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The aim of this review is to provide an overview of how person-specific interactions between
diet and the gut microbiota could play a role in affecting diet-induced weight loss responses.
The highly person-specific gut microbiota, which is shaped by our diet, secretes digestive
enzymes and molecules that affect digestion in the colon. Therefore, weight loss responses
could in part depend on personal colonic fermentation responses, which affect energy extrac-
tion of food and production of microbial metabolites, such as short-chain fatty acids
(SCFAs), which exert various effects on host metabolism. Colonic fermentation is the net
result of the complex interplay between availability of dietary substrates, the functional cap-
acity of the gut microbiome and environmental (abiotic) factors in the gut such as pH and
transit time. While animal studies have demonstrated that the gut microbiota can causally
affect obesity, causal and mechanistic evidence from human studies is still largely lacking.
However, recent human studies have proposed that the baseline gut microbiota composition
may predict diet-induced weight loss-responses. In particular, individuals characterised by
high relative abundance of Prevotella have been found to lose more weight on diets rich
in dietary fibre compared to individuals with low Prevotella abundance. Although harnes-
sing of personal diet-microbiota interactions holds promise for more personalised nutrition
and obesity management strategies to improve human health, there is currently insufficient
evidence to unequivocally link the gut microbiota and weight loss in human subjects. To
move the field forward, a greater understanding of the mechanistic underpinnings of per-
sonal diet-microbiota interactions is needed.
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Obesity remains a global health challenge, affecting over
650 million adults'”. The raised body weight is a major
risk factor for non-communicable diseases such as
CVD, type 2 diabetes and several cancer forms'".
Therefore, strategies for treating and preventing excessive
weight gain are more needed than ever. The traditional
approach has been the prescription of hypoenergetic
diets with the aim of reducing energy intake and thereby

reducing weight. However, the weight loss success varies
from individual to individual®, suggesting that one diet
does not fit all equally well. Although the fundamental
cause of obesity is an energy imbalance between the
energy consumed and energy expended, the aetiology
of obesity is multifactorial due to a number of external
and individual factors affecting the energy equilibrium.
One such individual factor is the gut microbiota (or gut

Abbreviations: FMT, faecal microbiota transplantation, GLP-1, glucagon-like peptide-1, GPCR, G protein-coupled receptor, PYY, peptide YY.
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microbiome), a term referring to all microorganisms (i.e.
bacteria, archaea, fungi, viruses and protozoa) inhabiting
our gut, which 15 years ago was proposed to influence
host energy homoeostasis® . These initial studies
fuelled interest in the human gut microbiota, and since
then a growing number of mechanisms linking diet, gut
microbiota and energy homoeostasis have been discov-
ered®. Here, we first discuss how diet shapes the gut
microbiota, then we discuss the role of the gut microbiota
in weight loss and the underlying mechanisms linking
diet-microbiota interactions with body weight control
and finally, we discuss future directions on diet-microbiota
interactions in relation to weight loss and obesity
management.

Diet shapes the gut microbiota

More than a decade ago, scientists reported that the gut
microbiome of mammalian species are strongly depend-
ent on whether they are carnivores (meat eaters), herbi-
vores (};)lant eaters) or omnivores (both meat and plant
eaters)”). Today, we know that the gut microbiome
also in human subjects is linked to long-term dietary pat-
terns®'?. Furthermore, we know that gut microbiomes
across populations are strongly associated with life-
style®, and that the microbiome is different with lower
diversity in industrialised }))opulations compared with
ancestral populations®!'™'®, suggesting a loss of indi-
genous microbes in industrialised populations¥.
In line herewith, migration from a non-western nation
to United States was associated with a loss in gut micro-
biota diversity'”. Since a low gut microbiota diversity
has been associated with diabetes, obesity and inflamma-
tory diseases''®'®, and poor outcomes of cancer treat-
ments'??? a high diversity has been suggested as a
measure of a healthy gut ecosystem. Indeed, a diverse diet
seems to be linked to a diverse gut microbiota®". When
infants transit from a milk-based diet to a solid diet®?,
they gradually increase their gut microbial diversity con-
current with their progression in dietary complexity>***.
Similarly, it has been observed that adults who consume
a high variety of plants have higher gut microbial
diversity comPared with adults who consume a low var-
iety of plants®”. However, a high microbiota diversity
has also been linked to a firm stool consistency and
long colonic transit time®*>®, which is associated with
increased proteolysis®’->”. Therefore, a high gut micro-
biota diversity does not per se imply a healthy gut micro-
bial ecosystem if it is merely a reflection of a slow
intestinal system trending towards constipation.
Therefore, it remains a challenage to define what constitu-
tes a healthy gut microbiome®".

Gut microbiota-targeted diets have been suggested as
a novel mean to increase microbiota diversity to combat
and prevent diseases®". From short-term interventions
with drastic changes in diets (high-fat/low-fibre vs. low-
fat/high-fibre), we know it is possible to modify the gut
microbiome composition within 24-48 h®*?. However,
these substantial dietary changes did not change the
microbiota diversity and the diet-induced effects on the

https://doi.drg/10.1017/50029665122000805 Published online by Cambridge University Press

microbiome were transient and disappeared as soon as
the dietary change ceased®”, emphasising the stability
of the gut microbiome®®. Also, a recent 10-week inter-
vention showed that participants consuming a diet rich
in fibre increased their microbiome-encoded glycan-
degrading carbohydrate active enzymes, but did not
increase microbiota diversity®", indicating that an
increased fibre intake alone over a short time period is
insufficient to increase microbiota diversity. Alternatively,
one could speculate that an increased intake of dietary
fibre may accelerate intestinal transit and thereby con-
found changes in microbiota diversity””. Indeed, some
studies have found that an increased intake of dietary
fibre®? and prebiotic inulin-type fructans®> reduced
gut microbiota richness, a measure of diversity. These
results also challenge the current notion that greater
overall diversity implies better health. Having said that,
a recent study did in fact observe that participants con-
suming a diet rich in fermented foods steadily increased
their microbiota diversity and decreased inflammatory
markers®?. Therefore, microbiota diversity is most likely
a net result of both intestinal transit time, engraftment of
microbes and nutrient availability. The nutrient avail-
ability will also depend on the physicochemical charac-
teristics of the dietary fibre, such as whether it dissolves
in water (soluble fibre) or not (insoluble fibre), since
insoluble fibre (such as cellulose, hemicellulose and lig-
nin) speed up transit time and are generally less available
for microbial degradation®®. The importance of nutrient
availability for engraftment of microbes has elegantly
been demonstrated in mice. For example, engraftment
of an exogenous Bacteroides strain, harbouring a rare
gene cluster for marine polysaccharide (porphyrin) util-
isation, into the colonic ecosystem was enabled via
administration of porphyran from red seaweeds®”. In
line herewith, compared to westernised populations the
Japanese population has higher abundance of seaweed
polysaccharide-degrading  bacteria®®, the Hadza
hunter—gatherers of Tanzania have higher microbiome
functional capacity for utilisation of plant carbohy-
drates® and vegans have lower circulating levels of tri-
methylamine, a microbial metabolite derived from
conversion of carnitine, an abundant nutrient in red
meat®”*?. These studies show the links between a habit-
ual diet and microbiome composition and functionality.
However, whether a given dietary change is sufficient
to modulate the gut microbiome may depend on to
what extent a given dietary change is different from a
habitual diet. For example, a wholegrain-rich diet did
compared to a refined-grain diet not alter the gut micro-
biome in Danish adults with a high habitual intake of
wholegrains“". In contrast, a low-gluten diet, excluding
all grains containing gluten from the diet, significantly
changed the gut microbiome in a similar group of
Danish adults who had a high habitual intake of
grains®?. Also in American adults, a change to an
animal-based diet, absent in dietary fibre, had a larger
impact on the gut microbiome composition compared
to a change to a plant-based diet, which reflected a doub-
ling in amount of dietary fibre compared to the habitual
intake of the participants®®. Thus, adding more of a
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given food to the diet may not induce changes in the gut
microbiome if the particular food already constitutes a
significant part of the habitual diet.

Another significant challenge within the field of diet—
microbiota interactions is the fact that individuals’ %ut
microbiome respond differently to similar foods®®
Indeed, personal microbiome-dependent responses to
dietary fibres** %), artificial sweeteners*” and breads“®
have been observed. While this complicates the field, it
also provides an opportunity for better understanding
why people benefit differently in terms of health when
adhering to the same diet. For example, the highly indi-
vidualised gut microbiota compositions have been found
to improve predictive models of postprandial plasma glu-
cose (6-4 % variation explained), insulin (5-8 % variation
explained) and TAG (7-5 % variation explained) responses
in healthy adults“*~".

Stratification of subjects according to the gut micro-
biome was introduced a decade ago with the concept of
microbial enterotypes, which were defined according to
microbiome variations in the abundance of the genera
Bacteroides, Prevotella and Ruminococcus, respect-
ively®?. These genera have consistently been found to
explain a large proportion of the microbiome compos-
ition variations between populations®*>® and entero-
types represent a way of capturing preferred microbial
community structures in the human gut®®. Although
enterotype establishment has been suggested to occur
already between the age of 9 and 36 months®?, the
underlying factors diversifying the gut microbiome com-
positions into enterotypes remain largely unknown.
However, diet is likely to be one of the determinant fac-
tors shaping the gut microbiome composition. The dom-
inant genus in industrialised populations, Bacteroides,
has been associated with diets rich in protein and animal
fat, whereas Prevotella, dominant in traditional popula-
tions across Asia, Africa and South America, has been
linked to carbohydrates®®. Despite the links between
enterotypes and these dietary patterns, short-term dietary
interventions over 10d including high-fat/low-fibre or
low-fat/high-fibre diets®, as well as a 6-month dietary
intervention on a new Nordic diet®>, were insufficient
to change the participants’ enterotypes, emphasising
that they are mainly associated with long-term diets®.
Given that enterotypes appear remarkably stable, enter-
otypes have been proposed as a biomarker, which
could be relevant when assessing Personal weight-loss
responses to a given dietary change®®, as discussed fur-
ther below.

Role of gut microbiota in body weight regulation

The idea that the gut microbiota could causally affect
obesity and host energy homeostasis came with the
ground-breaking study by Turnbaugh ez al. in 2006,
By transplanting obese- and lean-associated microbes,
respectively, into germ-free mice (completely devoid of
microorganisms), they demonstrated that mice receiving
microbes from obese donors gained more weight
compared to mice receiving microbes from lean donors,
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despite consuming the same amount of chow diet®.
This study was followed by another landmark study
demonstrating that faecal microbiota transplantation
(FMT) from human twins with or without obesity
into germ-free mice transfers the phenotype of the
human donor to the recipient animal®”. It was sug-
gested that the obese microbiome is more efficient in
harvesting energy from the diet®®. In agreement here-
with, another study transplanted stool from sixteen
lean and sixteen obese children into germ-free mice
and found that weight grain of the mice was negatively
associated with faecal gross energy®”. However, this
study also noted that faecal gross energy correlated
positively with the sum of caecal SCFAs, which indi-
cated that higher excretion of energy in the faeces is
not necessarily due to an inefficient bacterial fermenta-
tion®”. More recently, the gut microbiota has also been
suggested to play a role in weight regain following
weight loss, which is a central challenge in obesity man-
agement following weight loss'". Using mouse models
of weight loss and recurrent obesity, Thais et al. found
that high-fat diet-induced alterations to the microbiome
persist over long periods of time and enhance the rate of
weight regain during the post-dieting phase®”. FMT
confirmed that the weight-regain phenotype could be
transferred to germ-free mice and the weight gain mag-
nitude could be predicted by the microbiome compos-
ition®”. Today, almost two decades since the initial
microbiota-weight findings in mice, similar convincing
findings in human studies with respect to energy harvest
and FMT are still lacking®". Epidemiological studies
offer no clear consensus on associations between the
gut microbial composition and adiposity®>®®. A few
case studies have reported increased weight gain upon
FMT in human subjects®*®?, but larger FMT studies
have not found consistent effects. For example, one
study with weekly FMT administration for 3 months
in adults with obesity resulted in microbiota changes,
but no effects on body weight were observed®©®.
Similarly, a 6-month FMT intervention did not result
in weight loss among obese adults; however, it led to
reductions in the android:gynoid fat ratio, indicating
improvement of visceral fat distribution®”. More
recently, a trial®® evaluated in ninety participants
whether diet-modulated autologous FMT, collected
during a weight loss period and administrated in a
weight regain period, could affect weight regain after
the weight loss period. No significant differences in
weight regain were observed between the autologous
FMT group and placebo. However, a subgroup of the
autologous FMT group adhering to a
green-Mediterranean diet, enriched with plants and poly-
. . . . (68)
phenols, significantly attenuated weight regain™*’.
Another gut microbiota-centred approach to modulate
body weight includes the supplementation of live bac-
teria, often referred to as probiotics. However, only a
few probiotic interventions in humans have given pro-
mises in regard to promoting fat loss®®”. In 2013, con-
sumption of fermented milk containing the probiotic
strain, Lactobacillus gasseri SBT2055, was found to
lower abdominal adiposity, which was not found for
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the control milk after 12-week consumption'’”. Another
study also found comparably abdominal adipose tissue-
lowering effects followmg 12-week L. gasserl as a pro-
biotic intervention in overweight subjects’". In contrast
to Lactobacillus strains, which are h1storlca11y on of the
primary bacterial groups applied as probiotics,
Akkermansia muciniphila is a novel candidate with
great interest as this spe01es consistently has been linked
to metabolic health in epidemiological studies’*7%.
Depommier et al. recently demonstrated that 3-month
oral supplementation of pasteurised A. muciniphila led
to improved insulin sensitivity, reduced plasma total
cholesterol and tended to decrease body weight com-
pared to placebo in overweight adults. Notably, these
metabolic changes occurred independent of detectable
changes in the microbiome composition”*,
Altogether, animal experiments have provided compel-
ling evidence suggesting a causal role of the gut micro-
biota in relation to weight gain and re-gain following
weight loss, respectively. However, there is a lack of evi-
dence from human clinical trials to indicate an effect of
gut microbiota on weight loss and weight gain, and both
FMT and probiotic interventions have shown inconsist-
ent results.

Baseline gut microbiota as a determinant of diet-induced
weight loss success

Although FMTs and probiotic-interventions in human
trials have shown limited effects with respect to modu-
lating body weight, differences in the intrinsic gut
microbiome could potentially play a role in determining
weight loss responses to treatments. This could in par-
ticular be of importance when evaluating the effects of
diets with high amounts of complex polysaccharides
that target different species within the gut®*>%7%,
Down these lines, several research groups have explored
the concept of baseline gut microbiome features as pre-
dictors of weight loss success following interventions.
One approach has been to apply machine learning on
omics-data including intestinal microbiome and urine
metabolome features to predict weight loss. For
example, one study found that prediction of weight
loss when consuming grain-based diets was improved
by inclusion of several microbial features including
butyrate-producing  species’®.  Similarly, another
group found that microbiota composition outperformed
other relevant parameters in predicting weight loss fol-
lowing a 30-50% energy-restricted diet for
6-months’”. More specifically, Blautia wexlerae and
Bacteroides dorei abundances were the strongest predic-
tors of weight loss, but only among the partlclpants with
increased abundance of these at baseline”””. Although
such computational approaches are attractive, many
of the algorithms are ‘black boxes’, which depend on
the nature of the training data set. This limits the applic-
ability of such approaches across populations. In our
group, we have instead applied a more simplistic
approach and stratified subjects according to microbial
enterotypes, inferred by the Prevotella:Bacteroides
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ratio®®. In particular, we have focused on weight-loss
responses in high-fibre studies, since the Prevotella
enterotype has been suggested to be more specialised
in degradmg fibre compared to the Bacteroides entero-
type®®. Consistently, high-fibre intervention studies
with Danish overweight and obese individuals have
shown large inter-individual variation in weight
loss“!788D "and differences in dietary adherence have
not explained this variation, even when evaluatmg
intake by quantitative dietary biomarkers®?. Yet,
five independent post-hoc studies, we have found that
the Prevotella enterotype is associated with better
weight regulatlon in response to an increased dietary
fibre intake®**”. More specifically, in three 6-month
intervention studles a high intake of fibre (mainly
from whole grains) was associated with weight loss
among participants with a high Prevotella: Bacteroides
ratio, but not among individuals with a low
Prevotella: Bacteroides ratio®* Y. Also, in a 6-week
wholegrain study with increased rye and wheat fibre
consumption, Prevotella abundance predicted weight
loss and participants with high baseline Prevotella
abundance lost 2 kg more compared to the individuals
with low Prevotella abundance®®. Moreover, when
reanalysing a 4-week prebiotic intervention with arabi-
noxylan oligosaccharides (10-4 g/d), a fibre type abun-
dant in whole grains, a small, but significant weight
change difference was found between the sub]ects of
the Prevotella and Bacteroides enterotypes®”. Here,
subjects with a Bacteroides enterotype gained weight,
whereas subjects with a Prevotella enterotype remained
at stable weight. By analysing the microbiota compos-
ition beyond the genus level and Prevotella: Bacteroides
groups, we found Bacteroides celluloszlyncus to be the
most important predictor of weight gain®”. This species
has previously been found to digest arabinoxylan and to
affect interspecies competition among Bacteroides spe-
cies, which have vastly different functionalities®®.
Furthermore, we recently discovered that the associ-
ation between the Prevotella enterotype and weight loss
appeared only to be evident for participants charac-
terised by a low copy number of the salivary o—amylase
1 (AMY1) gene®. AMY1 is one of the genes with lar-
gest copy number variation®” and the secretion of amyl-
ase 1s essential for starch digestion in the oral cavity,
stomach and duodenum until starches are met by the
pancreatic amylase®". Our discovery could indicate that
not only wholegrain ﬁbre (e.g. arabinoxylans) but also
the availability of starch influences microbial functional-
ity and thereby human metabolism®?. Accordingly, we
hypothesise that participants with a low AMY1 copy
number consuming diets rich in starch may not fully
degrade the starch by salivary and pancreatic amylase
and consequently starch will undergo fermentation in
the lower gastrointestinal tract®”. While this remains
to be further tested, other studies suggest that a low
AMY1 copy number results in distinct gut microbial
functions and metabolites, as low AMY1 copy number
has been associated with increased microbial abundance
of enzymes 1nvolved in the degradation of complex car-
bohydrates®” and methane production® The
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associations observed in these studies suggest that differ-
ences in the baseline gut microbiota composition may
predict diet-induced weight loss responses, which could
also depend on host genetics. But to date, no studies
have tested these hypotheses a priori.

Underlying mechanisms linking diet-microbiota
interactions with body weight control

Stepping away from correlation to causation may be
facilitated by understanding the underlying mechanisms
linking personal diet-microbiota interactions and body
weight control. We here discuss the factors that deter-
mine colonic fermentation and the resulting diet-derived
microbial products, which can interact with our host
metabolism.

Personal colonic fermentation responses

To link diet-microbiota interactions with host health
and body weight regulation, we need to move beyond
profiling of the gut microbiota to the assessment of
gut microbial activity, and to understand the factors
that shape the colonic fermentation®. In this regard,
intestinal transit time, which is the time food takes to
travel through the gastrointestinal system, appears as
a largely neglected, but a relevant factor. We and others
have shown that both intestinal transit time and stool
consistency, a proxy of intestinal transit time, are
strongly associated with the gut microbiome compos-
ition“*?”. Indeed, population studies have reported
that measures of transit time explain more of the gut
microbiome variation than dietary and health mar-
kers®®?%. Given that intestinal transit time varies a
lot from individual to individual®”*®, transit time has
been suggested as an important driver of inter- and
intra-individual variations in the gut microbiome com-
position and diversity®®. This could be due to the fact
that differences in transit time have been associated
with changes in substrate availability and environmen-
tal factors (such as pH) in the colon®”. Loose stools,
reflecting faster transit time, have been found to har-
bour larger fractions of bacteria with a high predicted
maximal growth rate®®, whereas firm stools, reflecting
slow transit time, have been associated with higher
abundance of slow-growing species such as methano-
. . . (27’ 7) . p .
gens and higher diversity , suggesting that bacterial
ecosystem dynamics and growth are shaped by transit
time. Furthermore, differences in intestinal transit
time are also coupled to differences in colonic fermenta-
tion, probably as it changes the time for digestion. More
specifically, a long intestinal transit time is associated
with reduced levels of saccharolytic metabolites (e.g.
SCFAs, such as butyrate, propionate and acetate) and
increased levels of proteolytic metabolites (e.g.
branched SCFAs, such as isobutyric acid and isovaleric
acid)®?77%199 suggesting a switch in bacterial fermenta-
tion from carbohydrates to proteins in the case of a long
transit time. Our habitual diet also shapes the metabolic
capacity of the gut microbiota, which could be key for
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personal colonic fermentation responses. Enterotypes,
which are linked to long-term dietary patterns®, have
been suggested to differ in metabolic capacity for deg-
radation of carbohydrates, proteins and lipids®®, and
in vitro studies have suggested that colonic fermentation
of dietary fibres into SCFAs varies according to entero-
types!°!. In agreement, we previously observed that
when stratifying subjects into two enterotypes by the
relative abundance of Prevotella, higher faecal levels
of propionate were observed at baseline in subjects
with high Prevotella abundance compared to the
group with low Prevotella abundance®®. Yet, we did
not observe any changes in faecal SCFA levels follow-
ing 6-week ad-libitum intake of wholegrains according
to the two enterotypes®. Thus, it remains largely
unknown whether the observed enterotype-dependent
weight loss success on fibre-rich diets are linked to differ-
ences in microbiota-dependent energy harvest or distinct
microbial metabolite profiles©®.

Manipulating the amounts and types of dietary fibres
in the diet often results in changes in several interrelated
bacterial species(34’42), which based on their
co-abundant behaviour can be defined as guilds"'*?.
Changes in guilds have also been coupled with changes
in colonic fermentation products such as SCFAs®* and
gases?, suggesting that the concept of guilds could
also be used as a way to reduce the dimensionality of
the microbiome and to stratify subjects in dietary weight
loss interventions. Also specific bacterial taxa, some-
times referred to as keystone species, could be important
for understanding personal colonic fermentation
responses to specific dietary fibres®®. This has been
nicely illustrated for resistant starch®****?_ An inter-
vention study including twenty healthy adults showed
that daily  supplementation with  unmodified
potato-resistant starch (type 2) increased faecal butyrate
concentrations depending on the initial abundance of
resistant starch-degrading organisms (Bifidobacterium
adolescentis and Ruminococcus bromii)*®. Another
dose—response trial with three resistant starches (all
type 4) in healthy volunteers showed that distinct dietary
fibre structures direct SCFA output towards either propi-
onate or butyrate, and induce selective enrichments of a
few resistant starch-degrading species that possess adap-
tations to the respective substrates®”. These studies
emphasised that specific bacteria can metabolise distinct
fibre structures. Therefore, differences in metabolic cap-
acity of the gut microbiome as captured by enterotypes,
bacterial guilds, abundance of specific keystone bacterial
species and/or specific genes may determine the colonic
fermentation as well. Altogether, colonic fermentation
is in essence a trade-off between saccharolytic and proteo-
lytic fermentation, which depends on the complex inter-
play between gut microbiome’s composition and
metabolic potential, the substrate availability, colonic
pH and transit time!°*!%1%9 Since these factors vary
substantially from individual to individual, personal
colonic fermentation responses and the resulting diet-
derived microbial metabolites could be key for elucidating
the underlying mechanisms of diet-microbiota interac-
tions in weight-loss responses (Fig. 1).
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Fig. 1. Personal diet-microbiota interactions and human energy homeostasis. Person-specific colonic fermentation is a trade-off
between saccharolytic and proteolytic fermentation, which depends on the complex interplay between the dietary substrates available,
the metabolic potential of the gut microbiota and environmental (abiotic) factors, such as pH and transit time; factors which are highly
individual. In addition, also differences in host genetics could affect this interplay. For example, differences in the copy number of the
salivary a-amylase 1 (AMY1) gene could affect degradation of starch via amylase in the upper-gastrointestinal tract and thereby affect
the availability of starch for colonic fermentation. Consequently, personal diet-microbiota interactions may affect human energy
metabolism through energy excretion and the generation of microbiota-derived metabolites, such as SCFAs, tryptophan catabolites,
secondary bile acids and metabolites mimetic of host hormones. These microbial metabolites could exert different effects on host
metabolism — e.g. by serving as energy substrates, by stimulating secretion of appetite-regulating hormones, including glucagon-like
peptide 1 (GLP-1) and peptide YY (PYY) in enteroendocrine cells, by regulating energy expenditure in adipose tissue, and by regulating
appetite and satiety in the brain. Stratification by gut microbiota community characteristics defined by enterotypes, guilds, keystone
species or specific genes, or abiotic factors could potentially be predictive of person-specific diet-microbiota interactions and linked to
weight loss responses.

Energy harvest and SCFAs as mediators of host— mice and human subjects'”, and increased faecal levels

microbial cross-talk of SCFAs in obese individuals''*>'°9, Despite the com-
pelling theory that increased energy harvest could be

The pioneering study by Turnbaugh and colleagues, linked to obesity, intestinal SCFA concentrations have

mentioned  previously, lin.ked. increasgd m?crobiota- not consistentl?/ been linked to obesity or related meta-
dependent energy harvest with increased intestinal levels bolic disorders®”1°? and evidence from human subjects
. . . 5 . Lo .
of the microbial-derived SCFAs, acetate and buty.rate( ). are still rather limited. Nonetheless, SCFAs are likely to
SCFAs are end-products of bacterial fermentation of be key mediators of host-microbial cross-talk and rele-
complex carbohydrates and to some degree of proteins vant for body weight control'®® As reviewed else-
and peptides that have escaped digestion by host enzymes where"”®),  SCFAs can facilitate gut-brain axis
in the upper gut. These findings were corroborated by signalling by activating cell surface G protein-coupled
other studies that reported an increased microbial meta- receptors SGPCRS)’ including GPR41, GPR43 and
bolic capacity for carbohydrate fermentation in obese GPR109A"%. Butyrate serves as a primary energy
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source for colonocytes and is estimated to contribute to
5-10% of the human energy requirement''?, acetate
mediates fat accumulation via GPR43 in adipose tis-
sue''V whereas propionate is used as a substrate for glu-
coneogenesis in the intestine!'?, as well as in the
liver' 31 Furthermore, SCFAs stimulate secretion of
peptide YY (PYY) and glucagon-like peptide-1
(GLP-1) from enteroendocrine cells (L-cells)!' !>
regulate immune cell functions"'”'"® and affect intes-
tinal transit!'”. Both GLP-1 and PYY are gut peptide
hormones, which can affect appetite; either by reaching
the brain through the circulation or through direct acti-
vation of vagal afferents lying in the lamina propria of
the gut"”. Mouse studies have shown that supplementa-
tion of SCFAs can protect against weight gain?!+12?),
Consistently, rectal infusions of SCFA mixtures into
the colon of overweight/obese men, mimicking the
SCFA levels reached after high-fibre intake, increased
fat oxidation, energy expenditure and PYY, and
decreased lipolysis'>”. Similarly, infusions of acetate
into the distal colon in overweight/obese men promoted
whole-body fat oxidation and plasma PYY in the fasting
state'*®, suggesting short-term beneficial effects on host
metabolism. Also, 6-month oral administration of propi-
onate (in the form of inulin-propionate ester) in over-
weight individuals reduced weight gain compared to
the control group!'?®. Altogether, these studies suggest
that SCFAs exert multiple beneficial effects and may
modulate body weight (Fig. 1). However, human studies
linking stool SCFAs to body weight have been inconsist-
ent, as eluted to previously, indicating that stool SCFA
concentrations might be context-dependent. Also, what
complicates the study of SCFAs is the fact that most of
the colonic fermentation and formation of SCFAs
occur in the caecum and proximal colon'; sites
which are rarely sampled in human intervention studies.
Furthermore, as 95% of SCFAs are estimated to be
absorbed during transit through the colon'*®, the bio-
logical meaning of stool SCFA concentrations is difficult
to interpret. Therefore, further research is needed with
respect to SCFA patterns, dynamics and equilibria
along the gastrointestinal tract to elucidate the complex
multi-faceted role of SCFAs in the context of obesity
and weight loss interventions.

Microbiota-derived molecules beyond SCFAs in
weight regulation

Besides SCFAs, also several other microbial-derived
metabolites are likely to play a role in regulating host
energy homoeostasis (Fig. 1). This includes secondary
bile acids, which are formed when the gut microbiota
modifies primary bile acids into secondary bile acids
and deconjugated bile acids'?”. These chemical modifi-
cations change the bile acids’ reabsorption from the
intestine, affecting the circulating bile acid pool and
excretion of bile acids in the faeces. Furthermore, the
chemical modifications of the bile acids change their
affinity for the farnesoid-X receptor and Takeda-G-
protein-receptor-5'>®. Bile acid-induced activation of
these receptors stimulates GLP-1 secretion from L-cells,
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increases energy expenditure and thermogenesis in adi-
pose tissue, and mediates satiety in the brain?®.
Therefore, differences in microbial conversions of bile
acids among individuals could potentially contribute to
person-specific weight-loss responses to diets. Also
microbial-derived tryptophan catabolites, which in
recent years have been linked to several diseases'*”,
could potentially be involved in appetite regulation.
Indole has been shown to modulate GLP-1 secretion
from L-cells’*”, whereas tryptamine, indole and
indole-3-aldehyde have been shown to stimulate intes-
tinal serotonin release and affect gut motility!'?!-!3%.
Yet, evidence from human studies is still very limited.
Other microbial molecules might also interfere
with ndocrine regulation. A bacterial protein secreted
by Escherichia coli, mimetic of the host peptide
a-melanocyte-stimulating hormone, the caseinolytic pep-
tidase B protein homologue, affect food intake and body
weight in mice!'**!**). Intriguingly, the abundance of gut
bacterial caseinolytic peptidase B-like gene function has
been associated with a decreased body weight, and
detected in lower abundance in subjects with obesity!'**.
Furthermore, higher circulating levels of the caseinolytic
peptidase B protein have been detected in individuals
with eating disorders such as anorexia nervosa compared
with healthy individuals"*®. The human gut microbiota
has also been found to encode N-acyl amides that inter-
act with GPCRs. Mouse and cell-based models have
demonstrated that the N-acyl amides regulate metabolic
hormones and glucose homoeostasis via GPR119 to the
same degree as human ligands""*”. Finally, 4. mucini-
phila has also been found to produce an 84 kDa protein
(P9), which induces GLP-1 in L-cells and reduces food
intake and body weight in mice fed with a high-fat
diet"*®. This could potentially explain why daily oral
supplementation with pasteurised A. muciniphila improved
insulin sensitivity and slightly decreased bod¥ weight in
overweight/obese insulin-resistant volunteers"’?.

These findings suggest that chemical mimicry of
eukaryotic signalling molecules may be common among
commensal gut bacteria. If proven effective in human
trials, microbiota-encoded molecules may provide add-
itional strategies to ameliorate obesity.

Conclusion and future perspectives

Personal microbiota responses and inter-individual varia-
tions in weight loss responses to dietary changes are
both two well-established concepts. With the fascinating
findings on gut microbiota and body weight during the
past 15 years, we continue to have good reasons to con-
sider a causal role of the gut microbiota in body weight
regulation. This has recently been underlined by a
study by Jeffrey Gordon and colleagues showing that a
dietary fibre-rich microbiota-directed supplement can
improve growth in children with moderate acute malnu-
trition compared with an existing supplementary food,
emphasising that it is possible to direct food towards
the gut microbiota and thereby impact body weight!!*%.
Moving forward, human studies with a priori hypotheses
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are needed to investigate the baseline gut microbiota as a
predictor of body weight gain or loss success in dietary
interventions. Furthermore, the idea of tailored diets
matching the individual’s microbiota and genetic make-
up with the aim of stimulating weight loss necessitates an
enhanced understanding of the mechanistic underpinnings
of personal diet-microbiota interactions. To advance the
field, a single faecal spot sample to characterise the
human microbiota composition may not be adequate in
future studies, as significant intra-individual variation
exists over time"*”, emphasising the need for longitu-
dinal sampling. Furthermore, it is essential to move
beyond studying the composition of the gut microbiota
to study the gut microbial activity and metabolites®?,
the environmental conditions throughout the gut includ-
. . . (141) .

ing pH and transit time" ", and to sample from different
locations throughout the gut. The gut microbiota could
play a role in determining nutrient absorption in the
small intestine"*? and colonic fermentation in the prox-
imal colon!'?. Yet, these sites remain currently under-
studied in human diet-microbiota interaction studies.

Recent successful efforts in the development of
microbiota-dependent personalised diets regulating
blood sugar levels®%!'*? provide hope for future efforts.
Similar efforts have not yet been made with respect to
weight loss and/or weight gain. Yet, with a better under-
standing of personal diet-microbiota interactions, stra-
tification according to gut microbiota characteristics at
a compositional, functional and/or activity level has the
potential to improve personalised nutrition and obesity
management strategies.

In conclusion, while animal studies show causal links
between the microbiome and body weight regulation,
there is currently insufficient evidence to unequivocally
show a link between the gut microbiota and weight loss
in human subjects. Hence, more human studies are war-
ranted to further investigate interactions between the gut
microbiota and diet-induced weight loss responses.
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