \eiex — 1|2 = 4 sin2 |ex so that we can rewrite this equation as 

(3.12) - (\f(x)\2~-p--dx = ^~ (\s(u + e)-s(u)\2du. 
e */ x aire */ 

By Lemma 3.1, the left side of this equation is bounded for 0 < e < 1 (take 
/x = e/2), and we obtain (3.10) as a result. The double inequality (3.11) 
follows directly from (3.8) and (3.12) by taking Cj = kirkj. 

Conversely, suppose that 5 is a function locally in L2 satisfying (3.10). 
Then by the Plancherel theorem we can define a function f(x, e), such that 
f(x, e) is locally in L2 for each e > 0 and f(x, e)[(eUx — l)/ix] is the inverse 
Fourier transform of [s( — u + e) — s( — u)]. Using the identity 

[s(t + e + e1) - s(t + e)] - [s(t + e1) - s(t)] 
= [s(t + e + e1) - s(t + e1)] - [s(t + e) - s(t)] 

valid for all e, e1, t, we obtain on taking transforms that 

(eiex - l)(eielx - l ) / (x , e1) = (eielx - l)(eUx - l)f(x, e) 

almost everywhere. But this implies that f(x, e1) = f(x, e) = f(x) for almost 
all x. By the Parseval theorem, 

— J \s(u + e) — s(u)\2 du = I \f(x)\2 2--~dx. 

Since 5 satisfies (3.10), Lemma 3.1 then implies that f £ B. It follows as 
before that 5 generates a measure in B defined by (3.4), and t h a t / can be 
represented by (3.6). 

It is perhaps of interest to state (without proof) the corresponding results 
for Beurling's Banach space B2 consisting of functions/ satisfying 

(3.13) s u p ~ f \f\2dt<œ 

with a corresponding change in the norm. B2 is the dual of the Banach algebra 
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A2 which differs from A (&/2 in Beurling's nota t ion) in t h a t 12 is replaced by 
the set of positive non-increasing functions in |x| satisfying iV(co) = jœ dx < oo . 
Wi th a bit more care one can prove a lemma corresponding to Lemma 3.1 
showing t h a t (3.13) is t rue if and only if (3.7) is t rue with the supremum 
over 0 < fx < \ replaced by the supremum over 0 < /x < oo. T h e theory of 
this section can be modified to characterize B2 as a set of measures generated 
by functions s satisfying (3.10) with the range 0 < e < 1 replaced by 
0 < e < o o . Relation (3.3), for example, has to be modified slightly since 
functions in A2 are not necessarily in L2. However, A is dense in A2 and one 
can replace (3.3) by a similar relation involving a limiting procedure over 0. 

For later reference we should note the condition under which two functions 
5 and Si generate the same measure in B, or equivalently, when s generates 
the null measure. By Theorem 3.1 this is t rue if and only if ^V(s) = 0, and 
this means t h a t s(u + e) — s(u) = 0 a.e. for each e, 0 < e < 1. If 
S(u) = Jo s(t) dt, this condition implies t ha t ya [s(t + e) — s(t)]dt = 0, or 

(3.14) S{u + e) - S(u) = S(a + e) - S (a). 

By a well-known theorem for the differentiation of the indefinite integral of a 
Lebesgue-integrable function, S'' (u) exists and equals s(u) a lmost everywhere. 
Taking a in (3.14) to be a point such t ha t S'(a) = s (a), we conclude t h a t 
S'(u) = s (a) a.e., t h a t is, s(u) = s (a) a.e. I t follows t ha t if ds = 0, then s(u) 
is a cons tant almost everywhere, and the converse is obviously t rue. T h u s 
ds = dsi if and only if 5 and Si differ by a constant almost everywhere. 

4. E x t e n s i o n of B t o t h e h a l f - p l a n e . The basic theory for the extension 
of B to the r ight half-plane has been furnished by Theorem 2.3. As has already 
been observed, any F £ B belongs to L2(dt/(l + t2)), and the s tandard 
theory of the Poisson integral for the half-plane (see Hoffman [4, p . 123]) 
ensures t ha t 

/(* + iy) = F*PX = ^ JF(t + y) ^-pdt 

is a harmonic function of z = x + iy for x > 0. Our first theorem, then, is 
really a res ta tement of Theorem 2.3. 

T H E O R E M 4.1 . Let F be any member of B and put f(x + iy) = F*Px(y). 

Then f(x + iy) is a harmonic function of z = x + iy for x > 0, and fx(y) = 
fix + iy) G B for x > 0. Furthermore, \\fx\\B S \\F\\ and fx—>F in any one 
of the weak topologies considered in Theorem 2.1, and in particular, in the weak-
star topology of B. 

In general, fx does not converge to F in the norm topology of B. For this 
a further condition is required, namely t h a t F should be continuous under 
translation, or more precisely, t ha t if Fy(t) = f(t + y), then \\Fy — F\\ —» 0 
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as y —> 0. In the general case, of course, we always have \\Fy\\ —» \\F\\. This 
follows from the estimate 

(4.1) \\Fv\\lk (1 + 2M)i | |F | | . 

To prove this one can use (1.1) for defining the norm of B: 

Î+-2T L \F<* + <*** = Ï+2T L+v
 ]mUt 

if y > 0. 

From this, (4.1) follows immediately. That \\Fy\\ —» \\F\\ results from (4.1) 
and a reverse inequality obtained by substituting F_y for F in (4.1). We shall 
now use (4.1) to prove the following theorem. 

THEOREM 4.2. If F Ç B is continuous under translation in the norm topology 
of B, and f is the Poisson integral of F, then f(x + iy)—>F(y) as x —> 0 in the 
norm topology of B. 

Proof. Since F - fx = j[F(y) - F{t + y)]Px(t) dt, the Fubini theorem 
gives, for any <f> £ A, 

(4.2) j[F(y) - f(x + iy)]*(y) dy = j dt Px(t)j[F(y) - F(t + y)]<f>(y) dy. 

In functional notation the second integral in the expression on the right side 
is (F — Ft)(<l)), the left side is (F—fx)(cj)), and if we take the absolute 
values we obtain 

\(F-fx)(*)\ ^ j dt Px(t)\(F - Ft)(4>)\ 

^ \\<t>\\$\\F- Ft\\Px{t)dt, 

where we have used the fact that Px ^ 0. On taking the supremum over 
| \(j)\ | = 1 we obtain 

(4.3) \\F-M\^j\\F- Ft\\Px(t)dt. 

Given any e > 0, we can find a ô > 0 such that \\F — Ft\\ < e if \t\ < 8. 
Since JPX dt — 1, we have then that j!_5 \\F — Ft\\Px(t) dt < e. For the range 
|/| > ô we note that j\t\>s(l + 2\t\)^Px(t) dt —> 0 as x —> 0. Combining these 
with (4.1) in (4.3) results in 

limsup \\F -fx\\ ^ e. 

Since € was arbitrarily chosen, the theorem follows. 

We shall now introduce a class of functions analytic in the half-plane which 
bear the same relationship to B as the Hardy class H2 in the half-plane does 
t o L 2 . 
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Definition 4.1. A function f(z) is said to belong to Ba if it is analytic for 
Re(z) > 0, fx = f(x + iy) belongs to B for each x > 0, and supz>0 | | /z| | < oo. 

We shall characterize Ba in much the same way that H2 is characterized, 
by reducing Ba to H2 as follows. If f(z) G Ba then fx G L2(dy/(l + y2)) and 
fx is bounded in the L2(dy/(1 + y2)) norm for x > 0. As a result, F(z) = 
f(x)/(l + s) belongs to H2. Then by one of the theorems for H2 (see 
[4, p. 128]): 

F(z) has non-tangential limits at almost every point of the imaginary axis, say 
F(iy) and this function belongs to L2. Furthermore, F(x + iy) —> F(iy) in L2 

as x —> 0. 
But this implies that \imx^of(x + iy) = f(iy) exists for almost all y and 

that fx -+f(iy) in L2(dy/(l + y2)). Since fx is bounded in the norm of B for 
x > 0, we know by Theorem 2.1 that f(iy) € B and that fx—*f in any one 
of the topologies of that theorem. We have proved the following result. 

THEOREM 4.3. Let f G Ba. Then f has non-tangential limits almost everywhere 
on the imaginary axis, defining a function f(iy) belonging to B. Furthermore, 
fx —>f(iy) in any one of the topologies considered in Theorem 2.1. 

It is also true tha t / ( s ) is the Poisson integral of f(iy), but we shall prove 
this later as a corollary of the next theorem. 

THEOREM 4.4 (The Paley-Wiener theorem for Ba). f(z) belongs to Ba if and 
only if 

(4.4) /oo=^- r«-"à(«) 

for some ds G B such that ds = 0 for u < 0. This representation is unique. 

Proof. First suppose t h a t / 0 ) G Ba. If e > 0, then Fe(z) = f(z)[er'* - l]/z 
belongs to H2 since fx is bounded in L2(dy/(l + 3>2)) for x > 0. By the Paley-
Wiener theorem for the half-plane, 

F*(iy) = lim Fe(x + iy) 

exists almost everywhere, Fe(iy) G L2 and 

(4.5) Ft{u) = JFe(iy)eiuv dy = 0 a.e. for u < 0. 

If ds G B corresponds to 

f(iy) = l im/(a + iy) G B, 

then (4.5) implies that s(u — e) — s(u) = 0 a.e. for u < 0 (cf. (3.2)). But 
this means that ds = 0 for u < 0. 

Furthermore, by the Paley-Wiener theorem, 

F,(z) = -}~ ^e-zub\(u)du, 
LIT JQ 
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so that 

/ ( * ) = - Um-F((z) 

,. 1 f°° -zus(u) — s(u — e) 7 = l im — I ezu — - v du 

which is (4.4). The uniqueness of ds follows from the uniqueness of f(iy). 
Conversely, let ds = 0 for u < 0, where ds belongs to B and corresponds 

t o / o i n 5 . Forx > Oput02(w) = e-
x^e~im. Then i r ~ 1 (0 2 ) = Px(t - y) € A, 

so that <j>z G A and 

(4.6) /(s) = ^ J^(«)d5(«) 

exists for each s, Re(z) > 0. But (4.6) can also be written as 

/(*) =ÏMt)Px(t-y)dt=fo*Px, 

the Poisson integral of/o so that by Theorem 4.1, H/^l is bounded for x > 0 
and H/sll ^ | |/o| | . Thus to prove t h a t / £ l?a, we need only prove that / is 
analytic. 

By the Paley-Weiner theorem for H2, each 

Fe(z) = 7p- ( V 2 M [ ^ ) - *(« - e)] dw 
Z7T6 «/ 

is analytic for Re(2) > 0, since s(u) — s(u — e) = 0 a.e. for u < 0. But 
^e(z) —*/(z) uniformly in 2; on each compact set in Re (2) > 0. (This is most 
easily seen by noting that f€ = fo(t)[e~ut — l]/iet —* — f0 boundedly and in 
each L2(—Tf T), hence in L2(dt/(1 + t2)) as e —> 0, and that Fe and / are the 
Poisson integrals of fe and/o, respectively). Thus/(s) is analytic in Re (2) > 0, 
which completes the proof. 

COROLLARY. Iff £ Bai then fis the Poisson integral of its boundary values f(iy). 

For by the necessary part of the above theorem the Fourier transform ds of 
fiiy) is zero for u < 0, and 

f(z) = ±Je-"'ds. 

But by the proof of sufficiency part of the theorem, the Poisson integral of 
f(iy) has the same expression. 

5. An application to Dirichlet series. By a Dirichlet series is meant a 
formal series ]£™=i ane~XnZ involving the complex variable z = a + iy, where 

(5.1) 0 ^ \ i < A 2 < . . . ; A„->oo. 
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We pose the following question for such a series: 
Under what conditions does the Dirichlet series represent a function F in B 

(with respect to a sequence CN(t)) for a = 0, in the sense that each CN belongs to 
B, F belongs to B, and 

(5.2) FN(t) = £ ane~iXnt - C„(t) - • *W 

as N —> oo under some topology on B? 
If each CN can be chosen so that its Fourier transform vanishes for u < 0, 

then by Theorem 4.4, F(t) can be extended to an analytic function f(z) for 
Re (z) > 0, and furthermore, / belongs to Ba. In this case each CN defines an 
analytic function cN in the right-hand half-plane, but the sequence c^need 
not converge in any sense. In some cases, however, the sequence {cN} can be 
interpreted as representing the singularities of the Dirichlet series. For ex­
ample, it can happen that cN converges to an analytic function c(z) in some 
half-plane Re(js) > o-0 > 0, which has an analytic continuation to all of 
Re(z) > 0 with the exception of certain singularities, and the Dirichlet series 
can be thought of as representing/(z) + c(z) in Re(z) > 0. This behaviour 
will be illustrated by the example of the Riemann f-function for Re(z) > J. 

We shall consider in this paper only the existence of such an F as defined in 
(5.2); we shall not concern ourselves with the various topologies under which 
convergence in (5.2) might take place. Thus only convergence in norm will 
be considered. 

The discussion will now be confined to the following special case of a 
Dirichlet series. The coefficients will be assumed to have the form an = a(\n), 
where a(x) is a complex function of the real variable x, continuous everywhere, 
and differentiate except perhaps at isolated points. This ensures that for all 
x and y we have 

\a(x) — a(y)\ < sup |a'(f)| \x — y\. 
X<t£y 

We suppose also that \n = \(n) where X is a real non-decreasing function of x. 
Its inverse function l(x) is assumed to be strictly increasing with a bounded 
derivative V (x) such that / is the integral of V. 

The Dirichlet condition (5.1) will take on significance in the following way: 
(*) For each e > Owe can find an Ne > 0 such that \n+i — \n > efor \n < 7V€, 

and Ne—^oD as e —-> 0. 
With these conventions for an and \n we can now state the following result. 

THEOREM 5.1. Let a(x) € L2(l'(x) dx) and suppose that a* G L2(0, oo ) where 

a*(x) = sup |# '60 | 
Xn^2/<Xn+l 

for \n ^ x < Xn+i. Then ds G B where 
nu 

s(u) = ^ a(Xn) — I a(x)V(x)dx, 
x„<w «J o 
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and 

(5.3) L(s) = lim - I \s(u + e) — s(u)\2du = 23 |&w|2> 

where the existence of the limit defining L(s) is part of the conclusion, as is the 
convergence of ]C|a(Xn)|2. 

Furthermore, ds can be approximated under the norm of B by its truncations 
dsNl where sN(u) = s(u) for 0 ^ u :g N, and sN(u) = s(N) for u > N. 

Proof. In order to find an upper bound for ^V(s) (see (3.10)) we shall be 
required to estimate sums of the form 

(5.4) s(q) — s{p) = 23 a(K) ~ I a(x)lf(x) dx. 

Let X' be the first \n greater than or equal to p, and let X" be the greatest \n 

which is less than q. Noting that 

f n+1 l'(x) dx = l{\(n + 1)) - l(\(n)) = 1, 
«An 

we can then write 

(5.5) s(q) - s(p) = £ f "+1 {a(Xn) - a(x)\l'(x) dx 
X'^\n<X" *̂ X„ 

- ( J + J)a(x)l'(x)dx. 

Now 

J»Xn+l 

a*(x) dx, 
Xn 

so that the absolute value of the summation term on the right side of (5.5) is 
less than 

(5.6) 23 f <**(*) dx = f a * ( x ) dx = fe - p) P |a*(s) |2ds, 
*/xn «Jp «Jp 

the last step being a result of the Cauchy-Schwarz inequality. The Cauchy-
Schwarz inequality applied to the two integrals on the extreme right side of 
(5.5) yields 

(5.7) J a(x)l'(pc)dx \^{J \a(x)\2l\x) dxVlJ V(x)dxY 

= { f \aix)\2l'ix)dx¥, 

and the identical estimate for the integral from X" to q. If we now set p = u, 
q = u + e, apply the Minkowski inequality to (5.5), and use the upper 
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bounds given by (5.6) and (5.7), we obtain 

(5.8) | i J°° \s(u + e) - s(u)\2duj ^ | j pdu • JU+€ \a*(x)\2dxf 

+ 2 J - r du J \a(x)\2l'{x) dxY 

~ { r l a * W | 2 ^ } 2 + 2 { ^ WW\2l''(*) dxY\ 

This last step results from the fact that 

dx- I g(x + /) dt S I g(x) dx 
a 0 J o •/« 

for any g(x) ^ 0 integrable in (a, 6 + 5). That ds £ B follows by taking 
the supremum of (5.8) over 0 < e < 1 for N = 0. 

We now show that J/{s — sN) —> 0 as N —> oo . We have 

(0 forw<iV r-€, 
{s(u + e) — ^Ar(̂  + e)} — {s(w) — sN(u)) = \s(u + e) — siu) îoru ^ iV, 

\s(u + e) - s(iV) foriV -e^u<N. 
Thus 

5(iV)|2dw (5.9) J/(s - sN) = sup \~ I |s(tt + e) -
0<e<l \ € %/AT-e 

H— I \s(u + e) — s(u)\2du( . 

The integral over u ^ N has been dealt with in (5.8). For the integral over 
N — e ^ u < N we can use the methods used in (5.4)-(5.7) (with p = N, 
q = u + e) to obtain 

(5.10) \j f \s(u + e) -s(N)\2duj ^ijN*e \a*(x)\2dxf 

J J ,_,,*.,,,,A 
\ *J N—e 

+ 2< I \a(x)\*l'(x)dxf 

That J/(s — sN) —> 0 now follows from the integrability conditions on a(x) 
and a*(x) on substituting (5.8) and (5.10) into (5.9). 

In order to prove (5.3) we show first that 

(5.11) L(sN) = E k(A*)|2. 
\n<N 

To this end we use the Dirichlet condition (*), and for any N > 0 choose e 
so small that Ne > N. Then the discontinuous part of 5 contributes to 
sN(u + e) — sN(u) precisely a(\n) for \n — e ^ u < Xw, and 0 in the comple-
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mentary intervals, for u < N — e. Separating the continuous and discon­
tinuous parts of sN, and using the Minkowski inequality, we obtain 

(5.12) \\- (\sN(u + e) -sN(u)\2du\ - \ £ |a(X»)|41 

^ ) - I du\ I a{x)lf{x)dx 
ve Jo I «/M 

+ R-NJ 

where RN takes care of the expression for N — e ^ w < N. But 

V € «/ AT- e 
i^AT = 

\ ' s(N) - s(u)\ due 

and we can deal with this expression precisely as we treated the expression 
in the left side of (5.10) to show that RN —> 0 as e —> 0. The integral expression 
on the right side of (5.12) is less than 

J
»2V— € -1 f*u+e f*u+e nN 

du- I \a(x)lf (x)\2 dx I dx S e \ \a(x)l'(x)\2 dx. 
0 € Ju vu Jo 

This last integral exists since a(x) is continuous and /' is integrable and 
bounded. Thus the right side of (5.12) tends to zero as e —> 0, which proves 
(5.11). 

Since <sV(s) < oo, and jV(s — sN) is bounded in N, we know that 
jY(sN) ^ K < oo for all N, and hence the same upper bound holds for 
L(sN). Thus S W 2 < °° • Given any ?? > 0, choose N so large that 

E H 2 < (T7/3)2 and JY{s - ^ ) < (T7/3)2. 

Then choose e' so small that the right side of (5.12) is less than rj/3 for all 
e < e. Then for all e < e we have 

J j " M + e) — s(u)\2du { Z k l 2 } ] ^ ^ * ( 5 - sy) + (l.s. of (5.12)) 

+ ( E k | 2 j < ij/3 + TJ/3 + T,/3 = 1;. 
\ Xn^iV-1 / 

Since 77 was arbitrarily chosen, this proves the existence of L(s) and equation 
(5.3). 

COROLLARY. Under the conditions of the theorem, 

FNit)= 2 ane-iUt - f a{x)V(x) e~u 

\n<N J 0 
dx 

converges to a function F(t) in B, which can be extended to an analytic function 
f{z) in Re (2) > 0 belonging to Ba. Furthermore, F is almost periodic in the sense 
of Besicovitch (B2a.p.). 
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In this case, then, the function CN{t) in (5.2) can be taken to be 

a(x)l'(x)e-itxdx. 
o 

Proof. We need to show that FN(t) is the Fourier transform of 2irdsN (in the 
sense of (3.6)). The discontinuous part of sN clearly yields the trigonometric 
polynomial in FN and it remains to show that the continuous part of sN yields 
the integral in FN. In other words we must prove that 

J
*N -J nu+e r*N 

e~itu~ a(x)l'(x)dx= a(x)l'(x)e-
itx dx. 

-̂ _ o e Ju Jo 

But if g G L(0, oo), then by the Fubini theorem, 

jdue-itu^ j + g(x) dx - je-izug(u) du\ 
S ~ \ dx I \g(x + u) - g(u)\ du, 

e Jo Jo 

which tends to zero as e —» 0 since g is continuous in the norm of L2(0, oo ). 
This proves (5.13). 

By the Riemann-Lebesgue lemma, CN (t) —» 0 as / —> ± oo. Thus 

^{\CN\2\ = l im^= f |C*(0|2& = 0, 
T->oo "-L J—T 

and it follows that FN(t) is B2a.p. But <Jt{\FN — F\2} —> 0 as N —>oo, since 
• |2} ^ ^ ( • ), so that F itself is B2a.p. 

This corollary can be applied to the Riemann f-function. Let a be greater 
than \ and put a(x) = e~aX, \n = log n so that l(x) = ex. Then it is not 
difficult to see that a*(x) ^ \af(x — 1)| = aeae~aX. Clearly a* G L2(0, oo), and 
also \a{x)\Hf(x) = e~(2a~1)x, so that a(x) £ L2(l'dx). Thus the conditions of 
the corollary are satisfied, and FN —>• F in B where 

F*(t) = E - e ~ i t l 0 e n - P ea~a)x ( 
log n<N n «/ o 

1 eNd-a-U) _ j 

Jdx 

log n<N^a U 1 — a — it ' 

Moreover, 

w<M " 1 — 2 

converges to an analytic function/(s) for Re(2) > a > J; i.e. for Re(2) > 
In the region Re(z) > l , / (z ) is clearly f (2) — 1/(1 — 2), and so we have: 

(1 -2 ) 

W<M W 1 — 2 
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in the norm of B on each line Re(s) = a > §, a ^ 1. (That fN —» f uniformly 
on finite intervals of each line Re(s) = o- > 0 follows from a result due to 
Hardy and Littlewood [5, p. 67].) 

Since the function M(z) = M(1~z)/(l — z) is trivially B2a.p., since 

^t{\M(a + it)\2} = 0, 

we can conclude also that f (a + it) is a B2a.p. function of t for a > J, o- ^ 1. 
This result, of course, can be proved by other methods (see [5, pp. 132-133]). 
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