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ABSTRACT

We present a multidimensional data analysis framework for the analysis of ordinal

response variables. Underlying the ordinal variables, we assume a continuous latent

variable, leading to cumulative logit models. The framework includes unsupervised

methods, when no predictor variables are available, and supervised methods, when

predictor variables are available. We distinguish between dominance variables and

proximity variables, where dominance variables are analyzed using inner product

models, whereas the proximity variables are analyzed using distance models. An
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expectation-majorization-minimization algorithm is derived for estimation of the

parameters of the models. We illustrate our methodology with three empirical data

sets highlighting the advantages of the proposed framework. A simulation study is

conducted to evaluate the performance of the algorithm.

Keywords PCA · MDU · MM algorithm · EM algorithm · Maximum Likelihood · Biplots
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1 Introduction

In many fields of study, ordered categorical variables, also called ordinal variables, are collected.

In medicine, for example, patients can be classified as, say, severely, moderately, or mildly ill

(Anderson and Philips, 1981). In the social and behavioural sciences, commonly Likert scales

are used that have response categories such as "strongly disagree" (SD), "disagree" (D), "neutral"

(N), "agree" (A), and "strongly agree" (SA). There is an ordering between these categories, but

differences between these categories are unknown. It is standard practice to give numerical codes to

the categories, such as 1, 2, 3, 4, 5, and subsequently perform a standard numerical analysis. In

the context of regression modelling, Liddell and Kruschke (2018) argue that the analysis of ordinal

response variables through linear models can lead to distorted effect sizes, inflated Type-I errors,

and inversions of differences between groups.

Underlying many ordinal variables, a continuous variable can be assumed. This is a latent

variable, as we only observe the ordinal scores not the numerical ones. In Figure 1, we show

the density of such a latent numerical variable. Instead of the numerical values, we observe

categories such as SD, D, N, A, and SA. The continuous underlying variable is partitioned through

a set of cut-points or thresholds into a set of categories. In Figure 1, the thresholds are shown

as vertical dashed lines. All responses falling between two thresholds invoke the same response

category. More formally, let z be the continuous latent variable. Define a set of thresholds

−∞ = m0 < m1 < . . . < mC = ∞ such that an observed ordinal response y satisfies

y = c if mc−1 ≤ z < mc

for c = 1, . . . , C.

In regression modeling of an ordinal response variable, the following model for the latent

variable is assumed (Anderson and Philips, 1981)

z = x′β + ϵ,
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Figure 1: Probability density function for a continuous latent variable z with thresholds (indicated
by the vertical lines) giving rise to an observed ordered categorical variable with categories, strongly
disagree (SD), disagree (D), neutral (N), agree (A), and strongly agree (SA).

where ϵ is an independent and identically distributed error term with cumulative density function F .

This regression model for the latent response variable implies

P (y = c) = P (mc−1 < z ≤ mc) = F (mc − x′β)− F (mc−1 − x′β) .

It follows that

F−1 (P (y ≤ c|x)) = mc − x′β,

where x′β is the structural part of the model.

In regression modelling, the de facto default choice for the analysis of categorical response

variables are logistic models (Agresti, 2002). For binary response variables, standard binary logistic

regression models have been developed and these have been extended for ordinal variables and

nominal variables (see Agresti, 2002, chapter 7). Logistic models have the advantage that detailed

interpretation in terms of changes in log-odds is possible. Such an interpretation is not available for,

for example, probit models that use the cumulative density of the normal distribution. Otherwise,

the fit of logit and probit models is usually very similar (Agresti, 2002, p.125). In logistic regression

models for ordinal variables, we use the cumulative function of the logistic distribution, such that F

equals

F (η) =
1

1 + exp(−η)
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and the corresponding regression model is known as the proportional odds model, or, more generally,

the cumulative logistic regression model (Walker and Duncan, 1967; McCullagh, 1980; Anderson

and Philips, 1981; Agresti, 2002).

In many investigations, multiple response variables are collected. Researchers often analyze

the response variables separately, but because the response variables are correlated this might not

be an optimal strategy. Multidimensional data analysis refers to a set of data analysis techniques

representing the multivariate data in a low dimensional, often Euclidean, space. The R response

variables are analyzed together and the results are represented in an S-dimensional space, where

S < R. In the low dimensional representation, the associations (i.e., correlations) between response

variables are modeled.

It is important to distinguish between two types of response processes (Coombs, 1964, Chapter

1 and 26), (Polak, 2011). In a unipolar or cumulative scale or map, responses are monotonically

related to the position of the person on the map. The response variables are so-called dominance

variables. Mathematical test items constitute a typical example of dominance items where subjects

with a higher mathematical ability have a higher probability of solving the problem correctly. On

the other hand, in a bipolar scale or map, the variable responses are characterized by the proximity

between the variable and the respondent: The responses are single-peaked functions of the position

of a variable and the position of a person. The variables are so-called proximity variables. For

dominance variables the subjects are partitioned into homogeneous groups, that is, all subjects

with a fixed response constitute a homogeneous group. For proximity items, reasons to answer

totally disagree might differ between the respondents. Respondents who disagree therefore do not

necessarily constitute a homogeneous group.

In classical multivariate analysis, principal component analysis (PCA, Pearson, 1901; Hotelling,

1936; Jolliffe, 2002) is the standard multidimensional data analysis tool for the analysis of dominance

variables whereas multidimensional unfolding (MDU, Heiser, 1981; Busing, 2010) is the standard

tool for the analysis of proximity variables.

In principal component analysis, a data set is summarized by reducing the dimensionality

using a set of principal components, that are linear combinations of the original variables. The

principal components explain as much of the original variability as possible. PCA solutions can be
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graphically represented through so-called biplots (Gabriel, 1971; Gower and Hand, 1996; Gower

et al., 2011), where the row objects (observations, participants, individuals) are represented as points

in a Euclidean space and the columns (variables, items) as vectors or variable axes. The projection

of the points onto the axes is informative.

Another multidimensional data analysis approach is multidimensional unfolding. MDU is

targeted towards proximity variables and uses a distance representation. MDU solutions can also be

graphically represented by biplots, where both the row objects and the variables are represented by

points in a Euclidean space. The distances between the two sets of points are informative.

When besides the response variables also predictor variables are available on the row objects,

we can constrain the PCA or MDU to incorporate this information. The principal scores or the ideal

points are restricted to be (linear) functions of the predictor variables. When we constrain PCA in

such a manner, the resulting model is known as reduced rank regression (RRR; Izenman, 1975;

Tso, 1981) or redundancy analysis (Van den Wollenberg, 1977). Reduced rank regression models

can be represented graphically, by so-called triplots (Ter Braak and Looman, 1994). When we

constrain MDU in such manner, we obtain restricted multidimensional unfolding (RMDU; Busing

et al., 2010). These restricted multidimensional unfolding models can be graphically represented by

triplots.

PCA, MDU and its constrained versions, RRR and RMDU, are usually estimated by least

squares methods. For categorical response variables, however, linear models estimated with least

squares methods are not optimal and might lead to distorted effect sizes, type-I errors, and inversion

of effects (Liddell and Kruschke, 2018). Logistic models estimated using maximum likelihood offer

an alternative.

For binary data, several authors (Schein et al., 2003; De Leeuw, 2006; Landgraf and Lee,

2020) proposed PCA using the binomial negative log-likelihood as loss function. Collins et al.

(2001) proposed a generalization of PCA to the exponential family to deal with, for example,

binary data or integer-valued data such as count data. As far as we know, only Vicente-Villardón

and Sánchez (2014) investigated exponential family generalizations of PCA for ordinal response

variables including a biplot visualization.
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For constrained PCA of binary variables, that is, reduced rank regression or redundancy analysis,

a logistic model was proposed by De Rooij (2024). Yee and Hastie (2003) generalized reduced rank

regression to response variables from the exponential family, similar to generalized linear models

(McCullagh and Nelder, 1989). As far as we know, there are no exponential family generalizations

of these reduced rank models for ordinal response variables.

For MDU, several attempts can be found in the literature to exponential family multidimensional

unfolding models. Andrich (1988), Takane (1998), and DeSarbo and Hoffman (1986) defined MDU

models for binary variables using squared distances. Andrich (1988) proposed a unidimensional

model that does not allow for predictor variables. Takane (1998) and DeSarbo and Hoffman (1986)

describe generalizations to multiple dimensions that can include predictors. De Rooij et al. (2024)

defined a model on the basis of (unsquared) distances for binary data, both with and without

predictor variables. As far as we know, there are no exponential family generalizations of MDU for

ordinal response variables.

In conclusion, there have been several attempts to define exponential family models for PCA

and MDU and their constraint versions that include predictor variables. These attempts mainly

focus on binary response variables, but some include also other types of variables (Collins et al.,

2001; Yee and Hastie, 2003) like count variables. However, no exponential family generalizations

exist of PCA or MDU for ordinal response variables, neither with or without predictor variables.

The goal of this paper is to fill this gap and propose multidimensional models for ordinal

response variables in the exponential family. We will develop models for multivariate ordinal

dominance variables (i.e., PCA and RRR) and proximity variables (i.e., MDU and RMDU). The

user has to choose between these two approaches. Models without predictor variables, i.e., PCA

and MDU, and with predictor variables, i.e., RRR and RMDU, will be presented. Along the

algebraic formulation, we will also develop biplot methodology for visualization of the models.

One unified algorithm for maximum likelihood estimation of model parameters will be developed

and tested, where at the lowest level updates differ between the four approaches. To illustrate the

multidimensional models and the difference between the dominance and proximity perspective, we

will apply the models on several data sets. In the first application, we have cognitive data and use the

dominance approach. The second application highlights the difference between the dominance and
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proximity approaches using behavioural response variables. The third application shows in detail

the proximity approach where the response variables concern attitudes concerning the environment.

The second and third application use data from the International Social Survey Programme (ISSP

Research Group, 2022). Biplots for all three applications will be discussed in detail.

The outline of this manuscript is as follows. In Section 2, we propose a family of geometric,

multidimensional, models for multivariate ordinal data. We distinguish between dominance and

proximity response variables and between models with and without predictor variables. Properties

of the model are derived. We briefly discuss model selection and discuss in detail the visualization

of the models using biplots. In Section 3, we present a unified algorithm for maximum likelihood

estimation of model parameters. In Section 4, we show the three applications. We test our algorithm

using simulated data in Section 5. We end this paper with some discussion and conclusions.

2 Cumulative Logistic Multidimensional Models

We consider a set of ordinal variables with observed values yir (i = 1, . . . , N , r = 1, . . . , R) where

variable r has Cr categories, coded as c = 1, . . . , Cr. Underlying each ordered categorical response

variable yr we assume a continuous latent variable zr. We model these latent variables as

zir = θir + ϵir,

where θir, the structural part of the model, is geometrically defined in S dimensions. When using

PCA we define

θir = ⟨ui,vr⟩ =
S∑

s=1

uisvrs,

with ui the principal scores and vr the loadings, whereas

θir = −d(ui,vr) = −

√√√√ S∑
s=1

(u2
is + v2rs − 2uisvrs),

with ui the point for participant i and vr the location for variable r when MDU is used. Note that

the θir are negative by definition when distances are used but can be positive or negative with the

inner products. We denote the two models by cumulative logistic PCA (CLPCA) and cumulative
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logistic MDU (CLMDU). The ui and vr can be collected in matrices, that is, U = [u1, . . . ,uN ]
′

and V = [v1, . . . ,vR]
′.

When predictor variables are available for the participants, the coordinates of the principal scores

or ideal points can be restricted to be a linear, additive function of these predictor variables, that is,

ui = B′xi with B a P × S matrix. Within the PCA context, we obtain the reduced rank regression

model (CLRRR). For MDU, we obtain a restricted multidimensional unfolding (CLRMDU).

We assume the ϵir to be independent and identically distributed error terms following a cumula-

tive logistic distribution. The probability density function of the logistic distribution equals

f(η) =
exp(−η)

[1 + exp(−η)]2
for η ∈ (−∞,∞),

such that its logarithm is

log f(η) = −η − 2 log[1 + exp(−η)].

The cumulative function of this distribution equals

F (η) =
1

1 + exp(−η)
for η ∈ (−∞,∞).

It follows that

F−1 (P (yir ≤ c)) = log

(
P (yir ≤ c)

P (yir > c)

)
= mrc − θir,

where, similar to the proportional odds regression model, the thresholds (mrc) are category specific,

but the structural part (θir) of the model is variable specific.

2.1 Properties of Cumulative Logistic Models

Let us consider two subjects with locations u1 and u2. The cumulative log-odds ratio for response

variable r is defined as

τ = log

(
P (y1r ≤ c)

P (y1r > c)

)
− log

(
P (y2r ≤ c)

P (y2r > c)

)
.
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With a PCA (or RRR) parameterisation, τ can be written as

τ = mrc − ⟨u1,vr⟩ − (mrc − ⟨u2,vr⟩) = ⟨(u2 − u1),vr⟩ ,

which does not depend on c. This shows that CLPCA (and CLRRR) make a proportional odds

assumption, for a given change in the positions for the subjects all the cumulative log-odds for

variable r change with the same amount. Furthermore, if we define u2 as u2 = u1 + δ(u), such

that δ(u) is a shift from one position to another, then we may write

τ = ⟨δ(u),vr⟩ ,

which shows that it does not matter where in the Euclidean space this shift happens, the cumulative

log-odds ratio remains constant for constant δ(u). Consider participants 1 and 2, with coordinates

u1 = (0, 0) and u2 = (1, 0.5). The estimated cumulative log-odds ratio for these two participants

is the same as for participants 3 and 4 with coordinates u3 = (−5, 3) and u4 = (−4, 3.5), as the

difference between these pairs of coordinates is the same.

When predictor variables are used in the analysis, we constrain the coordinates to be linear

combinations of those variables, that is, ui = B′xi. In this case, the comparison between two

persons that differ one unit in one of the predictor variables but have equal values otherwise is of

interest. Say, the p-th predictor variable increases by a unit, such that, δ(u) = B′(x2 − x1) = bp,

then the cumulative log-odds increase by ⟨bp,vr⟩.

Below in Section 2.3, we will describe biplots for the interpretation of our multidimensional

models. Cumulative logistic reduced rank regression models can also be interpreted numerically,

similar to the regression weights in a proportional odds model. With reduced rank coefficient

matrix A = BV ′, each column of this matrix represents a change in cumulative log odds for the

corresponding response for unit increase in the predictor.

For cumulative logistic MDU and restricted MDU, there is a nonlinear distance relationship.

The cumulative log-odds ratio becomes

τ = d(u1,vr)− d(u2,vr),
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again not depending on c, only on the distances. This is again the proportional odds assumption, but

in contrast with the PCA parameterization, however, the changes in cumulative log odds are not

constant for changes in u. That is, using the example with participants 1, 2, 3, and 4, described

above again, the cumulative log-odds ratio for participants 1 and 2 is not equal to that of participants

3 and 4. Similarly, unit changes in one of the predictors do not lead to a constant change in

cumulative log-odds (i.e., the estimated τ is different for two participants with predictor values 0

and 1 compared to two participants with predictor values 2 and 3, say). Furthermore, unit changes in

one of the predictors (say, x1) lead to different changes in τ for participants with varying values on

the other predictors. Although the relationship of the predictors is additive in defining the positions

of the participants in the biplot, the relationship between predictors is not additive when looking at

the effect on the response variables. Results can therefore not be represented numerically and we

have to rely on the biplot visualizations described in detail below.

2.2 Model Selection

Assuming conditional independence between the response variables given the representation in

low-dimensional space, we will estimate the models by maximizing the likelihood (see Section 3,

where we derive an algorithm). Model selection entails 1) selecting a good dimensionality and 2) in

case there are predictor variables, selecting the set of predictor variables that have an effect on the

response variables.

For maximum likelihood methods there are several type of statistics that can be used for

inference. The best known statistics are Wald tests, likelihood ratio tests, and information criteria

like Akaike’s Information Criterion (AIC; Akaike, 1974). However, for our cumulative logistic

multidimensional models, we need to make the following observations. For Wald statistics, we need

standard errors of the parameters. Such standard errors are not a by-product of our MM-algorithm

(next section). For obtaining standard errors and/or confidence intervals the non-parametric bootstrap

can be used (Efron, 1979; Efron and Tibshirani, 1986). The likelihood ratio statistic compares

two nested models. If the model under the null hypothesis is true and certain regularity conditions

are satisfied, the likelihood ratio statistic is known to be asymptotically distributed as a chi-square

variable with degrees of freedom equal to the difference in the number of parameters under the
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two hypotheses. For our models there are two complications: 1) The regularity conditions are not

satisfied for selecting the optimal dimensionality, see Takane et al. (2003) and Takane and Van der

Heijden (2023) for a detailed discussion; 2) we generally do not belief a certain model to be true as

this involves many assumptions.

Therefore, in this paper we will use information criteria for model selection, that is, the AIC

and BIC. For the AIC and BIC we need the number of parameters. In all our models, we have

the threshold parameters, the number of which is
∑

r(Cr − 1). For PCA and RRR, the number

of parameters in the structural part is (N +R− S)S and (P +R− S)S, respectively. For MDU

and RMDU, the number of parameters in the structural part is (N + R)S − S(S − 1)/2 and

(P +R)S − S(S − 1)/2, respectively.

For the models with predictor variables, we follow the suggestion of Yu and De Rooij (2013)

to use a step-wise approach to reduce the computational load. In the step-wise approach, we start

with defining the matrix X to include all predictors of interest and determine the dimensionality S.

Second, using the just selected S, we search for an optimal set of predictors by iteratively leaving

out columns of X .

2.3 Biplots

In this section, we will discuss biplots for the visualization of the model results. These biplots

are most valuable for two-dimensional solutions, but can also be used for visualization of pairs

of dimensions in case of higher dimensional solutions. We first discuss biplots for CLPCA and

CLMDU. Afterwards, we discuss the case when predictor variables are available for the analysis. In

that case, the biplots are extended with extra information about the predictor variables and become

triplots.

2.3.1 CLPCA biplots

Biplots (Gabriel, 1971; Gower and Hand, 1996; Gower et al., 2011) are useful displays for the

results of a PCA, especially for two-dimensional solutions. We will now discuss the geometry of

the two-dimensional biplot for Cumulative Logistic PCA. Like a usual PCA biplot, observations are

shown as points, and variables are shown by axes. The coordinates of the points are given by the
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Figure 2: Biplot representations for CLPCA (left) and CLMDU (right) for a single response variable.
Variable markers for cumulative probabilities are added. Grey points represent observations. On the
left, the green solid line represents the variable axis with markers indicating the estimated thresholds.
The dotted lines indicate decision regions for the categories of the response variable. On the right,
the green point represents the response variable. The circles represent decision boundaries, where
outside the circle the first category of the label is preferred and inside the circle the second category
of the label.

estimated ui. The variable axes are straight lines though the origin with direction vr2
vr1

. In Figure 2a,

we present a simplified biplot where the observations are shown by grey dots and there is a single

variable axis (solid line). For this variable, vr = [1, 0.5]′ and suppose mrc = (−2.0,−1.5,−0.5)

for c = 1, 2 and 3, respectively, i.e., thresholds for a four-point response scale. Estimated values for

the response of an individual can be obtained by projecting the point representing this individual

onto the variable axis. Subjects positioned in the lower left corner have lower expected values

for the response, while subjects in the upper right corner have higher expected values, projecting

higher onto the variable axis. To further increase interpretation and provide numerical values for the

expected value, Gower and Hand (1996) suggest to add labeled markers to the variable axis. For

CLPCA there are several possibilities.

Vicente-Villardón and Sánchez (2014) suggest to add markers based on the largest estimated a

posteriori probabilities. That is, for every point on the variable axis the probability for each response

class is computed. At specific locations on the variable axis there are points where two categories,
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say c and c′, jointly have the highest probability. These points are marked as with c|c′. They note

that in some cases the probability of one or several categories are never higher than the probability

of the other categories. When, for example, category 2 is such a ‘hidden’ category, the marker will

be “1|3”.

In the context of the proportional odds model, Anderson and Philips (1981) suggest to make

predictions based on the underlying latent variable. Following this suggestion, we propose to add

markers based on the underlying latent variable and the estimated thresholds. The predicted value

of the latent variable is

ẑir = ⟨ûi, v̂r⟩.

As in standard PCA, this inner product is constant (µ, say) for all points on a line projecting at the

same location of the variable axis, that is, a line orthogonal to the variable axis. Therefore, the point

of projection may be calibrated by labelling this point with the value µ. This value also applies to

the point of projection itself, which is λvr for some λ. For the point λvr to be calibrated with the

value µ, it must satisfy

λv′rvr = µ,

so that λ = µ/v′rvr. The coordinates of the point on the variable axis that is calibrated with a value

of µ are µvr/(v
′
rvr). As such, we would have the markers expressing values of the underlying latent

continuous variable, but the interest lies in the observed ordinal response variable. The estimated

response is ŷ = c if mrc−1 ≤ ẑ < mrc . Therefore, markers can be based on the estimated thresholds.

These markers indicate the transition points between adjacent categories. The coordinates of the

marker point are given by m̂rcvr/(v
′
rvr) and these can be labeled by 1|2, 2|3, and so forth. The

application of these markers is illustrated in Figure 2a. An advantage of these markers over the ones

based on posterior probabilities is that each threshold is represented.

Based on these markers, the two-dimensional space can be partitioned into Cr areas by drawing

Cr − 1 decision lines orthogonal on the variable axis and through the marker points, these are

represented by the dotted lines in Figure 2a.

In our explanation above, we focused on a single response variable. The proposed cumulative

logistic models, however, are methods for multiple response variables. Therefore, in the biplots
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a variable axis is presented for each response variable. Each variable axes is accompanied with

a variable label which we position at the positive end, that is, the side with highest scores of the

variable axis. These variable axes for the set of variables jointly partitioning the multidimensional

space in open and closed regions that each represent a particular predicted response profile.

2.3.2 CLMDU biplots

In MDU biplots, both the observations and the variables are shown by points in the two-dimensional

space. The closer an observation to the variable point the higher the probability of a high response.

To represent the ordinal nature of the response variable into the biplot, remember that we have

log

(
P (yir ≤ c)

P (yir > c)

)
= mrc + d(ui,vr),

so that

log

(
P (yir > c)

P (yir ≤ c)

)
= −mrc − d(ui,vr) = arc − d(ui,vr).

It follows that we can add circles to the biplot with center vr and radius arc , such that for points

inside this circle the probability for responding higher than c is larger than 0.5 while outside the

circle this probability is smaller or equal to 0.5. Every variable point is therefore accompanied with

Cr−1 circles representing the different probabilities. We illustrate the threshold circles in Figure 2b,

where again vr = [1, 0.5]′ and arc = −mrc = (2.0, 1.5, 0.5). We see again that the two-dimensional

space is partitioned in several areas. These areas are now defined by the circles. Within the smallest

circle around the response variable, the participants are predicted to score highest. Around the

inner circle, we have regions in the form of tyres. Within such a band, participants are predicted to

have the same score on the response variable. The final region is the region outside the circles. For

participants whose points are located in this region we predict the lowest scores.

In some cases a radius can be negative (when mrc is positive), indicating that nowhere in the low-

dimensional space the corresponding cumulative probability is larger than a half, and consequently

the circle is not drawn.

These cumulative logistic multidimensional unfolding models are also defined for multiple

response variables. In the corresponding biplots each response variable is represented by a point
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and a set of circles. Circles of different response variables cross each other, creating regions that

correspond to predicted response profiles.

2.4 Restricted Models

When predictor variables are available for the observations, the principal scores or participant points

(ui) are defined to be linear combinations of the predictor variables, that is, ui = B′xi. To include

the predictor variables in the biplot, we distinguish between numerical and categorical predictor

variables. Numerical predictor variables are included in the two-dimensional biplot as variable

axes, that are, straight lines through the origin with direction bp2/bp1. Markers and labels indicating

typical values for the predictor variables are added to these variable axes. Furthermore, also variable

labels are added to the biplot and placed at the end of the variable axes corresponding to the highest

scores. The positions of the participants can be obtained from the predictor variable axes by the

process of interpolation, as outlined by Gower and Hand (1996). The interpolation process is similar

to vector addition, that is, we create vectors starting in the origin and along the variable axes to the

observed predictor value for each predictor variables. To obtain the position of the participant, we

have to add these vectors.

Categorical predictor variables, are recoded into dummy variables, where one of the categories

is chosen as a reference category. In the biplot representation, we use points instead of variable

axes for such predictor variables. The position of the reference category is in the origin of the

low-dimensional space, whereas the other categories are positioned at their corresponding estimates

in B. We may consider categorical predictor variables as “jumps”. When the categorical predictor

is equal to the reference category, no jump is made. When the categorical predictor variable is

equal to another category, a jump from one position to another is made. These jumps are on top of

the interpolation process for numerical predictor variables. When multiple categorical predictor

variables are included in the analysis, multiple jumps need to be made to find the corresponding

position of a participant.

Variable axes for the numerical predictor variables and points for the categorical predictor

variables are added to the biplots for CLPCA or CLMDU. For interpretation, the relationship

between a predictor variable and a response variable is of interest. In the CLRRR biplots, for
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numerical predictor variables such a relationship is given by the angle between a predictor variable

axis and that of a response variable (see Section 2.1). A sharp angle indicates a strong relationship,

while an obtuse angle indicates a weak relationship. Furthermore, for every point along the predictor

variable axis, a projection onto the response variable axis can be made to obtain a predicted value.

For a categorical predictor, the point representing a category can be projected onto the response

variable axis to obtain a predicted value.

For CLRMDU biplots, the interpretation of predictor-response relationships is more involved,

because these are single-peaked where with increasing values of a predictor first the response goes

up and afterwards down again. Furthermore, although the effect of predictor variables is additive

for obtaining the position of an observation (i.e., the point ui), this additivity does not translate to

the relationship towards the response variable.

3 Maximum Likelihood Estimation

Assuming a multinomial distribution of the response variables, the observed data negative log-

likelihood is

Lo(θ,m) = −
∑
i

∑
r

1(yir = c) log πirc,

where πirc = F (mrc − θir)− F (mrc−1 − θir), and 1() is an indicator function of its argument, θ

collects all the structural parameters and m collects all the threshold parameters.

In this section, we will develop an Expectation Majorization Minimization (EMM) algorithm to

minimize the negative log-likelihood. This algorithm is a combination of the EM-algorithm often

used for latent variable models (McLachlan and Krishnan, 2007) and the MM-algorithm (Hunter

and Lange, 2004; Heiser, 1995).

We start by formulating the complete data negative log-likelihood, take the conditional expecta-

tion of this function in the E-step, and find a majorization function that can easily be minimized.

The majorization function turns out to be a least squares function, so that in the inner loop of the

algorithm, well known updating steps from least squares theory can be used.
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3.1 Estimation of Structural part

The complete data negative log-likelihood (CDNLL) is defined for the latent responses, that is,

Lc(θ) = −
∑
i

∑
r

log f(zir − θir),

where f(·) is the probability density function of the logistic distribution (see Section 2). A second-

order Taylor expansion of the complete data negative log-likelihood around current values θ̃ is

Lc(θ) = Lc(θ̃) + (θ − θ̃)′
∂Lc(θ̃)

∂θ
+

1

2
(θ − θ̃)′

∂2Lc(θ̃)

∂θ∂θ′
(θ − θ̃).

In the E-step, the expectation of the complete data negative log-likelihood is obtained, that is,

E(Lc(θ)) = E(Lc(θ̃)) + (θ − θ̃)′E

(
∂Lc(θ̃)

∂θ

)
+

1

2
(θ − θ̃)′E

(
∂2Lc(θ̃)

∂θ∂θ′

)
(θ − θ̃)

As the expectation of a sum is the sum of expectations, we can write

E(Lc(θ)) =
∑
i

∑
r

E(Lc(θir)),

with

E(Lc(θir)) = E(Lc(θ̃ir)) + (θir − θ̃ir)E

(
∂Lc(θ̃ir)

∂θir

)
+

1

2
(θir − θ̃ir)E

(
∂2Lc(θ̃ir)

∂2θir

)
(θir − θ̃ir).

Let pir = (1 + exp(−zir + θir))
−1 such that log f(zir − θir) = log pir(1 − pir). The partial

derivative is
∂Lc(θ̃ir)

∂θir
= −∂ log f(zir − θir)

∂θir
= 1− 2pir,

and the second order derivative is

∂2Lc(θ̃ir)

∂2θir
= 2pir(1− pir)
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which is bounded from above because pir(1− pir) ≤ 1
4
. Therefore,

E(Lc(θir)) ≤ E(Lc(θ̃ir)) + (θir − θ̃ir)E

(
∂Lc(θ̃ir)

∂θir

)
+

1

8
(θir − θ̃ir)(θir − θ̃ir) = M(θir|θ̃ir),

where M(θir|θ̃ir) is the majorization function.

We need the expectation of pir to find the expectation of this partial derivative. Following Jiao

(2016), we derived the following closed form expressions (we use p, y and θ instead of pir, yir and

θir for readibility):

E(p|y, θ,m) =



[
exp(2my−2θ)

2[exp(my−θ)+1]2

]
/F (my − θ) if y = 1[

2 exp(m(y−1)−θ)+1

2[exp(m(y−1)−θ)+1]2
− 2 exp(my−θ)

2[exp(my−θ)+1]2

]
/
(
F (my − θ)− F (m(y−1) − θ)

)
if 2 ≤ y < C[

2 exp(m(y−1)−θ)+1

2[exp(m(y−1)−θ)+1]2

]
/
(
1− F (m(y−1) − θ)

)
if y = C

The expectation has to be evaluated at the current estimates of θ and m. Let us denote by ξir the

expected value of the first derivative, that is,

ξir = 1− 2E(pir|yir, θir,mr),

so that the majorization function to be minimized is

M(θ|θ̃) =
∑
i

∑
r

M(θir|θ̃ir) =
∑
i

∑
r

E(Lc(θ̃ir)) + (θir − θ̃ir)ξir +
1

8
(θir − θ̃ir)(θir − θ̃ir).

Let us simplify this majorization function. Focusing on the individual elements, the first term is a

constant (c1 = E(Lc(θ̃ir))) and therefore

M(θir|θ̃ir) = c1 + ξir(θir − θ̃ir) +
1

8
(θir − θ̃ir)(θir − θ̃ir)

= c1 + ξirθir − ξirθ̃ir +
1

8
(θ2ir + θ̃2ir − 2θirθ̃ir)

= c1 +
1

8
θ2ir + ξirθir − 2

1

8
θirθ̃ir − ξirθ̃ir +

1

8
θ̃2ir.
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Now, let us define what we will call working responses

λir = θ̃ir − 4ξir (1)

to obtain
M(θir|θ̃ir) = c1 +

1

8
θ2ir − 2

1

8
θirλir +

1

8
λ2
ir −

1

8
λ2
ir − ξirθ̃ir +

1

8
θ̃2ir

= c1 +
1

8
(θir − λir)

2 − 1

8
λ2
ir − ξirθ̃ir +

1

8
θ̃2ir.

Define c2 = c1 − 1
8
λ2
ir − ξirθ̃ir +

1
8
θ̃2ir, a constant with respect to θir, so that we can write

E(Lir(θir)) ≤ M(θir|θ̃ir) =
1

8
(θir − λir)

2 + c2.

Now collecting all terms into a single function, we obtain

E(Lc(θ)) ≤ M(θ|θ̃) = 1

8

∑
i

∑
r

(θir − λir)
2 + c2,

a least squares function with the working responses λir. In the following four subsections, we work

out this least squares loss function for the four different definitions of the structural part (θir).

3.1.1 PCA parametrisation of the Structural part

Remember that θir = ⟨ui,vr⟩, so that the loss function equals

∑
i

∑
r

(λir − u′ivr)
2,

which can be written in matrix algebra terms as

∥Λ−UV ′∥2.

We have to find a reduced rank approximation of the matrix Λ with elements λir. Eckart and Young

(1936) showed that this can be done using a singular value decomposition

Λ = PΦQ′
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and defining the updates

U+ =
√
NPS (2)

V + =
1√
N
QSΦS, (3)

where PS and QS are the first S singular vectors, and ΦS is the S × S diagonal matrix with the

largest singular values.

3.1.2 RRR parametrisation of the Structural part

Compared to the PCA parametrisation, we impose the constraint that ui = B′xi. Therefore, in

each iteration, we have to minimize

∥Λ−XBV ′∥2

over the parameters B and V . Updates of B and V can be obtained from a generalized singular

value decomposition of the matrix

(X ′X)−1X ′Λ

in the metrics (X ′X) and I (Takane, 2013, Section 2.3.6). Let

(X ′X)−
1
2X ′Λ = PΦQ′

be the usual SVD. The updates are defined as

B+ =
√
N(X ′X)−

1
2PS (4)

V + =
1√
N
QSΦS, (5)

where PS and QS are the first S singular vectors, and ΦS is the S × S diagonal matrix with the

largest singular values.
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3.1.3 MDU parametrisation of the Structural part

The loss function in every iteration is

1

8

∑
i

∑
r

(θir − λir)
2 + c2.

where θir = −d(ui,vr) with ui and vr the parameters. This loss function can be rewritten as

∑
i

∑
r

wir(δir − d(ui,vr))
2,

where δir = −λir and wir = 1, which is the usual raw STRESS function often used in multidi-

mensional scaling and unfolding. De Leeuw (1977) and De Leeuw and Heiser (1977) proposed

the SMACOF algorithm for minimization of this STRESS function for multidimensional scaling.

The SMACOF algorithm is itself an MM algorithm. Convergence properties of this algorithm are

described by De Leeuw (1988). Heiser (1981, 1987) showed that multidimensional unfolding can

be considered a special case of multidimensional scaling. Subsequently, he developed the SMACOF

algorithm to deal with rectangular proximity matrices. Advances in the algorithm are described

in Busing (2010). An elementary treatment of the algorithm for multidimensional scaling can be

found in Chapter 8 of Borg and Groenen (2005) and for multidimensional unfolding in Chapter 14.

The critical difference with the usual loss function is that the dissimilarities δir might be negative.

Heiser (1991) showed a way to deal with negative dissimilarities in multidimensional scaling. The

line of thought of Heisers contribution is that two majorizing functions are defined: one for the case

that the dissimilarity is positive and one for the case that the dissimilarity is negative. It turns out

that the new algorithm is a simple adaptation of the standard SMACOF algorithm, where only some

elements of two matrices (A and W , see below) are defined differently, depending on the sign of

the dissimilarity. De Rooij and Busing (2024) and De Rooij et al. (2024) adapted Heiser’s algorithm

for the multidimensional unfolding case. Here, we will follow that approach. We will only show the

updating equations, for the derivation of these equations we refer to the above papers.
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Define matrix A with elements {air} as follows

air =

 wirδir/d(ui,vr) if δir ≥ 0 and d(ui,vr) > 0

0 else
.

Furthermore, redefine the weight matrix W with elements {wir} as

wir =


wir if δir ≥ 0

[wir(d(ui,vr) + |δir|)] /d(ui,vr) if δir < 0 and d(ui,vr) > 0

[wir(ϵ+ δ2ir)] /ϵ if δir < 0 and d(ui,vr) = 0

,

where ϵ is a small constant. Note that the matrices W and A change from iteration to iteration.

Let us now define R = diag(wi+), C = diag(w+r), P = diag(ai+), and Q = diag(a+r),

where the + in the subscript means taking the sum over the replaced index, that is, wi+ =
∑R

r=1wir.

With these matrices the update for U is

U+ = R−1 (PU −AV +WV ) (6)

and for V the update is

V + = C−1
(
QV −A′U+ +W ′U+

)
. (7)

These updates are the same as in the standard least squares unfolding algorithm (see Busing, 2010,

pp. 176, 183-187), where only the definitions of A and W are changed.

3.1.4 RMDU parametrisation of the Structural part

When predictor variables are available, we constrain U = XB and we need to estimate B instead

of U . We can use the algorithm of MDU described in the previous section and replace the updating

equation for U (i.e., Equation 6) with an updating equation for B, that is,

B+ = (X ′RX)
−1

[X ′ (PU −AV ) +X ′WV ] (8)
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and before updating V using Equation 7, we compute U+ = XB+.

3.2 Estimation of thresholds

To update the threshold parameters for each response variable we cannot use the complete data

negative log-likelihood. However, we can use the default maximum likelihood estimator as in the

proportional odds regression model. For this estimator yr is the response variable and we use θr as

an offset, i.e., a predictor variable with regression weight fixed to 1 and without any other predictor

variables. This gives maximum likelihood estimates of the intercepts or thresholds for response

variable r. We repeat the procedure for each response variable.

3.3 Remarks on Algorithms

The algorithms as outlined above monotonically converge to a local minimum of the negative

log-likelihood function. For the models based on the inner product (PCA and RRR) this local

minimum is also the global minimum. For models based on the distance representation, however,

local optima occur. To deal with these local optima, starting values near the global minimum might

help, such as given by, for example, correspondence analysis. As such a start does not guarantee to

find the global minimum, supplementary multiple random starts are advised.

3.4 Algorithm schemes

To summarize, we give algorithm schemes in four algorithm boxes. Algorithm 1 shows the procedure

for CLPCA, algorithm 2 for CLRRR, algorithm 3 for CLMDU, and algorithm 4 for CLRMDU.
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Algorithm 1 CLPCA algorithm.
1: procedure CLPCA(Y ,m,U ,V )

2: Predefine: maxouter, ϵ

3: Compute structural part θ

4: Assess L0o(θ,m)

5: for t1 ← 1,maxouter do

6: Compute working responses Λ = {λir} using equation

(1)

7: SVD of Λ

8: Update U using equation (2)

9: Update V using equation (3)

10: Update m by directly maximizing the likelihood

11: if Lt1o (θm)− Lt1−1
o (θ,m) < ϵ: break

12: end for

13: return(m,U ,V )

14: end procedure

Algorithm 2 CLRRR algorithm.
1: procedure CLRRR(Y ,X,m,B,V )

2: Predefine: maxouter, ϵ

3: Compute structural part θ

4: Assess L0o(θ,m)

5: for t1 ← 1,maxouter do

6: Compute working responses Λ = {λir} using equation

(1)

7: GSVD of Λ

8: Update B using equation (4)

9: Update V using equation (5)

10: Update m by directly maximizing the likelihood

11: if Lt1o (θm)− Lt1−1
o (θ,m) < ϵ: break

12: end for

13: return(m,B,V )

14: end procedure

Algorithm 3 CLMDU algorithm.
1: procedure CLMRU(Y ,m,U ,V )

2: Predefine: maxouter, maxinner, ϵ1, ϵ2

3: Compute structural part θ

4: Assess L0o(θ,m)

5: for t1 ← 1,maxouter do

6: Compute working responses Λ = {λir} using equation

(1)

7: AssessM0(U ,V)

8: for t2 ← 1,maxinner do

9: Update U using equation (6)

10: Update V using equation (7)

11: AssessMt2(U ,V)

12: ifMt2 (U ,V )−Mt2−1(U ,V ) < ϵ2: break

13: end for

14: Update m by directly maximizing the likelihood

15: if Lt1o (θ,m)− Lt1−1
o (θ,m) < ϵ1: break

16: end for

17: return(m,U ,V )

18: end procedure

Algorithm 4 CLRMDU algorithm.
1: procedure CLRMDU(Y ,X,m,B,V )

2: predefine: maxouter, maxinner, ϵ1, ϵ2

3: Compute structural part θ

4: Assess L0o(θ,m)

5: for t1 ← 1,maxouter do

6: Compute working responses Λ = {λir} using equation

(1)

7: AssessM0(U ,V)

8: for t2 ← 1,maxinner do

9: Update B using equation (8)

10: Update V using equation (7)

11: AssessMt2(U ,V)

12: ifMt2 (U ,V )−Mt2−1(U ,V ) < ϵ2: break

13: end for

14: Update m by directly maximizing the likelihood

15: if Lt1o (θ,m)− Lt1−1
o (θ,m) < ϵ1: break

16: end for

17: return(m,B,V )

18: end procedure

4 Applications

In this section, we will show three applications of our modeling framework. In the first application,

we analyze part of the data described by Fabbricatore et al. (2024) about students responses to exam

25

https://doi.org/10.1017/psy.2025.10 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.10


Cumulative Logistic Multidimensional Data Analysis

questions about statistics. We focus on the effects of several psychological variables like attitude and

anxiety on these responses. As the response variables are cognitive items, we will analyze these data

using the cumulative logistic reduced rank model. In the second application, we use data from the

International Social Survey program to investigate the relationship between environmental attitudes

and pro-environmental behaviour. In this analysis, we use both the dominance and proximity models

to highlight the differences between the two approaches. Finally, we show a third application again

using data from the International Social Survey program. We use data from seven Likert scales to

investigate differences between countries in environmental efficacy. As the response variables are

attitude items, we use the cumulative logistic restricted multidimensional unfolding model for this

analysis.

4.1 Students’ Performance for Statistical Tests

The subset of data we use for this analysis involves 138 university students and their responses

to ten questions in an exam about the application of statistics to certain topics. The ten items are

described in detail in Appendix A. Each response is coded as wrong (0), partially correct (1), or

correct (2), that is, as a three categories ordinal response.

Prior to the start of the courses on statistics, several psychological tests were conducted. Besides

their answers on the ten items, for each student information is available on their gender (1 = female,

0 = male), age in years, and several measurements of mathematical knowledge and psychological

factors, each assessed through validated psychometric instruments. The variables that we use are:

• Mathematical knowledge measured using the Mathematical Prerequisites for Psychometrics

scale (PMP);

• Statistical anxiety with three scale scores referring to examination anxiety (SASa), interpre-

tation anxiety (SASi), and fear of asking for help (SASf);

• Attitudes toward Statistics with four scales: affect (SATSa), cognitive competence (SATSc),

value (SATSv), and difficulty (SATSd);

• Motivated strategy for learning with four scales referring to self-efficacy (MSLe), test

anxiety (MSLt), cognitive strategies (MSLc), and self-regulation (MSLsr);
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• Academic procrastination measured using a single scale (APS);

• Academic motivation also measured using a single scale (AMS);

• Student engagement in statistics measured through three scales: affective engagement

(ENGa), behavioural engagement (ENGb), and cognitive engagement (ENGc).

Psychometric properties of these scales are all satisfactory to good, see Fabbricatore et al. (2024)

for details, where also more detailed descriptions of the scales can be found. The scores on these

scales serve, together with gender and age, as predictor variables. The responses to the ten statistical

items serve as response variables. The research questions that are central to these data is whether

the psychological factors influence the responses on the exam items and whether these effects are

homogeneous for different exam items or heterogeneous.

As there is no prior information whether the 10 items comprise a unidimensional or multidi-

mensional construct, we will start fitting models in one till three dimensions and select an optimal

dimensionality. Subsequently, we will verify which of the predictor variables influence the responses.

Fit statistics for the one-, two-, and three-dimensional models are shown in Appendix A, where it

can be seen that the two-dimensional model has the lowest AIC, while the lowest BIC is obtained

for the unidimensional model. We proceed with the two-dimensional model. Leaving out each

(set of) predictor variables, we obtain the fit statistics in the lower part of Table A1, showing that

Age, Statistical Anxiety, the Motivated Strategies for Learning Questionnaire, and the Academic

Motivation Scale can be left out without significant loss of fit (AIC based conclusion).

The final biplot is shown in Figure 3. The implied coefficients are shown in Table A2 (Appendix

A). The figure and table can be used together to come to a interpretation of the final model. Let us

first inspect the configuration of the response variables (items A1a, . . . , A2g) represented by the

green solid lines with markers 0|1 and 1|2. By inspecting the direction of the variable axes, we see

most responses are strongly correlated, that is, the variable axes have small angles and all point

to the right hand side of the figure. A notable exception is item A2g, and to a smaller extent item

A1d. The general pattern is that students on the right hand side of the figure correctly answer the

items, while students on the left hand side often make mistakes. For items A2g and A1d, students

positioned in the top of the configuration make the items correct, while at the bottom of the figure
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Figure 3: Estimated configuration for students data. The dark green lines represent the response
variables, the blue lines represent the predictor variables. Variable labels are placed on the positive
side of the variables, that are the sides with the largest values. In the upper right corner the labels of
ENGa and A1d overlap.

they tend to fail. Each variable axis also has two markers (0|1 and 1|2) indicating the difficulty of

the item. For response variable A2a, for example, we see that these two markers are strongly to the
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left. Projecting the students on the axes we see that most fall in the region of a correct answer. This

item is relatively easy. For item A2i, however, the marker 1|2 is far to the right and the projection of

student points on this axis is rarely in the region of a correct answer. Note that item A2i is also the

item with the least correct answers in the data, whereas A2a has many correct responses.

Now let us further inspect the predictor variables (indicated by the light blue variable axes) and

the positions of the students in the configuration. The predictor variables are represented with a

variable axis that has a solid part and a dotted part: the solid part indicates the observed range in the

data, from the minimum to the maximum observed value, and as such functions as a measure of

effect size. The dotted part only extends the variable axis to the edge of the biplot where the variable

label is placed. It can be seen that mathematical knowledge (PMP) has a long solid variable axis,

that is, mathematical knowledge prior to the courses makes large differences. Students who score

high on mathematics (PMP) are positioned on the right hand side. It follows that a high PMP score

is predictive for answering most items correctly. Similarly, high behavioural engagement (ENGb)

and a strong positive feeling about statistics (i.e., a high score on the affect scale SATSa) result in

positions more to the right hand side of the biplot, where the model indicates correct responses to

the items.

The predictor variable affective engagement (ENGa) points to the upper right corner, so is a

good predictor for a correct response on A1d and A2g. Students who consider statistics to be a

difficult topic (SATSd), in contrast, will be on the lower left corner, that is, the variable axis points

in the opposite direction. Therefore, lower scores on this variable predict a correct response on A1d

and A2g.

Higher scores on academic procrastination (APS) and the value and cognitive competence scales

of attitudes towards statistics (SATSv and SATSc, respectively) result in positions more to the top

left. Academic procrastination has a large effect (i.e., a long solid variable axis), whereas SATSv

and SATSc have small effects (short variable axes). Points in the top left corner project low on most

of the response variables, indicating wrong answers, but high (i.e., correct answers) on A2g and

A1d. As such, academic procrastination and the two attitude variables have negative effects on most

response items but positive effects on A2g and A1d. Finally, let us look at the gender variable. Boys

represent the reference category while for girls there is a point on the left of the origin (G). When a
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boy and a girl have equal values for the other predictor variables, for girls we should make the jump

to the left, indicating less favorable answers to the ten statistics items.

As a reviewer noted, the negative effect of the two attitude variables, SATSv and SATSc,

needs more inspection as at first glance the negative effect seems a bit odd. In Fabbricatore et al.

(2024), where a latent class approach was used for the statistical analysis these variables had no

significant effect. We also compared our results to separately fitted proportional odds models on

the ten response variables. The estimated coefficients are shown in Table A3 (Appendix A). The

proportional odds model for the third response variable did not converge, therefore no coefficients

are displayed. For the two attitude predictors only four coefficients have a different sign compared

to the coefficients of the proportional odds model. We did not test the significance of these two

predictors. Further model selection could be employed by leaving out every single variable, instead

of sets of predictor variables. Alternatively, a bootstrap analysis could give further insight in the

statistical significance of the retained predictors. The last rows of Tables A2 and A3 show the

obtained deviances per response variable, where we see that the loss for CLRRR is negligible. We

like to point out that the number of parameters estimated in the proportional odds model is 12 per

response variable. For the 10 variables together, this would amount to 120 parameters, whereas our

CLRRR analysis has 56 parameters, a substantial reduction.

4.2 ISSP data: Pro-environmental behaviour

In this application and the next, we use data from the International Social Survey Programme 2020,

the Module on Environment (ISSP Research Group, 2022). In this first analysis, we focus on the

data from Thailand (N = 1063) and the responses to four pro-environmental behaviour variables,

measured on ordinal scales:

OUT In the last twelve months how often, if at all, have you engaged in any leisure activities

outside in nature, such as hiking, bird watching, swimming, skiing, other outdoor activities

or just relaxing? Answers on a 5-point scale: daily (coded 5), several times a week (4),

several times a month (3), several times a year (2), and never (1);

MEAT In a typical week, on how many days do you eat beef, lamb, or products that contain

them? Answers on a 8-point scale, 0 (coded 8), 1 (7), 2 (6), 3 (5), 4 (4), 5 (3), 6 (2), 7
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(1), where numbers between brackets indicate our coding with higher numbers for more

pro-environmental behaviour;

RECYCLE How often do you make a special effort to sort glass or tins or plastic or newspapers and so

on for recycling? Answers on a 4-point scale, always (4), often (3), sometimes (2), never

(1);

AVOID How often do you avoid buying certain products for environmental reasons? Answers on a

4-point scale: always (coded 4), often (3), sometimes (2), and never (1).

In psychological research, the relationship between attitudes and behaviour is often of interest.

For these data the question is whether environmental concern and efficacy (attitudes) have an

effect on behaviour as measured by the four items, controlling for gender, age, and education.

Furthermore, whether these effect are homogeneous for the different behaviours or heterogeneous,

e.g., environmental concern may have a different effect on each of the four behaviour variables.

Environmental concern (EC) was measured by the following statement: Generally speaking, how

concerned are you about environmental issues, where participants could respond on a 5-point scale

ranging from "Not at all concerned" (1) till "Very concerned" (5). Environmental efficacy (EE) was

measured by averaging responses to seven statements that each had a 5-point answer scale ranging

from Agree Strongly (5) to Disagree Strongly (1). We also use gender, age, and number of years of

education as predictor variables in the analysis. We will analyze the data using both the dominance

and proximity perspective and contrast the two analyses.

In Table 1, we show the fit statistics of both analyses in dimensionalities 1, 2, and 3. The

AIC and BIC disagree on the optimal dimensionality, that is, AIC points to the three-dimensional

solutions, while BIC points towards the two-dimensional models. We will focus on the more

parsimonious two-dimensional solutions. Comparing the dominance (CLRRR) and proximity

(CLRMDU) perspective, it can be seen that the fit statistics for the proximity model are a little better

with lower deviance and AIC.

We will inspect and interpret the visualization for the proximity model, the solution of the

dominance model can be found in Appendix B (we will comment on it at the end of this section).

The biplot is shown in Figure 4, where it can be seen that the position of three of the four response

31

https://doi.org/10.1017/psy.2025.10 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.10


Cumulative Logistic Multidimensional Data Analysis

CLRRR CLRMDU
dimensionality deviance AIC BIC deviance AIC BIC
1 11826.94 11876.94 12001.16 11839.25 11891.25 12020.44
2 11777.22 11839.22 11993.25 11756.83 11824.83 11993.77
3 11754.77 11824.77 11998.68 11733.53 11815.53 12019.25

Table 1: Fit statistics for the dominance (CLRRR) and proximity (CLRMDU) analysis of pro-
environmental behaviour in one, two, and three dimensions.

variables is at the periphery of the configuration, while one is more centrally located (i.e., OUT).

This means that, while the predictors have a dominance relationship with the response variables

MEAT, RECYCLE, and AVOID, they have a proximity relationship with OUT.

Let us look at the biplot in more detail. The two predictor variables of interest, environmental

concern (EC) and efficacy (EE), are represented by variable axes that run from the right hand side

to the left hand side, meaning that persons that score high on these variables are located at the

left hand side of the biplot, while persons that score low on these variables are positioned at the

right hand side in the biplot. The control variables, education and age also run from right (lower

scores) to left (higher scores). Females are located more to the top left compared to males. The

higher a participant scores on EE or EC the closer they get to the response variables RECYCLE

and AVOID, meaning that the higher a participant scores on the two attitude variables the more

pro-environmental behaviour is reported. For these two variables only the radii for never | sometimes

(1|2) and sometimes | often (2|3) are positive, meaning that participants are never classified in the

response category always. The biplots including the decision regions per response variable are

shown in Figure B1 in Appendix B. These two response variables follow a dominance response

process because all participant are located on one side of the point representing the response

variable.

The response variable OUT lies close to the origin of the two-dimensional solution. The radii for

boundaries never | several times per year (1|2) and several times per year | several times per month

(2|3) are positive. No participant will be classified in the class of daily (5) or several times per week

(4) outside activities, as the estimated radius for these boundaries are negative. Note that younger

participants are closer to the point for this response variable, indicating younger people more often

engage in outside activities. With increasing scores on environmental efficacy (and average values
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Figure 4: Biplot for the cumulative logistic restricted multidimensional unfolding solution relating
environmental attitudes with pro-environmental behaviour.

for the other variables) the behaviour changes from several times per year, to several times per

month, back to several times per year, and extrapolating to never, a single peaked response pattern.

A similar response function can be obtained for the predictor environmental concern (EC).

Finally, we inspect the response variable MEAT. All radii are positive and therefore participants

can be classified in each of the categories. The classification regions are shown in Figure B1, where

for this data set the participants fall in 0, 1, 2, and 3 days per week eating meet (notice the reverse

where not eating meat (0 days) is coded as 8 indicating the category with most pro-environmental

behaviour). No participant is classified as eating meat more days per week, these regions fall on the

lower bottom of the figure, where no participants are located. We see that some participants will

be classified as typically eating no meat (within the smallest circle around MEAT). There is not a
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single predictor pointing in this direction, but a combination of female, higher age, relatively low

EC, and a low number of years of education will result in this classification.

As pointed out before, the answers to three out of the four response variables follow a dominance

pattern, whereas only the responses to OUT follow a proximity pattern. This response variable

(OUT) is probably the reason that the proximity model fits these data better than the dominance

model. The biplot for the two-dimensional dominance model is shown as Figure B2, where the

interpretation for MEAT, AVOID and RECYCLE closely follows the interpretation given here. The

direction of the response variables is very similar to the positions in Figure 4. The pattern for

response variable OUT is different, now being monotonic and negatively related with environmental

efficacy, age, and being female.

4.3 ISSP data: Environmental Efficacy

In this second analysis using the ISSP data, we focus on environmental efficacy. The seven items

related to environmental efficacy are:

1 It is just too difficult for someone like me to do much about the environment;

2 I do what is right for the environment, even when it costs more money or takes more time;

3 There are more important things to do in life than protect the environment;

4 There is no point in doing what I can for the environment unless others do the same;

5 Many of the claims about environmental threats are exaggerated;

6 I find it hard to know whether the way I live is helpful or harmful to the environment;

7 Environmental problems have a direct effect on my everyday life.

Participants had to indicate on a five-point Likert scale for each of these statements whether they

agreed strongly (coded as 5), agreed (4), are neutral (3), disagreed (2), or disagreed strongly (coded

as 1).

For these data, we like to know whether there are differences between participants from different

countries concerning environmental efficacy, controlling for gender, education and age. Therefore,
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as predictor variables we use the 12 zero-one coded dummy variables for the countries, using

Thailand as the reference category (i.e., coded with 12 zeros), a dummy variable for gender where

female is coded 1 and therefore male serves as a reference, and both the standardised scores of age

and number of years of education as numeric predictors.

For the analysis of these data, we use the cumulative restricted multidimensional unfolding

model, a proximity model that is usually considered a better choice for attitude data. With the above

coding of the predictor variables, the origin of the Euclidean space corresponds to male participants

from Thailand having average age and education.

We fitted models in 1, 2, and 3 dimensions. The fit statistics are

Dimensionality deviance npar AIC BIC
1 316958.57 50 317058.57 317444.02
2 313685.65 71 313827.65 314374.99
3 312597.80 91 312779.80 313481.32

showing that the three-dimensional model fits best. For illustrative purposes, the two-dimensional

biplot is shown in Figure 5. The response variables are located from the bottom left (item 1,

too difficult) to top middle (item 2, do right). They lie almost on a curve, where items 5 and 6

(exaggerated and hard to know) lie close together, indicating similar response tendencies for those

two items.

Looking at the predictor side we first note that the origin, where the variable axes for Education

and Age cross represents male participants from Thailand with average age and education. We can

see that Education has a large influence on the positioning of the participants, where participants

with a few years of education are in the top of the biplot and those with many years of education in

the bottom. The variable axis for Age is much shorter, and therefore Age has a smaller effect on

the outcomes. The last control variable is Gender, where we see that the category Female (Fem) is

below the origin. Therefore, comparing female and male participants with the same values for the

other predictor variables, the females are located below male participants and therefore closer to

the items at the bottom of the configuration. The countries partition in two clusters, with on the

right hand side of the biplot the Asian countries Japan, the Philippines, Taiwan and Thailand and
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Figure 5: Estimated configuration for Environmental Efficacy data.

on the left hand side a cluster of Hungary, Russia, New Zealand, Island, Slovenia, Switzerland,

Austria, Germany, and Finland. Austria and Germany are very close to each other, meaning that

responses in these two countries follow a similar pattern. Russia and Hungary are close together and

positioned more in the top of the biplot, further away from the response variables more important,

exaggerated, hard to know, and too difficult, indicating lower probabilities of agreement with these

items compared to participants from other countries.

Now, let us look in more detail at two biplots where we included the circles representing the

classification regions for items 4 (“There is no point in doing what I can for the environment unless
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Figure 6: Estimated configuration for Environmental Efficacy data with decision regions for Item 4
(a) and Item 7 (b).

others do the same”) and 7 (“Environmental problems have a direct effect on my everyday life”).

The biplots are shown in Figure 6. For item 4, we see that the cluster of Asian countries on the left

disagrees (all participants from Taiwan and most participants from the Philippines) or is neutral

(most participants from Thailand and the higher educated and elderly in Japan).

Participants from the other countries mainly agree with this statement, because their position is

within the neutral | agree (i.e., 3|4) circle. An exception are participants from Russia and Hungary

with low scores on education, who tend to be neutral.

Inspecting the biplot with classification regions for item 7, we can conclude that only participants

from Finland with average age and education tend to agree with this item. Most participants from the

Asian countries tend to disagree (except participants from Thailand), while most participants from

the other countries tend to be neutral towards this item. It seems that especially Age has an influence

on this response variable as elderly people from the Asian countries have larger probabilities to

agree, while the younger people from the other cluster have higher probabilities to agree (i.e., they

are closer to the position of the item).
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5 Simulation studies

5.1 Parameter recovery

We conducted a simulation study to verify whether the algorithms work properly. Therefore, we use

the estimated parameters from the second example, described in Section 4.2, as the basis for the

population values. In that example, the number of response variables R equals 4, the number of

predictor variables P equals 5. The population model has two dimensions (S = 2).

In the data generation process, we start drawing predictor variables from the multivariate normal

distribution with mean zero and covariance matrix equal to the correlation matrix of the predictors

in Section 4.2 (see Appendix C for values). The predictor variables and the population matrix B

defines U . With these coordinates and the matrix V , values on the latent variables (i.e., the θir’s)

can be computed. For the dominance models we use the inner product (θir = ⟨B′xi,vr⟩), while

for the proximity models we use the distances (θir = −d(B′xi,vr)). With these values and the

threshold parameters, probabilities of the response categories for each of the response variables can

be obtained. We draw observed outcome variables for each response variable independently from

the multinomial distribution.

We vary sample size with values 250, 500, and 1000. We also vary whether the response

variables have three or five categories (threshold values can be found in Appendix C) and we

manipulate the number of response variables, to be equal to 4 or 8. Note that in the empirical

example there are four response variables. For the condition with eight response variables, we

created 4 others by simply rotating V by 45o and adding the obtained coordinates to the matrix (see

Appendix C for population values).

Finally, to verify whether the recovery is sensitive to the distribution of the predictor variables,

we changed the distribution of the predictor variables into a uniform distribution and we categorized

the predictor variables into five-point Likert scales. We used a full factorial 3× 3× 2× 2 design,

with 200 replications per condition. The simulation is done separately for the cumulative logistic

reduced rank model and the cumulative logistic restricted multidimensional unfolding.

38

https://doi.org/10.1017/psy.2025.10 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.10


Cumulative Logistic Multidimensional Data Analysis

As outcome variable we take the following measure of recovery:

δ =

√∑
i

∑
r(θir − θ̂ir)2∑
i

∑
r θ̂

2
ir

,

where θ̂ir = ⟨B̂′xi, v̂r⟩ for the dominance model and θ̂ir = −d(B̂′xi, v̂r) for the proximity model.

This measure resembles the Stress-1 value that is often used in multidimensional scaling and

unfolding. The benefit of this measure over, for example, looking at the recovery of B or V is that

we do not need to take into account any reflection, rotation, or other transformations to overcome

indeterminacies. We like to point out that the measure δ is not necessarily comparable between the

dominance and proximity perspective as for the proximity models the values of θir are all negative,

while for the dominance models they can be both positive and negative.
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Figure 7: Simulation results for cumulative logistic reduced rank regression. R denotes the number
of response variables, C the number of response categories per response variable. The three columns
show different distributions for the predictor variables (normal, uniform, Likert). On the horizontal
axis we show the different sample sizes, while on the vertical axes, the value of recovery is found
where lower values represent better recovery.
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The results of our simulation studies are presented in Figures 7 for the reduced rank model and

Figure 8 for the restricted multidimensional unfolding. In both cases, we see that recovery is good

and that it improves with increasing sample size, number of response variables (R), and number

of response categories (C). The changes for the number of response variables and the number of

response categories are small, but the values of δ become smaller and less variable. Sample size

has a larger influence as is clear from the boxplots. The distribution of the predictor variables has

hardly any influence on the recovery.

Comparing the recovery of the dominance (Figure 7) with the proximity model (Figure 8), we

see that the recovery for the dominance model is slightly better, that is, the values are lower and the

variability is smaller. One reason might be that the proximity model sometimes ended in a local

optimum as we did not use multiple starting values but simply used the population values as starting

point.

5.2 Dimension selection

Another aspect of our modeling framework is the choice of dimensionality. In this paper, we

use information criteria for this choice. We conducted a small simulation study to illustrate the

behaviour of the AIC and BIC for the cumulative logistic reduced rank model and the cumulative

logistic restricted multidimensional unfolding model.

We use the same settings as in the previous simulation study, where we only use the normally

distributed predictor variables. So, we vary the number of response variables (4 or 8), the number

of response classes per response variable (3 or 5), and the sample size (250, 500, or 1000). We

generated data sets with two dimensions and subsequently fitted models with one, two, and three

dimensions. In each condition, we repeated this procedure 200 times and counted the number of

times the information criteria select a certain dimensionality. The simulations were done separately

for the two types of models. The results are shown in Table 2.

Inspecting the results for cumulative logistic reduced rank regression (CLRRR), we see that

the AIC only selects two and three-dimensional models, while the BIC only selects one or two-

dimensional models. The AIC is insensitive to the sample size, that is, the number of times the

three-dimensional solution is chosen does not vary much. The number of response variables or
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Figure 8: Simulation results for cumulative logistic restricted multidimensional unfolding. R denotes
the number of response variables, C the number of response categories per response variable. The
three columns show different distributions for the predictor variables (normal, uniform, Likert).
On the horizontal axis we show the different sample sizes, while on the vertical axes, the value of
recovery is found where lower values represent better recovery.

response categories does not seem to influence the selection. For BIC, the sample size matters.

In small samples it tends to more often select the one-dimensional solution, especially with four

response variables. In larger samples the correct dimensionality is chosen.

For cumulative logistic restricted multidimensional unfolding (CLRMDU) the information

criteria show different patterns. The AIC often selects the correct dimensionality. When the number

of response variables and response categories are small and also the sample size is small it might

select the one-dimensional solution. The BIC tends to select the one-dimensional model especially

for the smaller data sets.
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CLRRR CLRMDU
AIC BIC AIC BIC

C R N 1 2 3 1 2 3 1 2 3 1 2 3
3 4 250 0 178 22 90 110 0 83 104 13 200 0 0
3 4 500 0 170 30 5 195 0 27 150 23 198 2 0
3 4 1000 0 173 27 0 200 0 3 179 18 172 28 0
3 8 250 0 180 20 45 155 0 32 141 27 199 1 0
3 8 500 0 168 32 0 200 0 2 183 15 175 25 0
3 8 1000 0 174 26 0 200 0 0 188 12 22 178 0
5 4 250 0 179 21 79 121 0 47 139 14 200 0 0
5 4 500 0 175 25 3 197 0 12 167 21 188 12 0
5 4 1000 0 168 32 0 200 0 0 182 18 91 109 0
5 8 250 0 170 30 35 165 0 6 178 16 188 12 0
5 8 500 0 175 25 0 200 0 0 185 15 111 89 0
5 8 1000 0 173 27 0 200 0 0 189 11 3 197 0

Table 2: Results of simulation studies for dimension selection. Numbers indicate how often a certain
dimensionality is chosen by either the AIC or BIC out of 200 replications. C represents the number
of response categories; R represents the number of response variables; N the sample size. The
numbers 1, 2, and 3 beneath either AIC or BIC represent the selected dimensionalities. There are six
columns for cumulative logistic reduced rank regression (CLRRR) and six for cumulative logistic
restricted multidimensional unfolding (CLRMDU).

6 Conclusion and Discussion

6.1 Summary of obtained results

In this manuscript, we proposed a novel framework for multidimensional analysis of ordinal data

in a cumulative logistic framework. Logistic regression models are the usual models of choice

when the response variable is categorical. For an ordinal response variable, the cumulative logistic

regression model, also known as the proportional odds regression model, is a typical analysis model

often used in practice. We developed cumulative logistic models for multiple ordinal response

variables. Biplot and triplot representations of the results of these models were proposed and in the

empirical examples the biplots were interpreted in detail.

We distinguished between models for proximity and dominance items. For proximity items,

distance representations based on multidimensional unfolding are used, whereas for dominance

items inner product representations based on principal components are used. The dominance models

are most useful for cognitive response variables, whereas the proximity models are most useful
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for behavioural and attitude response variables. It is important to note that coding of the ordinal

response variables matters for the proximity models. Say, we have an ordinal variable with four

categories: always, often, sometimes, and never. Coding the four categories as 4, 3, 2, and 1,

respectively, leads to different results than with the reverse coding 1, 2, 3, and 4. In contrast, for the

dominance model reverse coding leads to the same solution, where only the sign of the coefficients

change, but the fit remains the same.

When predictor variables are available for the participants, restricted versions of both types of

models are obtained, leading to reduced rank regression and restricted multidimensional unfolding.

For maximum likelihood estimation, an Expectation Majorization Minimization (EMM) algo-

rithm was developed and tested. In a simulation study, we tested the performance of the algorithm

and we showed that overall the recovery is good. In more detail, the recovery increases with sample

size, more response variables, and increasing number of response categories.

Generally, the framework gives the opportunity to analyse complex data sets having ordinal

response variables with dimension reduction techniques. The response variables do not need to

be indicators of underlying constructs as in psychological scales but simply may be a number of

related questions on a given topic.

6.2 Discussion

6.2.1 Model selection

When applying the proposed models to empirical data, a researcher needs to select an optimal

model. Model selection in the framework consists of finding an optimal dimensionality and finding

an optimal set of predictor variables. Although we estimate the models by maximum likelihood

this does not ensure typical likelihood based statistics can be used as we discussed in Section

2.2. Overall, our multidimensional models can best be considered in the bias-variance trade off

framework, where reducing the dimensionality increases the bias but reduces the variance and

vice versa. The optimal model finds the sweet spot where the sum of squared bias and variance is

minimized. We suggested to use information criteria for this purpose, but of course other statistics

can be used, such a cross-validation or R2-type of statistics.
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For the information criteria the number of parameters is needed for which we simply use the

total number of parameters minus the number of indeterminacies (see Section 2.2). Mukherjee

et al. (2015) showed, in the context of linear reduced rank models, that these numbers are naive

estimates and better estimates are available. This theory, however, is not yet extended to other type

of multidimensional models, such as models for ordinal response variables or distance models.

Furthermore, we suggested to first select the dimensionality and thereafter the set of predictor

variables that effect the responses. Such a step-wise procedure does not guarantee that the optimal

model is found. Ideally, all models with subsets of predictor variables are fitted in all dimensionalities

and the best model is selected. Such an approach might become computationally very expensive.

The step-wise procedure keeps the procedure simple but does not guarantee an optimal final model.

More research is needed on model selection for the proposed methods.

From the visualization perspective, it is also possible to use an alternative narrative for model

selection. Obviously, visualization of the results of our models is easiest when the dimensionality

equals two. In that regard, one may always tend to favor the two-dimensional. The two-dimensional

model is therefore the default. In our cumulative logistic multidimensional data analysis methods

we simply use two dimensions unless that leads to a too large information loss. The only purpose

of computing statistics like the AIC and BIC for various dimensionalities is then to verify that the

information loss is not too large. What “too large” exactly means is, of course, debatable.

6.2.2 Proportional odds assumption

In our multidimensional models a proportional odds assumption is made, as discussed in Section 2.1.

It is not easy to test the validity of this assumption within our modelling approach. One approach

would be to fit different models that do not make this assumption and compare the fit of the two

models. For the CLPCA model, we could compare against multinomial multiple correspondence

analysis (MMCA; Groenen and Josse, 2016). For CLRRR we could compare to a constraint version

of MMCA (which first needs to be developed). Such comparisons are related to the score test for

the proportional odds assumption (Agresti, 2002, Section 7.2) that tests whether the effects are the

same for each cumulative logit against the alternative of separate effects. If the fit of the MMCA

models is much better this is an indication of a violation of the proportional odds assumption
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for one or more response variables. For which response variable the assumption is violated then

needs further investigation. An alternative applicable for CLRRR is to apply the score test for each

response variable separately when fitting R different models. When none of these tests suggest a

rejection of the null hypothesis, we can safely conclude that the assumption is also valid for the

multivariate model. When one of the tests rejects the null hypothesis, we directly know for which

response variable the proportional odds assumption is false. For the distance models (CLMDU and

CLRMDU) validating the proportional odds assumption is more difficult. We could, for instance,

develop new models that combine the cumulative logit models developed here with multinomial

restricted unfolding (De Rooij and Busing, 2024), a distance model for nominal variables, and

investigate whether such a new model signals violations of the assumption. Further work is needed

to find ways to verify this assumption within the framework presented.

On the other hand, Harrell (2001) points out that we should not worry too much about the

proportional odds assumption. Rank order based statistics such as the Wilcoxon test and the

Kruskal-Wallis tests are special cases of the proportional odds regression model. Furthermore, rank

order correlations are closely related to the proportional odds model. It seems best to place our

models in a bias-variance trade-off perspective. The proportional odds assumption might not be

valid for some response variables leading to biased results. However, adding parameters to avoid

the assumption might lead to more variance and, when the extra variance exceeds the bias, lead to

worse model performance.

6.2.3 Further constraints

Sometimes, a priori information is available about which response variables group together on

specific dimensions. This would entail that elements of the matrix V are set to zero. Similar

constraints could, in theory, be imposed on the matrix B, specifying that some predictor variables

are connected to specific dimensions. At the moment it is not possible to use such information in

the analysis. Further research is needed to incorporate such knowledge.

In our framework, we focused on predictor variables describing the participants. In some

situations, external information about the items might be available. In our analysis, we could add
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constraints on the matrices V to include such information. Further research and programming is

needed to incorporate such constraints.

6.3 Relationship to Item Response Theory / Item Factor Analysis

Before we conclude this paper, we like to point out some relationships between our framework

and item response models. Item response models have been primarily developed in the context of

construction and evaluation of educational tests. To make some connections, let us start with the

origins of latent variable models. For continuous response variables, there are two methods for

extracting latent components from a data set: Principal component analysis (PCA) and exploratory

factor analysis. PCA is a general information reduction technique used in many scientific disciplines.

In applied psychometrics, it is often used to extract underlying dimensions or components. PCA

extracts components that explain as much variance as possible from the observed variables. In PCA,

no assumption is made on the error terms, the only goal is to minimize the sum of squared errors.

Factor analysis also extract components that explain as much variance of the observed variables,

but the assumption is made that, given the component or latent variable, the errors are uncorrelated.

This assumption is usually called the local independence assumption. As a consequence, the error

terms are often called unique factors.

Both factor analysis and PCA have been generalized to the case of binary variables. Factor

analysis for binary variables is often called item factor analysis. Takane and De Leeuw (1987) show

that item factor analysis and item response models are equivalent. As discussed in the introduction,

principal component analysis has also been generalized for binary variables (Schein et al., 2003;

De Leeuw, 2006; Landgraf and Lee, 2020). In these generalizations of PCA, implicitly the

assumption of local independence is made, because in the log-likelihood function the contributions

of the different response variables is summed. Therefore, it is not difficult to show that PCA for

binary variables and item factor analysis or item response models for binary variables are equivalent

as well.

Different estimation methods have been proposed for item response models (for an overview

see Tuerlinckx et al., 2006), such as marginal maximum likelihood and joint maximum likelihood.

In marginal maximum likelihood estimation a distribution is assumed for the person parameters
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(i.e., the parameters that we call ui in this manuscript) and the item parameters (in our terms the vr)

are estimated together with the parameters of the distribution, for example, the mean and variance

of the normal distribution. In joint maximum likelihood, the person parameters are treated as fixed

effects and are estimated directly together with the item parameters. In logistic PCA, the person

scores are treated as fixed effects like in joint maximum likelihood. Therefore, despite the different

origins, the models are very similar or equivalent.

Both item factor analysis and item response models have been developed for ordinal data.

Samejima’s Graded Response Model (GRM; Samejima, 1969) is an example of a unidimensional

item response model for ordinal variables. This graded response model is equivalent to our

cumulative logistic principal component analysis in one dimension. Multidimensional item factor

or item response models (Reckase, 2009, Section 4.1.2) have been proposed in the literature that

resemble our unsupervised principal component models, such as the multidimensional graded

response model.

In this paper, we also developed supervised methods, in which predictor variables are used to

explain the response variables. The cumulative logistic reduced rank model is such a model. Also in

the item response model framework models have been proposed to include such person predictors

(De Boeck and Wilson, 2004). In that book, Tuerlinckx and Wang (2004) proposed an explanatory

variant of the unidimensional Graded Response Model for ordinal responses. Although De Boeck

and Wilson (2004) lay out a general framework of explanatory item response models, advances

for multidimensional ordinal data have been limited. Our supervised model for dominance items

provides a multidimensional explanatory model for ordinal response variables.

Proximity item response models with a single-peaked response function have also been proposed

and investigated. The best known model for ordinal data is the generalized graded unfolding model

(GGUM; Roberts et al., 2000). The model definition of GGUM is quite involved, defined by

two graded response models, one ‘from below’ and one ‘from above’. The GGUM model is a

unidimensional model, no multidimensional generalizations have been proposed so far, although

recently an R-package for estimation of such multidimensional models has been proposed (Tu et al.,

2021). Also, recently some explanatory versions, including predictors for the observations have

been proposed by Usami (2011) and Joo et al. (2022). Our (restricted) multidimensional unfolding
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models are similar to these single peaked item response models. Our model definition is, however,

much simpler. More research is needed on the comparison of the two models.

For PCA, reduced rank models, and multidimensional scaling and unfolding models biplot

visualizations are quite common. In contrast, biplot visualizations are quite uncommon in item

response modeling. Sporadically, one sees multidimensional maps, for example, in the latent space

item response model to detect item-respondents interactions (Jeon et al., 2021). The type of maps

we propose in this paper, might be valuable tools for (explanatory) item response modeling as well,

especially for multidimensional item response modeling.

In conclusion, the framework of item response models is in some respects similar to what

we proposed in this paper. Although the origins of principal component analysis and (item)

factor analysis/item response theory are quite different, for categorical response variables the two

approaches become similar. The focus of the two approaches, however, still differ. Item response

models are usually targeted towards optimal latent trait estimation in educational or psychological

measurement. Often, a priori knowledge is available on the traits under investigation, such as the

dimensionality. External information (i.e., predictor variables) is used to address sub-population

heterogeneity or to increase estimation accuracy. The goals of our analysis framework is more

towards dimension reduction to obtain insight into the structure of the response variables or, when

predictor variables are available, to develop simultaneous regression models for the response

variables in a reduced dimensional space.

6.4 Software

In conclusion, in this paper we proposed a family of models for multidimensional analysis of

multiple ordinal response variables. The framework contains four different models. We distinguished

between models for dominance variables and proximity variables. Within each we distinguished

models with and without predictor variables. Algorithms for all methods proposed in this paper are

implemented in the R software. The logistic mapping package (De Rooij et al., 2024) contains the

functions clpca and clmdu and corresponding plotting function that can be used for the analyses

described in this paper.
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Appendix A: Statistics for Student data

We use different labels for the response variables than the authors in Fabbricatore et al. (2024) use.

Here is a table relating our labels (left column) to the names shown in their paper (center column)

and the actual question for the students:

A1a T1_ClassVar_A Select the type of variable that best describes the
gross annual income

A1b T1_GraphForQuant_A Find the error in a graph representing the distri-
bution of a continuous variable (i.e. waiting time
in minutes)

A1c T1_Median_A Calculate the median of individual series data
A1d T1_ArithmeticMean_A Calculate the overall weighted arithmetic mean

given the mean of three groups of individuals
with different class sizes

A1g T1_SkewnessNKurtosis_A Calculate the Hotelling-Solomon skewness coef-
ficient

A2a T2_SamplingSpace_A Calculate the size of the sample space if 1 coin
and 2 six-sided dice are tossed together at the
same time

A2c T2_ConditionalProb_A Calculate the conditional probability, given the
marginal probabilities and the joint probability

A2d T2_Bernoulli_A Calculate the variance of a Bernoulli trial given
the probability of success

A2g T2_Gaussian_A Calculate probability for normally distributed
data

A2i T2_SamplingVariance_A Determine the sample size using the formula
derived from the corrected sample variance

The model selection procedure is summarized using Table A1.

The implied coefficients (BV ′) are shown in Table A2, and can simply be understood similarly

as coefficients in a cumulative logistic model (proportional odds model).

For comparison the coefficients of 10 separate proportional odds models are shown in Table A3.

The model for response variable A1c did not converge.
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npar deviance AIC BIC
1 48 2310.47 2406.47 2546.98
2 74 2250.50 2398.50 2615.12
3 98 2206.37 2402.37 2689.24
Age 72 2251.38 2395.38 2606.14
Gender 72 2255.71 2399.71 2610.48
Math 72 2277.05 2421.05 2631.82
Statistical.Anxiety 68 2253.18 2389.18 2588.23
SATS 66 2271.74 2403.74 2596.94
MSLQ 66 2257.26 2389.26 2582.46
APS 72 2258.28 2402.28 2613.04
AMS 72 2250.55 2394.55 2605.31
ENG 68 2265.35 2401.35 2600.40

Table A1: Fit statistics for the student data. First three rows show fit statistics of models in 1
to 3 dimensions including the complete set of predictors. The remaining rows show fit statistics
of two-dimensional models leaving out one variable or (set of) scales from the complete set of
predictors. npar denotes the number of parameters.

A1a A1b A1c A1d A1g A2a A2c A2d A2g A2i
0|1 -0.85 -2.98 -4.03 -1.38 -2.53 -2.57 -0.88 -2.03 -1.26 -0.92
1|2 1.22 0.30 -0.45 -0.34 -1.78 -2.07 0.42 -1.79 0.06 1.18
G -0.03 -0.61 -0.19 -0.00 -0.17 -0.68 -0.30 -0.61 0.27 -0.96
PMP 0.05 0.37 0.29 0.38 0.23 0.55 0.27 0.54 0.45 0.47
SATSa 0.02 0.11 0.14 0.23 0.10 0.20 0.11 0.21 0.31 0.11
SATSc 0.01 -0.26 0.05 0.28 0.02 -0.20 -0.06 -0.14 0.56 -0.49
SATSv 0.01 -0.20 0.02 0.17 -0.00 -0.17 -0.06 -0.13 0.36 -0.37
SATSd -0.02 -0.06 -0.13 -0.23 -0.09 -0.14 -0.08 -0.16 -0.34 -0.02
APS 0.00 -0.25 0.00 0.17 -0.02 -0.23 -0.09 -0.18 0.38 -0.45
ENGa 0.01 0.02 0.07 0.13 0.05 0.07 0.04 0.08 0.20 -0.00
ENGb 0.00 0.14 0.03 -0.02 0.03 0.15 0.06 0.13 -0.09 0.23
ENGc -0.01 0.21 -0.06 -0.26 -0.02 0.15 0.05 0.10 -0.51 0.41
deviance 290.18 234.32 206.52 253.97 154.25 162.42 297.50 165.03 245.51 251.71

Table A2: Implied coefficient from the CLRRR analysis for the student data. The last row shows
the resulting deviance per response variable.
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A1a A1b A1c A1d A1g A2a A2c A2d A2g A2i
0|1 -2.79 -4.09 -0.72 -1.59 2.45 1.84 -3.47 4.40 0.36
1|2 -0.64 -0.74 0.37 -0.82 2.98 3.16 -3.23 5.73 2.48
G 0.00 -1.09 -0.12 -1.11 -0.99 0.01 -0.22 0.16 -0.86
PMP -0.03 0.06 0.09 -0.03 0.12 0.05 0.12 0.08 0.09
SATSa 0.03 0.01 -0.01 0.05 -0.00 0.02 0.06 0.05 0.01
SATSc 0.04 -0.04 0.10 0.03 -0.10 -0.01 0.03 0.06 -0.07
SATSv -0.02 -0.06 0.03 -0.02 0.03 0.03 -0.07 0.05 -0.04
SATSd -0.09 0.01 -0.10 -0.04 0.03 -0.03 -0.09 -0.03 -0.01
APS -0.07 -0.36 0.10 0.40 -0.05 -0.21 -0.49 0.53 -0.56
ENGa 0.34 0.53 0.19 -0.10 -0.01 -0.28 0.05 0.31 -0.10
ENGb -0.12 -0.03 -0.73 0.70 0.86 0.09 0.09 -0.00 0.19
ENGc -0.26 0.19 -0.31 -0.20 0.13 0.46 -0.23 -0.84 1.07
deviance 283.48 229.77 244.87 147.89 156.40 293.64 158.82 243.60 250.75

Table A3: Estimated coefficient from proportional odds models for the student data. The last row
shows the resulting deviance per response variable.
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Appendix B: Pro-environment behaviour

The biplots for the cumulative logistic restricted multidimensional unfolding analysis including the

circles for each of the response variables is shown in Figure B1.

The biplot for the cumulative logistic reduced rank model is shown in Figure B2.
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Figure B1: Biplot for the cumulative logistic restricted multidimensinal unfolding solution relating
environmental attitudes with pro-environmental behaviour.
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Figure B2: Biplot for the cumulative logistic reduced rank model relating environmental attitudes
with pro-environmental behaviour.
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Appendix C: Population parameters for Simulation studies

The predictor variables are sampled from a multivariate normal distribution with zero means and

covariance matrix

X1 X2 X3 X4 X5
X1 1.00 0.01 -0.02 0.01 0.04
X2 0.01 1.00 -0.59 0.19 0.16
X3 -0.02 -0.59 1.00 -0.00 -0.00
X4 0.01 0.19 -0.00 1.00 0.25
X5 0.04 0.16 -0.00 0.25 1.00

The matrix with population coefficients B equals the estimated coefficients from the example

in Section 4.2, that is

1 2
X1 -0.16 0.19
X2 -0.37 0.04
X3 -0.17 0.19
X4 -0.40 -0.17
X5 -0.28 0.12

The population matrix V equals

1 2
Y1 0.44 -0.45
Y2 0.34 2.35
Y3 -1.68 0.05
Y4 -1.55 0.08
Y5 -0.16 -0.61
Y6 2.18 0.94
Y7 -0.84 1.45
Y8 -0.74 1.36

where we use only the first four rows when R = 4 and the complete matrix when R = 8

The parameters m are equal for the different response variables. The threshold values in case of

three categories are -1.0 and -0.5, while the values with five response categories are -2.0, -1.5, -1.0,

and -0.5.
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