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NEW GENERALISATIONS OF AN H-KKM TYPE THEOREM
AND THEIR APPLICATIONS

XIE PING DING

In this note, we establish some new generalisations of an H-KKM type theo-
rem which unify and generalise the corresponding results of Horvath, Bardaro-
Ceppitelli, Tarafdar, Shioji, Park and others. As applications of our H-KKM type
principle, we obtain some new generalisations of the Ky Fan type geometric prop-
erties of .ff-spaces, minimax inequalities and coincidence theorems in Horvath's
abstract setting.

1. INTRODUCTION

The famous Fan-Knaster-Kuratowski-Mazurkiewicz theorem [14] has been gen-
eralised in various directions and has become an important and fundamental tool in
treating many sophisticated nonlinear problems. Recently, Horvath [20, 21], Barbaro-
Ceppitelli [2, 3], Ding [11, 12], Ding-Tan [13] and Tarafdar [43] generalised the FKKM
theorem to fT-spaces and gave applications in various fields.

Recently, Shioji [36] and Park [34] established some new KKM theorems involving
an upper semicontinuous set-valued mapping with compact acyclic values.

In this note, we establish a new generalisation of the H-KKM theorem in Hor-
vath's abstract setting which unifies and generalises the corresponding results men-
tioned above. As applications, we obtain some new generalisations of the Ky Fan type
geometric properties of 2f-spaces, minimax inequalities and coincidence theorems in
Horvath's abstract setting.

2. PRELIMINARIES

Let X and Y be nonempty sets. We shall denote by ^(X) the family of all
nonempty finite subsets of X and by 2Y the family of all subsets of Y. Let F: X —> 2 r

be a set-valued mapping. For A C X and y 6 Y, let

= \J{F{x):x(EA} and F^y) = {x G X: y € F(x)}.
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452 X-P. Ding [2]

For B (ZY, the upper inverse of B under F is defined by

F+{B) = {x £ X: 0 ± F(x) C B}.

For topological spaces X and Y, a subset B of Y is said to be compactly closed

(respectively open) in Y if for each compact subset K of Y, the set B fl K is closed

(respectively open) in A". An extended real-valued function / : X —> R is lower semi-

continuous (in short, l.s.c.) if the set {x £ X: f(x) > r} is open in X for each r £ R; /

is called upper semi-continuous (in short, u.s.c.) if —/ is l.s.c.. A mapping F: X —> 2Y

is said to be u.s.c. if the set F+(V) is open in X for each open subset V of Y.

The following notions were introduced by Bardaro-Ceppitelli [2].

A pair (X, {F^}) is called an 2Z-space if X is a topological space and {F^} is

a family of contractible subsets of X indexed by A £ ^(X) such that TA C TA>,

whenever A C A'. A subset Z) of an .ff-space (X, {F^}) is said to be

(i) H-convex if TA C D for each A £ f(D);

(ii) weakly 5-convex if TADD is contractible for each A £ T{D);

(iii) JT-compact in X if for each A & F{X), there exists a compact, weakly

fl'-convex subset DA of X such that D U i C DA •

Following Tarafdar [43], for a nonempty subset D of an if-space (X, {Fyj}), we
define the JJ-convex hull of D, denoted by H-co(-D), as

H-co(D) = p | { 5 C X: B is ^-convex and D C B}.

It is easy to see that H-co(Z)) is the smallest H-convex subset containing D and we
have

H-co(D) = |J{H-co(A): A £ F{D)}

by Lemma 1 of Tarafdar [43]. A mapping F: D —> 2X is said to be H-KKM if for each
AET(D), E-CO{A)C F(A).

Recall that a nonempty topological space is acyclic if all of its reduced Cech ho-
mology groups over the rationals vanish. In particular, any contractible space is acyclic,
and hence any convex or star-shaped set in a topological vector space is acyclic. For a
topological space Y, we shall denote by ka(Y) the family of all compact acyclic subsets
of Y.

Let (X, {TA}) be an J-space. For each N € F{X), H-co(JV) is said to be
a polytope in X. (X, {F^}) is said to be an 27-space with compact polytopes if
each polytope in X is compact. If X is a convex subset of a vector space with finite
topology, then X becomes a convex space (see, Lassonde [28]). For each A £ F(X), let
TA = c o ( -^)) then it is easy to see that (X, {F^}) becomes an i?-space with compact
polytopes.
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Let A n be the standard n-dimensional simplex with vertices eo, . . . , e n . If /
is a nonempty subset of {0, . . . , n } , A j will denote the convex hull of the vertices

The following result is Lemma 1 of Ding-Tan in [13].

LEMMA 2 . 1 . Let X be a topological space. For each nonempty subset J of
{0, . . . , n } , let Tj be a contiactible subset of X. If J C J' imph'es Tj C Tji,
then there exists a continuous mapping f: A n —» X such that / ( A j ) C Tj for each
nonempty subset J of {0, . . . , n} .

The following result is Lemma 1 of Shioji in [36].

LEMMA 2 . 2 . Let A n be an n-dimensional simplex with the Euclidean topology
and W be a compact topological space. Let ip: W —• A n be a single-valued continuous
mapping and T: A n —> ka(W) be u.s.c. Then there exists a point x* £ A n such that

3. MAIN RESULTS

In this section, we shall show some new generalisations of the H-KKM theorem.

THEOREM 3 . 1 . Let D be a nonempty subset of an H-space (X, {TA}) with
compact polytopes, Y be a Hausdorff topological space, G: D —* 2Y and T: H-co(D)
-> 2Y such that

(1) for each A £ T(D), T \z: Z -> ka(Y) is u.s.c, where Z = H-co(A),
(2) for each A £ T{D), T(H-co(A)) C G(A),
(3) for each A £ f(D), G(x) D T(Z) is relatively closed in T(Z) for each

x £ A, where Z = H-co(A).

Then for any A £ P(D),

T{H-co(A)) n

PROOF: Suppose that the conclusion does not hold. Then there exists A —
{xo,X!, ..., xn} £ F(D) such that

T(Z)T

where Z = H-co(i4) is a compact polytope in X. Hence, we have

T(Z) C T(Z) \ f| G(xt) = ( j (T(z) \ G(xt)).
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For each x G D, let F(x) = T(Z) \ G(x), then we have

(3.1) T(Z)c\jF(xi),
i=0

and each F(x) is relatively open in T(Z).

Since Z is compact and T \z: Z —• ka(Y) is u.s.c, it follows from Proposition
3.1.11 of Aubin-Ekeland [1] that T(Z) is compact in Y. By (3.1), there exists a
continuous parition of unity {Aj}JL0 subordinate to the open covering {•P(£i)}£=o •
Define a mapping ip: T(Z) —> An by

n

(3.2) v(y) = 5Z My)e< for eacn y e T(z)-
t=0

Clearly, >̂ is continuous.

On the other hand, for each nonempty subset J of {0, . . . , n} , let Tj = F ^ -}yeJ ,
then F j C H-CO(J4) = Z is contractible and J C J' implies F j C F j / . It follows from
Lemma 2.1 that there exists a continuous mapping / : An —» Z such that

By Theorem 7.3.11 of Klein-Thompson [25], the composition mapping T o / : An —»
fca(T(Z)) is u.s.c. It follows form Lemma 2.2 that there exists a point x* G An such
that x* G V( r( / ( x*)))- L e t ^ G T(/(z*)) be such that x* = tl>(y0), then, by (3.2),
we have

t=0

Let J(yo) = {i£ {0, . . . , n } : A^yo) ± 0}, then

(3-4) z * = S A<(yo)e,- G

and for each i G ./(yo), l/o G -^(^O- Hence, we have

(3.5) yo i U (?(**)•

By (3.3) and (3.4), we have

/(*•) G / ( A J ( W ) ) C F J ( s o ) = r { . . } . 6 / ( w ) C H-co({xi},€J(yo)).

It follows that

(3-6) yo e T(H-co({xi}i6J(vo))).

Properties (3.5) and (3.6) contradict the assumption (2). This completes our proof. D
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REMARK 3.1. If X = Y and T is the identity mapping, condition (2) implies G is
an H-KKM mapping. If each G(x) is compactly closed, condition (3) holds trivially.
Theorem 3.1 generalises Theorem 1 of Shioji [36] to 27-spaces.

THEOREM 3 . 2 . Let D be a nonempty subset of an H-spa.ce (X, {F^}) vrith

compact polytopes, Y be a Hausdorff topological space, G: D —» 2Y and T: H-co(D)

-> 2Y such that

(1) for each x G D, G{x) is compactly closed,

(2) for each A £ F(D), T(H-co(A)) C G(A),
(3) for each A G T(D), T \z: Z - • ka(Y) is u.s.c, where Z = H-co(A),
(4) tiere exists a nonempty compact subset K of Y such that tor each A £

, T(H-CO(A)) C K.

Then Kn f) G(x) ^ 0.
x€D

PROOF: By Theorem 3.1 and condition (4), the family {G(x) f\K: x G D} has
the finite intersection property. Since K is compact, the conclusion holds. D

REMARK 3.2. Theorem 3.2 improves and generalises Theorem 2 of Shioji [36] to H-
spaces. By the way, we point out that the condition T(X) C K in Theorem 2 of Shioji
[36] should be replaced by T(co(X)) C K, otherwise the conclusion does hot hold.

THEOREM 3 . 3 . Let D be nonempty subset of an H-space (X, {TA}) with com-
pact polytopes, Y be a Hausdorff topological space, G: D —* 2Y and T: ff-co(X>) —>
ka(Y) be u.s.c. such that

(1) for each x £ D, G(x) is compactly closed,

(2) for each A G ?(D), T(H-co{A)) C G(A).

Furthermore suppose that one of the following conditions is satisfied:

(3) H-co(D) is compact, or

(4) there exist an H-compact subset L of X and a nonempty compact subset

KofY such that for each N £ F(D) and for each y £ T(LN) \ K, there

is an x G LN n 23 such that y £ T(LN) D G(x).

Then cl(T(H-co(D)))nKn f) G ( z ) ^ 0 .

PROOF: First suppose that condition (3) is satisfied. Since H-co(I?) is compact
and T: H-co(D) —» ka(Y) is u.s.c., it follows from Proposition 3.1.11 of Aubin-Ekeland
[1] that T(H-CO(JD)) is compact in Y. Let K - T(H-co(D)), then the conclusion holds
from Theorem 3.2.

Next suppose that condition (4) is satisfied. It is easy to see that condition (4) is

equivalent to the following condition:

(4)' there exist an H-compact subset L of X and a nonempty compact subset
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K of Y such that for each N G

T(LN) n f| G(x) C K.

Note that for each N G f(D), (LN, {TA f~l LN}) is a compact H-space and L U JV C
LN. By applying Theorem 3.2 with (D, X, Y, K, G, T) instead of (LN D D, LN,

)> G \z,NnD, T \LN) , we have

)n fl G(x)^0,

and hence, by condition (4)',

T(LN) nKC\ p | G(x) / 0.

Since JV C Lfj, it follows that

cl(T(H-co(£>)))nATl

This shows that the family {cl (T(H-co(D))) C\K C\ G(x): x G D) has the finite inter-
section property. Since cl (T(H-co(£)))) fi K is compact in y , the conclusion holds. D

REMARK 3.3. We note that condition (a) of Theorem 3 of Shioji [36] should be replaced
by the condition that X is compact and convex, otherwise his Theorem 2 cannot be
applied. Theorem 3.3 improves and generalises Theorem 3 of Shioji [36] to 27-spaces.
For X = Y and T = I, the identity mapping, condition (2) implies that G is H-KKM
and hence Theorem 3.3 generalises Theorem 1 of Bardaro-Ceppitelli [2] and Corollary
1 of Horvath [20]. If T — s: X —>Y is a single-valued continuous mapping and X is a
convex space, Theorem 3.3 also generalises Park [32, Theorems 3 and 4], [33, Theorem
4]; Chang [9, Theorem 2.1]; Lassonde [28, Theorems I and III] and Fan [14, Lemma
1], [16, Theorem 1], [17, Theorem 4].

The following result is an consequence of Theorem 3.3.

THEOREM 3 . 4 . Let D be a nonempty subset of an H-space (X, {TA}) with
compact polytopes, Y be a Hausdorff topological space, G: D —» 2Y and T: H-co(D)
—» ka(Y) be u.s.c. suci that

(1) for each x £ D, G(x) is compactly closed,
(2) for eacA A e F(D), T{H-co{A)) C G(A),
(3) there exist an H-compact subset L of X and a nonempty compact subset

KofY such that for each N G T{D), x£LN\ T+{K) implies

f){G(z):zeLNnD}cY\T(x).
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Tien cl (T(H-co(D))) f\ K f\ {G(x): x G D} + 0.

PROOF: TO prove the conclusion, it suffices to show that condition (3) implies
condition (4) of Theorem 3.3. In fact, if condition (4) of Theorem 3.3 does not hold,
then for any JT-compact subset L of X and for any nonempty compact subset K
of Y, there exist N G F(D) and y G T(LN) \ K such that for all x G LN n D,
y G T(LN)nG(x) and hence y G T(LN) f\{G(z): z G LNDD}. Since yeT(LN)\K,
there exists x G LN such that y G T[x) \K, therefore x G LN \ T+(K) and

since y G T(x) n{ G ( z ) : z € LN H X>}. This shows that condition (3) does not hold and
completes our proof. U

REMARK 3.4. Theorem 3.4 generalises Theorem 3 of Park [34] and many known KKM
type theorems in the literature. For example, see the particular forms of Theorem 3 of
Park [34].

4. SOME APPLICATIONS

In this section, we shall give some applications of our H-KKM type theorems to
the geometric properties of H-spaces, coincidence theorems and minimax inequalities
in ff-spaces.

THEOREM 4 . 1 . Let D be a nonempty subset of an H-space (X, {TA}) with

compact poly topes, Y be a Hausdorff topological space and A C B C C C H-co(D)xY

such that A is nonempty closed in H-co(D) x Y. Suppose that

(1) for each x G D, {y G Y: (x, y) G C} is compactly dosed,

(2) for each j / 6 7 , ( I E C : (X, y) (f: B} is empty or B-convex,

(3) there exist a nonempty compact subset K of Y such that for x G
fl-co(£>), the set {y G K: (z, y) G A} is acyclic.

Then there exists a point j/o £ K such that D x {yo} C C.

PROOF: Define the mappings B,G: D -» 2Y and T: H-co(D) -> 2Y by

B{x) = {y£Y:(x,y)eB},

G(x) = {yeY:(x,y)<EC}

and T(x) = {yeK:{x, y) £ A}.

For each x G D, G(x) is compactly closed by (1). Since A is closed in H-co(D) x Y,

each T(x) is closed and the graph of T is closed. From Corollary 3.1.9 of Aubin-Ekeland
[1] it follows that T is u.s.c. and hence T: H-co(D) -> ka(Y) is u.s.c. by (3). We
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claim that for each N £ F(D), T(R-co(N)) C S(N). If it is not true, then there exist
N £ T(D) and y £ T(E-co(N)) such that y £ H(N) and hence we have

N c{x£D:(x,y) £ B}.

By (2), we have H-co(JV) c {a; G D: {x, y) <£ B} C {x £ H-co(D): (x, y) £ A} =
H-co(D) \ {x G H - co(D): (x, y) G A} = H-co(D) \ T ^ y ) . It follows that y <£

T(H-co(JV)), which is a contradiction. Hence for each N G f(D), T(H-co(iV)) C
H(N) C G(N). By (3), there exists a nonempty compact subset K of Y such that
T(H-co(£>)) C K. By applying Theorem 3.2, we have K l~l f|{G(x): x 6 D } / 9 . This
implies that there exists a point yo £ K such that D x {yo} C C.

REMARK 4.1. Theorem 4.1 improves and generalises Park [34, Theorem 10 and Corol-
lary 10.1], Shioji [36, Corollary 1]; Ha [18, Theorem 3] and Fan [14, Lemma 4] to
17-spaces.

THEOREM 4 . 2 . Let D be a nonempty subset of an H-space (X, {TA}) with
compact polytopes, Y be a Hausdorff topologicaJ space, F, S: D —> 2Y and T: if-co(D)
—> ka(Y) be u.s.c. such that

(1) for eacii A £ F(D), F(x) D T(Z) is relatively open in T(Z) for each

x £ A where Z = H-co(A),

(2) for eacii A £ F(D) and for each y £ T(H-co(A)), A £ ̂ (F^iy)) implies

H-co(A) C S-^y),

(3) there exists an N £ F(D) such that T(H-co(N)) C F(N).

Then there exists a point XQ £ D such that T(xo) fl S(xo) ^ 0.

PROOF: Define a mapping G: D -* 2Y by G(x) - Y\ F(x) for each x £ D.
Then for each x £ D and for each A £ ?(D), G(x) (1 T(Z) is relatively closed in T(Z)
where Z = H-co(A) by (1). By (3), there exists an N £ T(D) such that

(x)= (J (Y\G(x)) = Y\ (J G(x)

and hence T(H-co(iV)) n f| G{x) = 0. Therefore the conclusion of Theorem 3.1 does
xeN

not hold. It follows that condition (2) of Theorem 3.1 must not hold. Hence there exists
an A £ T{JD) such that T(R-co(A)) <£ G(A), that is there exist y £ T(H-co(yl)) and

x0 £ H-co(.A) such that y £ T(x0) and

y i G(A) =\J(Y\ F(x)) = Y \ f| F(x).
x£A z£A

Hence, we have y £ f| F(x) and A £ Jr(F-1(y)). By (2), we have
xeA

xo £ E-co(A) C S~\y)
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and hence y 6 T(x0) D 5 (x 0 ) . This completes the proof. D

THEOREM 4 . 3 . Let D be a nonempty subset of an H-space (X, { r^} ) with

compact polytopes, Y be a Hausdorff topological space, F, S: D —» 2Y, T: H-co(D) —»
ka(Y) be u.s.c. and K be a nonempty compact subset of Y such that

(1) for each x £ D, F(x) is compact open,
(2) for each A £ F(D) and for each y G T(H-co(A)), A G ^ ( F - ^ y ) ) implies

H-co{A)cS-1(y),
(3) cl (T(H-co(£>))) n K C F(D),
(4) there exists an H-compact subset L of X such that for each N G J-(D),

x£LN\ T+(K) impHes T(x) c F{LN n D).

Then there exists a poiot x0 e D such that T(x0) f"l S(x0) ^ 0.

PROOF: Since cl (T(H-co(£>)))niir is compact and covered by compactly open sets
{F(x)}xeD by (1) and (3), there exists JVj G F(D) such that

cl(T(H-co(Z>))) n K C F{Nx).

Consider the set LNl in (4). We claim that T(LNl) C F(LNl C\D). In fact, if x G
LNl r\T+{K), then T(x) C K and

T(x) C TCLivJ n iif C T(H-co(D)) n K C F(JVi) C F(XNl n U).

On the other hand, if x G LNl \ T+(K), then T(x) C -F(ijv, D £>) by (4). Hence, we
have T(LNl) C F(LNl HD).

Since LNX is compact and T: H-co(i?) —* ka{Y) is u.s.c, therefore T(LNI) is
compact and included in F(Lffx D D). By (1), there exists N G F{LNX 0 D) such that
T ^ J C F(iV). Note that (LNl, {TADLNl}) is an JJ-space and N G T{LNl), so
we have

H-co(iV) C LNl and T(H-co(7V)) C T{LNl) C

Thus, condition (3) of Theorem 4.2 is satisfied. The conclusion holds from Theorem
4.2. D

REMARK 4.2. Theorem 4.3 improves and generalises Theorem 1 of Park [34] to H-
spaces. As particular forms of Theorem 4.3, we easily obtain the following results: Ding
[11, Theorem 2.1]; Chang-Ma [10, Theorem 7 and Corollary 4]; Park [34, Corollary
1.1], [32, Theorem 6], [33, Theorem 7]; Chang [9, Theorems 2.4 and 2.7]; Browder [6,
Theorems 1 and 7], [7, Proposition 1], [8, Theorems 2 and 5]; Tarafdar [39, Theorem
1], [40, Corollary 2.1 and Theorem 2.2], [41, Theorem 1.2], [42, Theorem 2]; Tarafdar-
Husain [44, Theorem 1.1]; Ben-El-Mechaiekh-Deguire-Granas [4, Theoreme 1], [5, I,
Theoreme 1.2 et 5; II, Theoremes 3.1-3.3 et 4.1]; Yanaelis-Prabhakar [45, Theorems 3.2
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and 3.3]; Lassonde [28, Theorem 1.1]; Ko-Tan [26, Theorem 3.1]; Simons [37, Theorem
4.3]; Takahashi [38, Theorems 2 and 5]; Komiya [27, Theorem 1]; Mehta [30, Theorem
3.1]; Mehta-Tarafdar [31, Theorem 1-5]; Sessa [35, Theorems 4, 7 and 8]; Jiang [22,1,
Lemma 3.2], [23, Lemma 2.1], [24, Corollary 3.2] and McLinden [29, Theorem].

THEOREM 4 . 4 . Let D be a. nonempty subset of an H-space (X, {TA}) with
compact polytopes, Y be a Hausdorff topological space and T: H-co(D) —> ka(Y) be
u.s.c Let M and N be subsets of a set Z, f,g: D xY —* Z and K be a nonempty
compact subset of Y. Suppose that

(1) for each x G D, the set {y & Y: g(x, y) 6 M} is compactly open,
(2) for each A G T(D) and for each y G T(H-co(A)),

A G F{{x G D: g(x, y) G M}) impHes H-co(A) C{x&D: f(x, y)EN},
(3) there exists an H -compact subset L of X such that for each A G F{D),

x G LA \ T+(K) and y G T(x), there exists an X\ G LA satisfying
g(xuy) G M.

Then either

(a) there exists an y* G cl(T(ff-co(I>))) n K such that g(x, y*) ^ M for all
x G D, or

(b) there exist x* G D and y* G T(x*) such that f(x*, y*) G N.

PROOF: Define the mappings F,S: D -> 2Y by

F(x) = {yeY: g{x, y) G M] and S(x) = {yEY: f(x, y) e N}

for each x G D. Then conditions (1) and (2) of Theorem 4.3 are satisfied by (1) and
(2). Suppose that conclusion (a) does not hold, then cl(T(H-co(D))) fl D C F(D) and
condition (3) of Theorem 4.3 is satisfied. It is easy to see that condition (3) implies
condition (4) of Theorem 4.3. By Theorem 4.3, there exists a point x* G D such that
T(x") n S(x*) ^ 0, that is, there exists y* G T(x*) such that f(x*, y*) £ N. D

REMARK 4.3. Theorem 4.4 improves and generalises Theorem 2.4 of Ding [12], Theo-
rem 5 of Park [34] and many known results in the literature, see the particular forms
of Theorem 5 of Park [34]. From Theorem 4.4, we easily state its analytic alternative
which generalises Theorem 6 of Park [34]. We omit the statement.

Let (X, {TA}) be an 27-space. Recall that a real-valued function / : X —» R is
said to be 27-quasiconcave if for each t £ R, the set {x G X: f(x) > t} is JT-convex.

THEOREM 4 . 5 . Let D be a nonempty subset of an H-space {X, {TA}) with
compact polytopes, Y be a Hausdorff topological space and T: if-co(D) —» ka(Y)
be u.s.c. Suppose that two functions / , j : f l x y - t t U {+°°} satisfy the following
conditions:

(1) g(x, y) ^ f{x, y) for all (x, y) G D x Y,
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(2) for each x € D, y —> g(x, y) is l.s.c. on each compact subset of Y,

(3) tor each y £ T(H-co(D)), x —» f(x, y) is H-quasiconcave on H-co(D),

(4) there exists an H-compact subset L of X such that for each ( € 1 ,

each N G f(D), each x G LN \ T+(K) and each y E T(x), there exists

Xi e LN satisfying g(x1} y) > t.

Then

(a) there exists an y* £ cl (T(H-co(D))) D K such that

supg{x,y*)^ sup f(x,y),
xeD (i,y)€Gr(T)

and

(b) the following minimax inequality holds:

minsup5(z, y) < sup f(x,y),

where Gr (T) = {(x, y) g H-co(D) x Y: y 6 T(x)} is the graph of T.

PROOF: It is obvious that conclusion (a) implies conclusion (b). In order to show

(a) we may assume that t = sup{/(x, y): {x, y) £ Gr(T)} is finite. In Theorem 4.4,

put Z = 1 , M = N = (t, +co]. Then, by (2), condition (1) of Theorem 4.4 is satisfied.

It is easy to check that conditions (1) and (3) imply condition (2) of Theorem 4.4

and condition (4) implies condition (3) of Theorem 4.4. Obviously, conclusion (b) of

Theorem 4.4 does not hold. Hence we conclude that the conclusion (a) of Theorem 4.4

holds. This completes our proof. D

REMARK 4.4. Theorem 4.5 improves and generalises Theorem 9 of Park [34], Theorem

1 of Ha [19], Theorem 1 of Fan [15] and many known minimax inequalities in the

literature to if-spaces, see the particular forms of Theorem 9 of Park [34].
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