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A NOTE ON PERIODIC POINTS

OF EXPANDING MAPS OF THE INTERVAL

BAU-SEN DU

We sharpen a result of Byers on the existence of periodic points

for some continuous expanding maps of the interval and generalize

i t to some classes of continuous maps of the interval which are

not necessarily expanding. We then use these results to construct

one-parameter families of continuous maps of the interval which

have a bifurcation from fixed points directly to period 3 points

together with a series of reverse bifurcations from period 3

points back to fixed points. Consequently, our results also

provide examples of one-parameter families of continuous maps of

the interval whose topological entropy jumps from zero to some

positive number and then changes back to zero as the parameter

1. Introduction

Let I denote the closed unit interval [0, 1] and let C (I, I)

denote the space of all continuous maps from I into itself. We call a

piecewise monotonic map T in CT (I, I) expanding if there exists a

constant X > 1 such that | T (X) -T (y) | i X|x-2/| whenever both x and y

belong to some interval on which T is monotonic and call X an expanding

constant for T . I t is obvious that if x e C (I, I) is expanding with
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4 3 6 Bau-Sen Du

expanding constant X > 1 , then, for every positive integer m , x i s

also expanding, but with X as an expanding constant.

In [2] , i t i s shown that if x e C (I, I) i s an expanding map with
expanding constant X > 1 , which is increasing on [0, c] and decreasing

1/2"on \_o, 1] , and if 2 £ X for some nonnegative integer n , then x

has a periodic point of least period 2 • 3 for some nonnegative integer
m < n . In this note, we f i r s t sharpen the above result by showing that the

condition 2 < X can be replaced by the condition [ {\+Ss)/2l ^ X

which i s best in the sense that we cannot have the same conclusion if the
number (1+/5J/2 i s replaced by any smaller positive number (see
Theorem 1) . We also generalize this new result to some classes of
continuous maps in Cr (I, I) which are not necessarily expanding (see
Theorems 2 and 3) . We then indicate how to use these results to construct
one-parameter families of continuous maps in C (J, J) which have a
bifurcation from fixed points directly to periodic points of least period

2 -3 for some nonnegative integer k (together with a series of reverse

bifurcations back to fixed points) (see Corollaries 4 and 5).

As i s well-known, continuous maps in C (I", I") without periodic
points other than fixed points have very simple dynamics ([3], [4,

Theorem 2]) and those in C {I, I) with periodic points of least period
not an integral power of 2 have an uncountable scrambled set [S] on which
the dynamics i s extremely complicated (see also [5]) . Therefore, our
resul ts provide examples of one-parameter families of continuous maps in

C (I, I) which have a bifurcation from very simple dynamics directly to

chaos. I t is also well-known that continuous maps in C (I, I) without

periodic points of least period 2 -n for any integer m S 0 and any odd

integer n > 1 have zero topological entropy [H] and those in C (J, J)

with periodic points of least period 2 •« for some integer m ^ 0 and
some odd integer n > 1 have positive topological entropy ( [ I ] , [7]).
Consequently, our results also provide examples of one-parameter families of

continuous maps in C (J, J) whose topological entropy jumps from zero to
some positive number and then changes back to zero as the parameter varies.
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In Section 2, we state our main results (Theorems 1, 2, and 3) and

present two applications of these results (Corollaries 4 and 5). The proofs

of Theorems 1, 2, and 3 will appear in Sections 3, 4, and 5 respectively.

2. Statement of main results

In this section, we state our main results and present two applications

of these results.

THEOREM 1. Let x e (P(I, I) he an expanding map with expanding

constant X > 1 , which is increasing on Co, c] and decreasing on \_c, 1] .

If C(l+/5)/2] < X for some nonnegative -integer n , then x has a

periodic point of least period 2^-3 in [c, 1] for some nonnegative

integer m •£, n .

Remark 1. The condition [( l+t^) /2] ' < X in the above theorem is

best in the sense that we cannot have the same conclusion if the number

(l+»5)/2 i s replaced by any smaller positive number [9, Theorem 2 .2] .

Remark 2. In l ight of the above theorem and Theorem 2.5 in [ J ] , we

pose the following question: For every positive integer k , l e t Xii

2&+1 2k—\
denote the largest zero of the polynomial x - 2x - 1 . Let

T e C {I, I) be an expanding map, with expanding constant X > 1 , which

l /2 n

is increasing on [0, e] and decreasing on [c , 1] . If (X, ) < X

for some posit ive integer k and some nonnegative integer n , must T

have a periodic point of least period 2 •(2k+l) in [o, 1] for some

nonnegative integer m •£> n ?

Remark 3. For expanding maps with more than two monotonic pieces, the

conclusion of Theorem 1 may not hold as shown by the following example:

EXAMPLE. For every positive integer n , l e t f (x) be the

continuous map from [0, 1] into i t s e l f defined by

(i) fn{i/2n+1) = 1/2 for a l l even i with 0 < i <, 2W+1 ;

(ii) fn(i/2
n+1) = 1 for a l l odd i with 0 < i < 2n ,

( i i i ) / M ( i /2 n + 1 ) = 0 for a l l odd i with 2n < i < 2n+1 ;

(iv) f ix) i s l inear on each component of the complement of the set
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U/2n+l\i = 0,1,2, . . . ,2n + 1] in [ 0 , 1 ] .

Then / ix) has the number 2 as an expanding constant, but i t only has

periodic points of even periods and no periodic points of odd periods

other than fixed points.

In the following, we present a result which generalizes Theorem 1 to

some class of continuous maps in C (I, I) which are not necessarily

expanding.

THEOREM 2. Let S , X , X , and X be any four fixed numbers with

0 < 6 < 1/2 j X > O j X_ > 0 , and X > 0 . Assume that f(x) is a

continuous map in C (I, I) which satisfies the following six conditions:

(i) f(l/2) = 1 ;

(ii) 1/2 - 6 < /(I) < 1/2 ;

( i i i) Lf(x)-f(y)l/(x-y) > Xx for all 1/2 - 6 < y < x < 1/2 ;

(iv) Lf(x)-f(y)]/{x-y) < -X2 for all 1/2 < y < x < 1/2 +.6 ;

(v) lf(x)-f(y)1/{x-y) < -X3 for all 1 - 6 < y < x < 1 ;

(vi) The equation fix) = 1/2 has a solution in (1-6, 1) . If the

equation f(x) = 1/2 + 6 has a (unique) solution in [1-6, 1] , let xQ

denote the solution. Otherwise, let x. = 1 - 6 . Then the following hold.

(1) If f2 (1) £ xQ and min(X1X3, X ^ } > [ (1+/5T)/2]1/2 for some

integer n > 0 , then f(x) has a periodic point of least period

2 n + 1 -3 in if2 {1), 1] .

(2) If f'd) ^ xQ and min{X^X3, X1X2X3} > [ ( l + / 5 ) / 2 ] 1 / 2 for some

integer n > 0 , then f(x) has a periodic point of least period

2n+2-Z in If2 (1), 1] .

Note. If, in the above theorem. Condition (ii) is replaced by ( i i ) '

1/2 < / ( I ) < 1/2 + 6 and Condition (v) is replaced by (v) '

L f ( x ) - f i y ) l / ( x - y ) > X 3 f o r a l l l - 6 < y < x £ l , t h e n a s i m i l a r

conclusion holds.

In the above theorem, if X̂^ is large enough (for example if X, > 2) ,

then the best possible case of the existence of a periodic point of least
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period 6 in [j (1) , 1] can be guaranteed to occur under somewhat weaker

conditions.

THEOREM 3. Let 6 and B be two fixed numbers with 0 < 6 < 1/2

and (1-6)/2 < B < 1/2 . Assume that fix) is a continuous map in

C (I, I) which satisfies the following five conditions:

(i) /(1/2) = l and f (l) = 6 ,-

(ii) 1 - 6 < /(B) , f2 {&)< 1/2 + 6 , and 1 - 6 < f3 (&) ;

(iii) /te) £ 2x for all 1/2 - 6 < a; < 1/2 ,-

(iv) f(x) £ - x + 3/2 for all 1/2 < x < 1/2 + 6 ;

(v) fix) > - x + 1 + B for all 1 - 6 < x < 1 .

Then fix) has a periodic orbit of least period 6 whose intersection with

each of the intervals (B, 1/2) and (1/2, f" (B)) is not empty.

Remark 4. It is easy to see that, under the conditions as stated in

the above theorem, fix) does not necessarily have periodic points of odd

periods in (B, 1/2) or in (1/2, j (B)) other than fixed points.

Remark 5. Theorems 2 and 3 are useful for the purpose of constructing

simple examples of one-parameter families of continuous maps in C (I, I)

which have a bifurcation from fixed points directly to periodic points of

least period 2 -3 for some fixed integer m S 0 (together with a series

of reverse bifurcations from period 2 -3 points back to fixed points).

In the following, we present two such examples. They are all easy

consequences of Theorem 2. Similar applications of Theorem 3 are obvious

and omitted.

COROLLARY 4. Let 6 , Xx , \2 , and X3 be four fixed positive

numbers with 0 < 6 < 1/2 and let F(a, x) be a continuous map from I * I

into I . Let / (x) be the one-parameter family (with a as the

parameter) of continuous maps in C°(I, I) defined by / (x) = F(a, x)

for 0 < x < 1 and 0 £ a < 1 . Assume that, for every a with

1/2 < a < 1/2 + 6 , there exists a point c^ in (1/2-6., 1/2+6) which

varies continuously with a and c = 1/2 such that / (x) satisfies
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the following five conditions:

(i) 1 - a < ./Ml) < ea (in particular, f (1) = 1/2) ;

(ii) fa(oa) = 1 <in particular, f 1 / 2 d /2) = 1) ;

(iii) lfate)-fa(y)l/lx-y) 2 Xx for all 1/2 - & < y < x <

(iv) [/o(a;)-/a(z/)]/(x-y) ^-X2 for all OQL < y < x < 1/2 + 6 ;

(v) [/a(a:)-/a(t/)]/te-y) < - * 3 for all l - 6 <, y < x < 1 .

Then the following hold.

(1) If min{X1X3,X2X3} > [( l+/5)/2]1 / 2 for some integer n > o , then

there exists a number 0 < e < 6 such that, for every ct with

1/2 < a < 1/2 + e , / (x) has a periodic point of least period

in

(2) xf min{X^X3, X1X2X3> > [ (l+^i")/2]
1/2 for some integer n > 0 , then

there exists a number 0 < e < 6 such that, for every a with

1/2 < a < 1/2 + e , f (x) has a periodic point of least period

2n+2-3 in

Remark 6. in the above corollary, the family / (x) is quite

arbitrary and may already have, for every a with 0 < a £ 1 , lots of

periodic points of any periods. However, since {1/2, 1} is a periodic

orbit of fi(x) with least period 2, our result guarantees that the family

f (x) does have a bifurcation at a = 1/2 from the period 2 orbit

{1/2, 1} directly to periodic points of least period 2 -3 for some

integer m 2 0 . This, in turn, implies that the family j (x) has a

bifurcation at a = 1/2 from each of the fixed points x = 1/2 and x = 1

directly to periodic points of least period 2m-3 . In the following, we

give an explicit f (x) which also has a series of reverse bifurcations.

COROLLARY 5. Let 6 , J^ 3 X2 , and X3 be four fixed positive

numbers with 0 < 6 < 1/2 } X,X3 2 8 , and X,X3 2 8 . Let f(x) be a

continuous map in Cr(I, I) which satisfies the following five conditions:

(i) fix) is increasing on [0,1/2] and decreasing on [1/2,1] ;
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(ii) 3/4 < f(0) , /(3/4) < 1/2 , and / (I) = 0 ;

(iii) lf{x)-f(y)l/(x-y) > Xx for all 1/2 - 6 S y < x < 1/2 ,-

(iv) [/(x)-f(2/)]/(x-!/) <-X2 for al l 1/2 < y < x < 1/2 + 6 ;

(v) [f(x)-/(!/)]/(x-t/) <-X3 for a l l 1 - 6 < y < x < 1 .

Let f (x) = \ - aCl-fCxj] for 0 < x < 1 and 0 < a < 1 . Then the

following hold.

(1) For 0 < a < 1/2 , f (x) has no periodic points other than fixed

points and periodic points of least period 2 .

(2) There exists a positive number e < 6 such that, for every a

with 1/2 < a < 1/2 + e , f (x) has a periodic point of least

period 6 in [f~(D , 1] .

(3) For a = 1 i f (x) has no periodic points with least period

s t r ic t ly greater than 4 3 but i t has periodic points of least

period 2 .

Remark 7. If / (x) is defined as in the above corollary, then the

one-parameter family / (x) of continuous maps in C (I, I) has only

fixed points and no other periodic points for a l l 0 < a < 1/2 and for

a = 1 . However, for every a with 1/2 < a < 1/2 + e , j (x) has

periodic points of least period 3. Therefore, this family f (x) has a

direct bifurcation from fixed points to period 3 points at a = 1/2

together with a series of reverse bifurcations from period 3 points back to

fixed points as a varies from 0 to 1 .

Remark 8. I t is well-known that continuous maps in C (I, I) without

periodic points other than fixed points have very simple dynamics ([3],

[4, Theorem 2]) and those in C (I, I) with periodic points of least

period 3 have an uncountable scrambled set on which the dynamics are

extremely complicated ([£], see also C5]) . Therefore, the family 7 (x)

with / (x) defined as in the above corollary provides examples of one-

parameter families of continuous maps in C {I, I) which have a

bifurcation from very simple dynamics directly to chaos (see also [6]) .
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Remark 9. I t i s also well-known that continuous maps in C (I, I)

without periodic points of least period 2 -n for any integer m > 0 and

any odd integer n > 1 have zero topological entropy [JJ] and those in

C (I, I) with periodic points of least period 6 have topological entropy

> (log [ (l+>/5)/2])/2 (see [ / ] , [7]). Therefore, if f (x) i s defined as

in the above corollary, then the topological entropy of f (x) jumps from

zero to some positive number £ (logC [1+Y5) /2])/2 at a = 1/2 and then

changes back to zero as a varies from 0 to 1. Since f (x) is

conjugate to the family g (x) = a[l-/(1-x) ] through the function

h (x) = 1 - x (that i s h f h = g ) , we see that the topological entropy
01 CX

of the family g (x) can be strictly decreasing for some values of the

parameter.

3. Proof of Theorem 1

The proof of Theorem 1 i s more or less the same as that in [2]. The

major difference is that we use a stronger lemma to get a better estimate

at one crucial step. The lemma on which we base our proof of Theorem 1 i s

Lemma 2 below. This lemma is a t r ivial consequence of the following easy,

but fundamental, result .

LEMMA 1. Let g e C°(I3 I) and let I. , j = 0 , 1 , . . . m , be closed

subintervals of I such that J . c g(I.) for all j = 0 , 1 , . . . , m - 1 3 and

I = I . Then there is a point x e. I such that g (x.) e J . for all

j = 0 , 1 , 2 , . . . , m - 1 j and gm(xQ) = xQ .

LEMMA 2. Suppose g e C (I, I) . If there exist two closed

subintervals J and K of I such that

(i) g(J) => K ;

(ii) g(K) => J u K ; and

( i i i ) g2(JnK) n K = * ,

then g has a periodic point of least period 3 .

The next lemma is a slight variation of Lemma 3 in [2] . This lemma can

also be proved by using Lemma 2 above.
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LEMMA 3. Let feC(I,I) be an expanding map. Suppose that there

exists a point z with f(z) < z < j(z) such that f is decreasing on

lf(z), 2] and increasing on [z, j(z)~\ . Then either f has a periodic

point of least period 6 or if g = j , then there exists a point w with

f(z) < w < z such that f(z) = g(w) < w < g (w) < z and, g is decreasing

on lg(w)} u] and increasing on [w, g (w)~\ .

The following lemma is taken from the proof of the main theorem in

[2]. Again, this lemma can also be proved by using Lemma 2 above.

LEMMA 4. Suppose that x e C (I, I) is an expanding map with

expanding constant \ > 1 which is increasing on \_Q, c] and decreasing

on la, 1] . If T has no periodic points of least period 6 and f = 1 ,

then f(c) < c < j(c) and, f is decreasing on [f(c), c~\ and

increasing on \_c, j (c)~\ .

We now proceed to the proof of Theorem 1.

Proof of Theorem 1. If T has a periodic point of least period 3, we

are done. So, we may assume that nil and T has no periodic points of

least period 3. By induction on n and by Lemma 4, it suffices to

2n-l
consider T . By Lemma 3, we have two cases:

2"-1

Case 1. T has a periodic point x_ of least period 6.

In this case, it is obvious that x_ is also a periodic point of T

with least period 2 -3 .

2" 2
Case 2. There exists a point w for g = T with g(W) < w < g (w)

2
such that g is decreasing on Lg(w), u] and increasing on [u, g {w)]

In this case, we have

2 2 2"
Ig (w) -w] + [w-g(w)~\ = g (w) - g(w) > \ (w-g{w)) .

So,

Thus,

2 2"
g (w) - w>(\ -1) (w-g{w)) .
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3 2" 2 2 n 2 n

g (w) - g(w) > X (g (w)-w) > X (X -l)(w-g(w))

> w - g(w) .

Consequently, g (w) S w . Let J = [u, g (w) ] and K = Lg(w) , u] . Then

Lemma 2 implies that g has a period 3 point and so T has a periodic

point of least period 2 •3 .

Therefore, in either case, T has a periodic point of least period

2 "3 . This completes the proof of Theorem 1.

4. Proof of Theorem 2

Let x. denote the unique solution of the equation fix) = 1/2 in

(1-6,1) . Then i t is clear that

If2(x)-f2{y)l/(x-y) > X2X3 for a l l xQ < y < x < xx ,

and

If2 (x)- /2 (y)1/(x-y) < -XlX3 for a l l ^ S j < j ; < 1 .

For the proof of part (1), we assume that f (1) t xQ and
l /2 n «2

min{X1X3, X.,X3} > [d+/5) /2] ' . Then J {x) i s an expanding map from

[XQ, 1] into i t se l f with expanding constant ^ C(l+/5)/2] . By

Theorem 1, j {x) has a periodic point of least period 2 -3 in Ex., 1]

Therefore, f(x) has a periodic point of least period 2 • 3 in
[a:, , l ] . This proves part (1) .

For the proof of part (2), we assume that j (1) > xa and

min(X^X3, X-^X^} ^ C (1+v^) / 2 ] 1 / 2 . Then, in particular, X ^ > 1 . So,

there i s a unique point c in [x,, 1] such that j (a) - x, . Since

j (x) i s s t r i c t ly decreasing on [x., 1] , the equation j (x) = x has a

unique solution z in [x^, 1] . I t is clear that X-. < z < c . I t i s
also clear that

C/4(x)-/4(y)]/(x-y) > X2X2 for a l l z < y < x < c
and
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lfA(x)-f4(y)]/&-y) < -X1X2X^ for all c < y < x < 1 .

If f (1) > z , then f (x) is an expanding map from Lz, 1] into itself

1/2M
with expanding constant > [(l+/5~)/2] and we can apply Theorem 1 to

f^{x) on lz, 1] . If f4(l) < z , then / 4 (x) has a periodic point of

least period 3 in [e, 1] . In either case [72], /(x) has a periodic
W+2

point of least period 2 •3 in [e, 1] . This proves part (2).

The proof of Theorem 2 is now complete.

5. Proof of Theorem 3

For any continuous function g(x) in C (I, I) with a point xQ e I

such that g(xA < xQ < g (x_) , it is well-known (see the proof of

Proposition 2.2 in [70]) that, for every integer n > 3 , g{x) has

periodic points of least period n on one side of the point x_ , that is,

the side which contains the point g(xQ) . However, on the other side of

xn , g{x) may not have periodic points of the corresponding periods. The

next lemma shows that, with one more condition, g(x) will have periodic

points of any period m 2 2 on both sides of xQ .

LEMMA 5. Let g e ̂ (I, I) and let xQ e I satisfy

g(x ) < x < min{<7 (x ) , g (x^)} . Then, for every integer m > 2 , g(x)

has a periodic orbit of least period m whose intersection with each of

the intervals (g(x ),x ) and (xQJg (x )) is not empty.

Proof. Let K = [g(x ), xQ] and let J = [xQ, g
2 (xQ) ] . For every

integer m > 2 , let IQ = I = J and let I • =. K for all j = l,2,...,m-l.

Then Lemma 1 implies that g(x) has a periodic point y of least period m

such that y e J and g(y) e K . Since both y and g(y) belong to the

same periodic orbit of gix) with least period m , we have the desired

result.

We can now prove Theorem 3.

We will show that /2(l/2) < 1/2 < min{/4( 1/2) , ̂ (1/2)} . Let h{x)

be any continuous map in C (J, I) which satisfies the following three
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condi t ions :

(i) h(x) = 2x for a l l 1/2 - 6 < x < 1/2 ;

( i i ) h{x) = - x + 3/2 for a l l 1/2 < x < 1/2 + 6 ,-

( i i i ) h(x) = - x + 1 + B for a l l 1 - 6 < x < 1 .

Then i t i s clear tha t the following are t rue :

(a) 1 - 6 < /(B) < /z(B) .

(b) 1/2 < 1 - 3 = k2(B) = h(h{&)) < h{f(&) < / ( / (B)) = f2^) < 1/2+6.

(c) 1/2 < 1 - 6 < /^(B) < /it/2 (3)) S ?z(7z2(B)) = /J3(B) = B + 1/2 .

(d) 1/2 = ft4(B) = ?z(?z3(B)) s / i t / 3 (3) ) s / ( / 3 ( B ) ) = / 4 ( B ) .

Since B = f*a/2) , f2 (&) = f4 (1/2) , and /^(B) = f (1/2) , we have shown

that /^(l/a) < 1/2 < min{/4(l/2) , / (1/2) } .

If we let #(x) = f*(x) , then ^(1/2) < 1/2 < min{g2(l/2) ,
So, by Lemma 5, g (x) has a periodic orbit P of least period 3 whose

intersection with each of the intervals (6, 1/2) and (1/2, .T (B)) is n°t

empty. It is obvious that P U f(P) is a periodic orbit of fix) with

least period 6 which intersects each of the intervals (B, 1/2) and

(1/2, j (B)) . This completes the proof of Theorem 3.

References

[I] L. Block, J . Guckenheimer, M. Misiurewicz and L.-S. Young,
"Periodic points and topological entropy of one dimensional maps",
(Lecture Notes in Mathematics, 819 (1980),18-34, Springer-Verlag,
New York).

[2] B i l l Byers , "Periodic points and chaos for expanding maps of the
interval", Bull. Austral. Hath. Soc. 24 (1981), 79-83.

[3] W.A. Coppel, "The solution of equations by iteration", Proa. Camb.

Phil. Soc. 51 (1955), 41-43.

[4] Ethan M. Coven and G.A. Hedlund, "Continuous maps of the

interval whose periodic points form a closed set", Proa. Amer.
Math. Soc. 79 (1980), 127-133.

[5] Bau-Sen Du, "Are chaotic functions really chaotic", Bull. Austral.
Math. Soc. 28 (1983), 53-66.

https://doi.org/10.1017/S0004972700004019 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700004019


Periodic po in ts of expanding maps 447

[6] Bau-Sen Du, "An example of a bifurcation from fixed points to

period 3 points", Nonlinear Anal, (to appear).

[7] Bau-Sen Du, "Topological entropy and chaos of interval maps",

Nonlinear Anal. (to appear).

[S] Frederick J . F u g l i s t e r , "A note on chaos", J. Combin. Theory

Series A 26 (1979), 186-188.

[9] Shunji I t o , Shigeru Tanaka and Hitoshi Nakada, "On unimodal

linear transformations and chaos I", Tokyo J. Math. 2 (1979),

222-228.

[101 Tien-Yien Li, Michal Misiurewicz, Giulio P ian ig ian i and

James A. Yorke, "No division implies chaos", Trans. Amer.

Math. Soo. 273 (1982), 191-199.

[77] Michal Misiurewicz, "Horseshoes for mappings of the interval",

Bull. Aaad. Polon. Sai. S&r. Soi. Math. 27 (1979), 167-169.

[7Z] A.N. Sharkovski i , "Coexistence of cycles of a continuous map of

the line into itself", Ukrain. Mat. Zh. 16 (1964), 61-71.

Institute of Mathematics

Academia Sinica

Taipei, Taiwan 115

Republic of China

https://doi.org/10.1017/S0004972700004019 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700004019

