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Abstract. Let G be a countably infinite discrete amenable group. It should be noted that
a G-system (X, G) naturally induces a G-system (M (X), G), where M (X) denotes the
space of Borel probability measures on the compact metric space X endowed with the
weak*-topology. A factor map 7 : (X, G) — (Y, G) between two G-systems induces a
factor map 7 : (M(X), G) — (M(Y), G). It turns out that 7 is open if and only if 7 is
open. When Y is fully supported, it is shown that v has relative uniformly positive entropy
if and only if 7 has relative uniformly positive entropy.
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1. Introduction
In the process of studying the classification of topological dynamical systems, entropy as
a conjugacy invariant plays an important role which divides them into two classes. For
Z-systems, the notion of uniformly positive entropy (u.p.e. for short) was introduced by
Blanchard in [6] as an analogue in topological dynamics for the notion of a K-process in
ergodic theory. He then naturally defined the notion of entropy pairs and used it to show
that a u.p.e. system is disjoint from all minimal zero entropy systems [7]. Further research
concerning u.p.e. systems and entropy pairs can be found in [8, 9, 13, 16, 17, 27].
Recently, there has been a lot of significant progress in studying relative entropy via
local relative entropy theory for Z-systems. For a factor map between two Z-systems,
Glasner and Weiss [14] introduced the relative uniformly positive entropy (rel-u.p.e.) and
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the notion of relative topological Pinsker factor based on the idea of u.p.e. extensions.
Later, Park and Siemaszko [30] interpreted another relative topological Pinsker factor,
defined by Lemanczyk and Siemaszko [27], using relative measure-theoretical entropy and
discussed the relative product. In [19], Huang, Ye and Zhang introduced the notions of
relative entropy tuples in both topological and measure-theoretical settings. They showed
that the finite product of rel-u.p.e. extensions has rel-u.p.e. if and only if the factors are
fully supported (for definitions see §2.3). They also proved some classical results about
the rel-u.p.e. extension. We will refer readers to [10, 11, 18, 26] for more results related to
local relative entropy theory.

Bauer and Sigmund [3] initiated a systematic study of the connections between
dynamical properties of a Z-system and its induced system (whose phase space consists
of all Borel probability measures on the original space, for details see §2). A well-known
result due to Glasner and Weiss [15] in 1995 reveals that if a system has zero topological
entropy, then so does its induced system. Later, this connection was further developed by
Kerr and Li in [23]. They obtained that a system is null if and only if its induced system is
null. More research concerning relations of these systems was developed in [1, 2, 33, 37].
Recently, Bernardes et al [4] proved that a Z-system has u.p.e. if and only if its induced
system does.

After Ornstein and Weiss’s pioneering work for amenable group actions in 1987 [29],
there have been many developments in the process of studying the amenable group action
systems. We will refer the reader to the related papers [20, 28, 31, 35, 36, 38]. In this
paper, we always assume that G is a countably infinite discrete amenable group. By a
G-system (X, G), we mean a compact metric space X together with G acting on X by
homeomorphisms, that is, there exists a continuous map I' : G x X — X, satisfying:

o [I'(eg,x) =xforeveryx € X;
e I'(g,I'(h,x))=T(gh,x)foreachg,h € Gandx € X.
We write I'(g, x) as gx forevery g € G and x € X.

Motivated by those works which were previously mentioned for Z-systems and the local
entropy theory developed for countable discrete amenable group action systems due to
Huang, Ye and Zhang [20], and Kerr and Li [24], the present paper aims to investigate the
properties of the relative uniformly positive entropy (rel-u.p.e.) for an induced factor map
of a factor map between two G-systems (see §2 for definitions).

More precisely, let (X, G) be a G-system, By be the set of Borel subsets of X and M (X)
be the space of Borel probability measures on the compact metric space X endowed with
the weak*-topology. Then the G-system (X, G) induces a system (M (X), G) (see §2 for
details). For any x € X, let §, denote the Dirac measure on x and

1 n
M, (X) = {;ZI:(SXi DXL, X2, ..., Xn EX}
=

foreach n € N. Then M,,(X) is closed and invariant under G (that is, g M, (X) = M, (X)
for every g € G). Hence, we can consider the subsystems (M, (X), G) of (M(X), G)
for each n € N. For a factor map 7 : (X, G) — (Y, G) between two G-systems, when
supp(Y) = Y (for definitions see §2.3), we have the following result.
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THEOREM 1.1. Let 7w : (X, G) — (Y, G) be a factor map between two G-systems, T :
(M(X), G) = (M(Y), G) be the factor map induced by w and 7, : (M,(X), G) —
(M (Y), G) be the restriction of T on M, (X). When supp(Y) =Y, the following are
equivalent:

(1) 7 has relative uniformly positive entropy;

(2) 7, has relative uniformly positive entropy for some n € N;

(3) 7, has relative uniformly positive entropy for every n € N;

(4) T has relative uniformly positive entropy.

Notice that when Y is a singleton, we obtain that (X, G) has u.p.e. if and only if the
induced system (M (X), G) has u.p.e. (when G = Z, see [4, Theorem 4]).

We say amap 7 : X — Y between two topological spaces is open if the images of open
sets are open. Then we have the following result.

THEOREM 1.2. Let m : X — Y be a surjective continuous map between two compact
metrizable spaces, and 7T : M(X) — M(Y) be the induced map of . Then 7 is open
if and only if T is open.

This paper is organized as follows. In §2, we will list some basic notions and results
needed in our argument. In §§3 and 4, we will give a proof of Theorem 1.1. Finally, we
prove Theorem 1.2 in §5.

2. Preliminaries

In this section, we recall some basic notation and results which will be used repeatedly in
our paper. Denote by N and R the set of natural numbers and real numbers, respectively.
For n € N, we write [n] for {1, 2, ..., n}.

2.1. Amenable group. We say a countably infinite discrete group G is amenable if there
always exists an invariant Borel probability measure when it acts on any compact metric
space. In the case where G is a countably infinite discrete group, amenability is equivalent
to the existence of a Feplner sequence: a sequence of non-empty finite subsets {F},}7° | of
G such that

| Fn Ag Fyl _

lim =0

n— 00 | Fy |
for all g € G. One should refer to Ornstein and Weiss’ paper [29] for more details about
an amenable group. In this paper, we always assume that G is a countably infinite discrete
amenable group and denote by F(G) the collection of non-empty finite subsets of G. The
following result is well known (see [25, Theorem 4.48]).

THEOREM 2.1. Let ¢ be a real-valued function on F(G) satisfying:

() @(Fs)=¢(F)forall F € F(G)ands € G; and

(2 @(F) < (1/k) Y peg ¢(E) for every k€N, F e F(G) and finite collection
ECFG)withJgeg EC Fand ) poe 1g > klF.

Then ¢ (F)/|F| converges to a limit as F becomes more and more invariant and this limit

is equal to infr ¢ (F)/|F|, where F ranges over all non-empty finite subsets of G.
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2.2. Induced systems. Assume that X is a compact metric space. Let By be the
collection of Borel subsets of X, C(X) be the space of continuous maps from X to R
endowed with the supremum norm || - || and M(X) be the set of Borel probability
measures on X endowed with the weak*-topology, which is the smallest topology making
the map

Dy : M(X) — R, p,n—)/gdu
X

continuous for every g € C(X), and the topology basis of weak*-topology consists of the
following sets:

V(u;fl,..-,fk;e):{veM(X):‘/Xfidu—/Xfidv

<eforalli € [k]},
2.1)

where u € M(X),k > 1,e > 0and f; : X — R are continuous functions fori € [k]. The
Prohorov metric on M(X),

dp(u,v) :=inf{d > 0: u(A) < V(A% + 8 and v(A) < M(A‘S) + 8 forall A € By},

where A% = {x € X :d(x, A) < §}, is compatible with the weak*-topology. We will refer
the readers to the books [5, 12, 22] for the knowledge of space M (X). Moreover,

dp(u,v) =inf{§ > 0: w(A) < v(A‘s) + 6 for all A € By}

(see [5, p. 72]). Proposition 2.2 describes a basis for the weak*-topology on M (X) due to
Bernardes et al (see [4, Lemma 1]).

PROPOSITION 2.2. The set of the form

W, Uz, ..., Uk im1, 2, o) i={n € M(X) 0 w(U;) > n; fori € [k]},

wherek > 1, Uy, Uy, . . ., Uy are non-empty disjoint open sets in X and n1, n2, . . . , Nx are
positive real numbers with ny + 12 + - - - + nx < 1, form a basis for the weak*-topology
on M(X).

A G-system (X, G) induces a system (M(X), G), where g : M(X) - M(X) is
defined by (gu)(A) := u(g~'A) for every g € G, u € M(X) and A € Bx. We call
(M(X), G) the induced system of (X, G).

Let (X, G) and (Y, G) be two G-systems. A continuous map 7 : (X, G) — (¥, G) is
called a factor map between (X, G) and (Y, G) if it is onto and w o g = g o w for every
g € G. Here, 7 can induce a factor map 7 : (M(X), G) — (M(Y), G) by

(Tu)(B) = u(x~'B)
for every u € M(X) and B € By. For every n € N, we denote
Ty = TIMux) : Mu(X) — My (Y)

by the restriction of 7 on M, (X). Note that 7, is also a factor map for each n € N.
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2.3. Support. Let (X, G) be a G-system, (M(X), G) be the induced G-system of
(X, G). We denote by M (X, G) the set of all G-invariant measures. For u© € M(X), we
denote by supp(u) the support of 1, that is, the smallest closed subset W C X such that
w(W) = 1. We denote by supp(X, G) the support of (X, G), that is,

supp(X, G) = | ) supp(w).
neM(X,G)

Here, (X, G) is called fully supported if there is an invariant measure u € M (X, G) with
full support (that is, supp(u) = X), equivalently, supp(X, G) = X.

2.4. Relative uniformly positive topological entropy. For a given G-system (X, G), a
cover of X is a family of Borel subsets of X, whose union is X. Denote the set of finite
covers by Cx. Forn € Nand Uy, Uy, ..., U, € Cx, we denote

U ={AINAIN---NA,: A el;, i €[n]}.
1

n
1=

Letw : (X, G) — (Y, G) be a factor map between two G-systems and U € Cx. For any
non-empty subset E of X, let N/, E) be the minimum among the cardinalities of the

subsets of ¢/ which cover E, and define

NU|r) = sup NU, 7~ (y)).
yeY

The fopological conditional entropy of U with respect to m is defined by

hopU, G|mr) = lim L log NUF,|m),

n—oo | Fy|

where Ur, = \/gan g 'U and {Fu};2, is a Fglner sequence of G. It is well known that

hiop U, G|mr) is well defined and is independent of the choice of the F@lner sequences of G.
Let 7:(X,G)— (Y,G) be a factor map between G-systems. Here, U =

{U1,...,U,} € Cy is said to be non-dense-on-m -fibre if there is y € Y such that 7! (y)

is not contained in any element of 2/ which consists of the closures of elements of I/ in X.

Clearly, if an open cover Y = {U, U,} is non-dense-on-r-fibre, then 7w (Uy) N 7w (Uz) # .

We say (X, G) or w has relative uniformly positive entropy (rel-u.p.e. for short) if for any

non-dense-on-r -fibre open cover U of X with two elements, we have hop (U, G|mr) > 0.
For n € N and G-systems (Z;, G), i € [n], we set

[]z=1Grz22....20) 2 € Zis i € [n])

i€[n]

and

g(Z17 Z2’ AR Zn) = (gzh gZZ, oo ey an)

forevery g € G and z; € Z; fori € [n]. Clearly, (]_[l-e[n] Z;, G) is also a G-system. When
Z; = Z for all i € [n], we write ]_[ie[n] Z;as ZMW . Let 7; : (X;, G) —> (Y;, G) be factor
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maps between G-systems for i € [n]. Then {7;};<[,) induce a factor map

Hm:(nxi,G)—><l—[Yi,G)

ieln] ieln] ieln]
by
[ 7Gx, x) = Gux, maxa, . - axn)
i€[n]
for every (x1, x2,...,x,) € ]_[ie[n] X;. When m; = 7 for all i € [n], we write ]_[ie[n] T

as 7™ In [19], Huang, Ye and Zhang showed that the finite product of rel-u.p.e. factor
maps between Z-systems has rel-u.p.e. It also holds for G-systems.

THEOREM 2.3. Let 7; : (X;, G) — (Y;, G) be a factor map between two G-systems and
supp(Y;) =Y fori = 1, 2. Then 1 and my have rel-u.p.e. if and only if my x mp 1 (X1 X
X>, G) — (Y1 x Y2, G) has rel-u.p.e.

We will give a proof of Theorem 2.3 in Appendix A (see Theorem A.5).

3. 7 has rel-u.p.e. if and only if T, has rel-u.p.e.
Let X be a compact metric space and py be a compatible metric for X. We denote
B,y (x,8) ={y € X : px(x,y) < &} forx € X and § > 0, and denote

AX)={(x,x):x € X}.

For (x1,x2) € X x X\A(X) and U = {U;, Uy} € Cx, we say U is an admissible cover
of X with respect to (x1, xp) if for any i € [2], one has {x{, x2} SZ U;. Let - X,G) —>
(Y, G) be a factor map between two G-systems. Here, (x1, x2) € X x X\A(X) is called
an entropy pair relevant to w if for any admissible cover ¢/ with respect to (xi, x2), we
have hp(U, G|m) > 0. Denote by E(X, G|r) the set of all entropy pairs relevant to 7.
Let

R; ={(x1,x) € X x X :w(x1) = w(x2)}.

It is easy to see that E(X, G|r) C R; \ A(X), and 7 has rel-u.p.e. if and only if
E(X, G|nr) = R; \ A(X).

The concept of dynamical independence is introduced in [24, Definition 2.1]. Now
we consider its relative version. Let 7 : (X, G) — (Y, G) be a factor map between two
G-systems. Foranyn € NandatupleV = (Vy, V2, ..., V,) of subsetsof X, wesay J C G
is an independence set of Vwith respect to m if for every non-empty finite subset I C J,
there exists y € Y such that

7 N[ )8 Vo #9

gel

holds for every o € [n]!. We denote by Py, the set of all independence sets of V with
respect to 7.
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Remark 3.1. Foreveryn € Nand atuple V = (Vi, Va, ..., V,) of subsets of X, if we set

Iy : F(G) > R, ZIy(F):= max_ |I|,
ICFIeP,
then by Theorem 2.1, Z\,(F) /| F| converges as F becomes increasingly more invariant and
this limit is equal to infr(Zy)(F)/|F|), where F ranges over JF(G). When this limit is
positive, we say V is independent with respect to 7.

The next lemma follows [24, Lemma 3.4] (see also [17, Theorem 7.4]).

LEMMA 3.2. Let w: (X, G) — (Y, G) be a factor map between two G-systems, and
V1, Va be two disjoint subsets of X. If we setU = {X \ V1, X \ V2}, then hyop(U, Glr) > 0
if and only if {V1, Va} is independent with respect to 7.

Let 7 : (X, G) — (Y, G) be a factor map between two G-systems. For any (x1, x2) €
X x X\ A(X), disjoint open subsets Vi, Vo of X with x; € V; fori € [2], V = {X \ V1,
X \ V»} is an admissible cover of X with respect to (x1, x2). Then by Lemma 3.2, we
immediately have the following corollary.

COROLLARY 3.3. Letrw : (X, G) — (Y, G) be a factor map between two G-systems and
(x1,x2) € X x X\A(X). Then (x1, x2) € E(X, G|m) if and only if for any disjoint open
subsets Vi, Vo of X with x; € V; fori =1, 2, {V1, Va} is independent with respect to w.

We note that for any two non-empty finite sets H, W, if H C W and S C {l, AW,
one has

[S|al = _13_ 3.1)
— 2|WI-|H|”’ ’
where S| is the restriction of S on H, that is,
S|y = {o € {1,2} : there exists o’ € S such that o (h) = o' (h) forall h € H).

The following consequence of Karpovsky and Milman’s generalization of the
Sauer—Perles—Shelah lemma [21, 32, 34] is well known, and one can also refer to [24,
Lemma 3.5].

LEMMA 3.4. Given k > 2 and ) > 1, there exists a constant ¢ > 0 such that for all
neN, if S C (k1™ satisfies | S| > ((k — 1)A)", then there is an I < [n] with |I| > cn and
S|r = k1%

Theorem 1.1 follows from Theorems 3.5, 4.2 and 4.3.

THEOREM 3.5. Letn € N, w : (X, G) — (Y, G) be a factor map between two G-systems,
7 (M(X), G) = (M(Y), G) be the factor map induced by = and 7@, : (M, (X), G) —
(M (Y), G) be the restriction of T on M, (X). When supp(Y) =Y, the following are
equivalent:

(1) = has rel-u.p.e.;

(2) 7, has rel-u.p.e. for some n € N;

(3) 7, has rel-u.p.e. for everyn € N.
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Proof. (3) = (2) is trivial. We will prove (1) = (3) and (2) = (1).

(1) = (3). Assume that 7 has rel-u.p.e. For every fixed 1 <n < oo, to obtain that
7T, has rel-u.p.e., it is sufficient to prove that E(M,(X), G|7,) 2 Rz, (M, (X), G) \
A(My (X)).

Let (11, n2) € Rz, (M, (X) G)\A(M, (X)), and V1 and Vz be two dlS]Olnt open
subsets of M,,(X) with u; € V for i € [2]. By Corollary 3.3, we shall show that {Vl, Vz}
is independent with respect to 7,.

Fori € [2] and j € [n], there exist points x; € X such that u; = (1/n) 3"

note that the map ® : X — M(X), defined by

]lee

1 n
D(z1,22, -5 20) = ;;SZi

is continuous. Thus, for every i € [2] and j € [r], there exists open neighbourhoods Vj of
xj. such that

1 & . ~
Wi € {‘Z‘Sw iz eV, e[n]} c V.
n s
Since Vlﬂ%:@, if we set W; :Vli X V2i X - X V,f fori =1, 2, one has Wi N W, =0.
Without loss of generality, we can assume that m(x jl.) = n(sz.) for all j € [n] since

Ta(p1) = Tu(u2). Let w; = (xi, xé, ce, x,ﬂ) € W; fori =1, 2. Then
(@1, @) € Ry \ AX™) = E(X™, Gl ™)

as 7 has rel-u. p e. by Theorem 2.3. Thus, {W;, W»} is independent with respect to 7 .
We note that P{W Wy € PETVI,V - This implies {Vl, V2} is independent with respect to 7,,.
(2) = (1). We assume that 7, has rel-u.p.e. for some positive integer 1 < n < oco. In
the following, we prove that R, \ A(X) C E(X, G|r). Let (x1, x2) € Ry \ A(X), V1 and
V> be two disjoint open subsets of X with x; € V;, i = 1, 2. By Corollary 3.3, we only
need to show that {V}, V»} is independent with respect to .
We set

‘ZZ{MEMn(X):M(Vi)>1—L}
2n

for i =1, 2. Clearly, ‘71 and \72 are disjoint open subsets of M, (X) with §,, € \7, for
i = 1, 2. Since 7, has rel-u.p.e., and (8y,, 8x,) € Rz, \ A(M, (X)) = E(M,(X), G|7,),
{‘71, ‘72} is independent with respect to 7. Then there exists a constant ¢ > 0, such that
for every fixed F € F(G), there exist I € F with [I| > ¢|F|and v = (1/n) >}, 8y, €
M, (Y) for some y; € Y such that

Ay = ?rn_l(v) N ﬂ g_l{io'(g) # 0
gel

for every o € {1, 2}".
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Forevery o € {1,2}! and s = (1/n) Z?:l 8257 € A,, we can assume 7 (z7) = y; for
i € [n]. Moreover, for every g € I, one has gu, = (1/n) Z:‘l:l ng;r € \70(5,). That is,

1 & 1
- Y ey (Vo) > 1 = o

i=1

which implies gz7 € V,;(,) for every i € [n]. In particular,

Fex'onn() g Ve
gel

for every o € {1,2}!. Thus, {V}, V»} is independent with respect to 7. This ends our
proof. O

4. misrel-u.p.e. if and only if T is rel-u.p.e.
In this section, we will prove 7 is rel-u.p.e. if and only if 7 is rel-u.p.e. We need the
following lemma.

LEMMA 4.1. Letw : X — Y be a continuous surjective map between two compact metric
spaces, T : M(X) — M(Y) be the map induced by = and 7, : M, (X) — M, (Y) be
the restriction of T on M, (X). Then |, oy Rz, is dense in Rz.

Proof. Fix compatible metrics px for X and py for Y. Let (i1, u2) € Rz. Without loss of
generality, we can assume 1 # 2. For any two disjoint open subsets Vl, Vz of M(X)
with u; € ‘7, for i € [2], by (2.1), there exist a constant » > 0 small enough, integers L
and Lo, f1,..., fi, € C(X)and g1, ..., g1, € C(X) such that

M1€W1:={M€M(X):‘/fidu—/fidm
X X

<r,ie[L1]}§‘71

and

1o € Wy 1= {MEM(X)i‘/ gjdu—f gj dua <r,je[Lz]} C V.
X X
It is sufficient to prove that (Wl X Wz) N Rz, # @ for some N € N.
Without loss of generality, we can assume | f;|| <1 and | g;|| <1 for i € [L1] and
J € [L2]. Moreover, since f;, g; € C(X) for i € [L1] and j € [L2], there exists &€ > 0
such that for any x, z € X with px(x, z) < €, one has

/i) — fi@)| < = foreveryi e [Li],
2 (4.1)
lgi(x) —gj@)| < 3 for every j € [L2].

For every y € Y, since 7 is continuous, one can find an open neighbourhood V), C Y
such that

7 y) a7l (vy) S aL(Vy) € (T (),
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where (171(y)/? = {x € X : px(x, {71 (y)}) < €/2}. Moreover, since Y is compact,
there exist K € N and pairwise different points yj,...,yx of Y such that ¥ =
UiKzl Vy;. Then one can find ¢ > 0 such that y; € By, (y;,t) C V), for any i € [K] and
{By, (Y1, 1), ..., Byy (YK, 1)} are pairwise disjoint. We set

K i—1 K
Wi =Vy \J By (i.t) and Wi =V, \ ( Uv,v U pr(yj,z)>
i=2 j=1 j=itl
fori =2,...,K.Then {Wy, ..., Wg}isapartitionof Y and y; € W; C V), fori € [K].
Moreover, {7~ '(W1), ..., 7 1 (Wg)}isa partition of X which satisfies

7 o) ST W) S al(Vy,) € T ()R

for every i € [K]. Then for every i € [K], there exist P; € N and pairwise different
x{, xé, - ,x}i € n_l(yi), such that {xj. :j € [P;]} is a €/2-net of 7~ Y(W;). Then one
can choose Borel subsets A’j of X fori € [K]and j € [P;], such that:
@) diam(Aij.) < egforeveryi € [K], j € [P];

(i) x;'. € A; foreveryi € [K], j € [P;];
(iii) {A; : j € [P;]} is a partition of 7~ (W;) for every i € [K].

For every i € [K], j € [P;], we set a;; = ,ul(Ai.) and b;j = /LQ(AQ). Since T (1) =
7 (u2), we have

D aig =) wi(A) =@ (W) = o T (W) =Y pa(A) =) by

j=1 j=1 j=1 j=1

fori € [K]. Then forany i € [K]and j € [P;], there exist integers ¢g;;, gij, Qi and N € N
large enough satisfying the following conditions:
(i*)  gij/N < a;j < (gij +1/N);
(ii*)  gij/N < bij < gij + 1/N;
{i*)  Qi/N < Y0  aij = Y1, bij < (Qi + 1)/N.
Now, we choose an xg € X arbitrarily and set

K P,'*l P,'*l K

~ 1 N—> 0

n1 = N( < Z C]ijaxj + (Ql - QIJ)lePi)) + Nl ax()
i=1 ~ j=I j=1

and

K Pi—1 Pi—1 K

~ 1 ~ ~ N — Z':l Qi

M2 = N( 21: ( X; 61:',/5)(5_ + <Qi - X; Qij)(Sx;‘Di)) + Tl&co-
=l j= j=

It is clear that (11, 2) € Rz, . Now we shall show that [7; € W fori € [2].
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In fact, for any £ € [L], one has

‘/fzd/u /fzdﬂl

P; K ,P—1

duy — % 2; ( Z; qij fi(x")
=

_ | NoSE o
+ (Q, Z q,-,-)ﬁwp,.)) N2 G

N
K P
< sz fldm——ZZqz,fz
i=1 j=1 i=1 j=1
1 K P,' ) N—ZK Q
‘ > (i qi) fitep) | + ‘%ﬁ(m).
i=1 j=1
“4.2)
Since diam(Af'/.) <efori € [K]and j € [P], by (4.1) and (i*), we have
() dpy — — Z unﬁ(x )
i=1 j=1 i=1 j=1
K P q
ZZ/ A - D dm +3 Y (a ”)mu )
i=1 j=1 i=1 j=1
r i P
< ) + N “4.3)
By (i*) and (iii*), one has
P; K Q P; K P; 1 P;
Z%/ SZW aij +Z Zaij—Nun
i=1 j 1 i=1 j=1 i=1" j=I Jj=1
K
<K LB (4.4)
N N
and
N—ZiK: o il 1 K (oF K
S R PP oo B

i=1 j=1 i=1 i=1

When N is large enough such that K /N + Z Y & /N <r/6, by (4.2), (4.3) and (4.4),
we have 1 € W1 Similarly, we can prove that iy € Wz This ends our proof. O

THEOREM 4.2. Let w : (X, G) — (Y, G) be a factor map between two G-systems with
supp(Y) =Y and 7 : (M(X), G) = (M(Y), G) be the induced map of 7. Suppose ©

has rel-u.p.e., then T also has rel-u.p.e.

Proof. Assume that 7 has rel-u.p.e. To show 7 has rel-u.p.e., it suffices to prove that
Rz \ AM(X)) € EIM(X), GI). Let (1, u2) € Rz \ A(M(X)) and Vi, V3 be two
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disjoint open subsets of M(X) with u; € \7, fori € [2]. By Lemma 4.1, there existn € N
and (i), uh) € Rz, N (V; x V5). Notice that, since 7 has rel-u.p.e., by Theorem 3.5, 7,
has rel-u.p.e. Then {\71 N M, (X), \72 N M, (X)} is independent with respect to 7, which
implies {(Vi, Va}is independent with respect to 7. This ends our proof. O

We note that for any non-empty finite subsets A, H of N with A € H and S C {1, 2}H s
one can find Sy C S with |Sg| > |S|/2/# 17141 such that for every o1 # 02 € So, there exists
a € A with

oi(a) # o2(a). (4.5)
In fact, if we let W = S|4, then [W| > |S|/2/H1-14l For each w € W, there exists oy, € S

such that o, |4 = w. Put S := {0y : w € W} C S. Then |So| = |W| > |S|/2/HI=14l and
for every o1 # o2 € Sp, one has o1]4 # 02]4.

THEOREM 4.3. Letm : (X, G) — (Y, G) be a factor map between two G-systems and T -
(M(X), G) = (M(Y), G) be the induced map of . If T has rel-u.p.e., then so does .

Proof. Assume that 7 has rel-u.p.e. To show 7 has rel-u.p.e., we shall show that
R\ A(X) C E(X, G|m). Let (x1, x2) € Ry \ A(X), V1, V2 be two non-empty disjoint
open subsets of X with x; € V; for i € [2]. By Corollary 3.3, it is sufficient to show that
(V1, V») is independent with respect to 7.

Take € € (0, ) with

217 (1 =)= (D > . (4.6)
We set
Vi ={n e M(X): (V) > 1 — €} 4.7)

for i € [2]. Clearly, 8, € V;. Since (8,,,8y,) € Rz and ¥ has rel-up.e., (V;, V2) is
independent with respect to 7. That is, there exists ¢ > 0 such that for every F € F(G),
there exists an independence set E C F of (Vl, Vz) with respect to 7 with |E| > c|F|.

Fix an F € F(G) and an independence set E C F of (\71, Vz) with respect to 7 with
|E| > c|F|. Then there exists v € M(Y), such that for every o € {1, 2}%,

V, = ( s Va(g)) N7 1) £ 0. (4.8)
geE

For every o € {1,2}E, we take u, € ‘70. Then s € g‘lvg(g) for every g € E and
o € {1, 2}, which implies ;s (g~'V,) > 1 — €* forevery g € E and o € {1, 2}£. Thus,

1 1 - 4

/X 5| D Ly, () dpo = 5| D to (8 W) > 1—¢

g€E geE
and s (fg) > 1 — €2 for every o € {1, 2}F, where

~ 1
XU:{xeX:E21gIVm(x)> 1_62}. (4.9)
gek
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By the inner regular of measure, we can find a closed subset
X, € X, with pe(Xy) > 1 — €2 (4.10)
for every o € {1, 2}£. Since 7 is continuous, for every o € {1, 2}, we have
Yo :=7m(Xs) 4.11)
is a closed subset of ¥ and

V(Yy) = T (Vo) > po(Xy) > 1 — €%

Then
l 2
fyﬁ Yo ol (dv>1-¢€.
{12}
Put
1
' z{yGY:2E| > lYg(y)>1—e}, “12)
oe{l,2}E
thenv(Y,) >1l—€> %
Now, we fix a point yg € ¥ and set
E:={oef{l,2)F: yo € Y5} (4.13)

Then |£] > (1 —€) - 2/El by (4.12). For any o € &, by (4.13), (4.11), (4.10) and (4.9), there
is x, € Xy with

1 2
T3] > Loty (o) > 1 —€
geE
such that 7 (x,) = yg. For every o € £, we set
A)={g € E:xs € g ' Vo(p)h
then |A(o)| > (1 — 62)|E|. Now we define
Q:={HCE:|H|l=[(1-¢)-|E|]}
and
QH)={0 €& HC{g€E:gxg € Vo))

for every H € Q. Then |Q| = (L(l_lﬁ)l‘lE”) and (Jyeq Q(H) = £. Thus, there exists

Hy € Qsuch that |Q(Hp)| > [€]/12] = (1 — 6)2|E|/(L(1_L§)|_‘E|J).By (4.5), we can choose
S C Q(Hp) such that
(1 — e)2lF]

I51= |E|—(1—€2)-|E|] IE|
2 ' (L(l—ez)-\EU)

(4.14)

and for any o’ # o” € S, there exists g € Hy that satisfies o'(g) # o”(g). That is,
IS|tyl = 1S|. Let t =1 — €2 and A = log,(2" - ' - (1 — t)1=9) > 0. Then by Stirling’s
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formula, when | E| is large enough, one has

1S1a,| A 2V 2w (1= p) T - 1P (1 = =01
> 211EI=2 . o (1 = 0)|E| - 1BV (1 — nI=DIEI

> 21" (1= n)ITDIEL S pHEL

By Lemma 3.4, there exists a subset Hy C Hy with |Hi| > d|Hp| such that S|y, =
{1, 2}1, where d is a positive constant independent with E when |E| is large enough.
By Remark 3.1, (V1, V») is independent with respect to . This ends our proof. ]

5. 7 is open if and only if T is open
In this section, we will prove Theorem 1.2. In fact, we have the following result.

THEOREM 5.1. Let m : X — Y be a surjective continuous map between two compact
metrizable spaces, T : M(X) — M(Y) be the induced map of © and T, : M,(X) —
M, (Y) be the restriction of T on M, (X). Then the following are equivalent:

(1) 7 isopen;

(2) 7 isopen;

(3) 7, is open for eachn € N;

(4) 7, is open for some n € N.

Proof. (3) = (4) is trivial. We will show (2) = (1), 4) = (1), (1) = 3) and (1) =
(2). Fix compatible metrics px for X and py for Y.

(2) = (1). Suppose that 7 is open. For every non-empty open subset U of X, we shall
show that 7 (U) is an open subset of Y. That is, for every y € w(U), there exists r > 0 such
that B,, (y,r) € w(U).

Now fix yg € w(U). Since U is open, there exist xo € U and § > 0 with 7 (xg) = yo
and B,y (xo, ) € U. Then by Urysohn’s lemma, there exists a countinuous map f : X —
[0, 1] with f(z) =1 when z € By, (x0,§/2) and f(z) = 0 when z € X\ B, (xp, §). We
set

ﬁ::{ueM(X):ffdu>§}.

Clearly, U is an open subset of M (X) and &, € U.
Since 7 is open, 7 (U) is an open subset of M(Y). Note that 8, = 7 (8x,) € T(U).
Thus, there exists » > 0 such that

{8y 1 y e By (0.1} C 7(0).

Then for every y’ € B,, (yo, 1), there exists My € U such that 7?(,U,y/) = §,/. On the one
hand, since wy ({r =1 (y")}) = 8,/ ({y'}) = 1, we have

supp(py) € 7' ({y'). (5.1)
On the other hand, since € ﬁ we have f fduy > % Thus,

@ # supp(iey) N Byy (x0, 8) S supp(py) NU.
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By (5.1), we have U N~ ! ({y’}) # ¥. That is, y’ € w(U). Then by the arbitrariness of
y' € B,, (yo, r), one has By, (yo, ) € 7(U). Thus, 7 (U) is an open subset of ¥ and 7 is
open.

(4) =(1). We assume that there exists n € N such that 7, is open. Let U be an
open subset of X. We shall show that for every y € 7 (U), there exists r > 0 such that
Y € By (y.1) S (U).

Let y € w(U), there exists x € U with w(x) = y. We set

U= M,(X)N{pneMX):ulU) > 0}.

Here, U is an open subset of M,,(X) which contains 8. Since 7, is open, 7, (ﬁ ) is open
which contains dy,. Then there exists » > 0 such that {8, : py(z,y) <7} C 7, (U). Hence,
for every z € B, (y, r), there exist x1, x2, . . ., X, € X such that

n
= % Y 8, eU and () =S4..
i=1
Then one has 7 (x;) = z forevery i € [n]. Since u € ﬁ there exists ip € [n] with x;, € U.
That is, z = 7 (x;,) € w(U). Hence, By, (y, r) € 7 (U). This implies 7 is open.

(1) =(3). Now we assume that 7 is open. Letn € N and U be an open subset of M,, (X).
We shall show that for every v € 7, (17 ) € M, (Y), there exists an open neighbourhood of
v in M,,(Y) contained in %, (U).

For any v € 7'%',,((7) C M, (Y), there exist positive integers h, ki, ko, ..., k, with
Zie[h] k; = n and pairwise distinct y{, y2, . .., y5 € Y such that

1
V= ;(k]Syl +k25y2 —+ - +kh5yh).

Since v € 7, (U), there exists € U € M, (X) such that %, (u) = (1/n) Y1, ki8,,.
Then for every i € [h], there exist integers £;, m; j, and points x; ; € X for j € [{;]

satisfying:

(@ mj1+mip+---+mjy =k foreveryi e [h];

(b)  xi1,Xi2,...,%;¢ are pairwise distinct and 7 (x; ;) = y; for every i € [h] and
j € [¢:];

© = (1/n) Xictn) 2o jere;) Miidx -

Since U is an open neighbourhood of w, there exists rg > 0 such that if z I zlz i
2 € By (xi j, ro) forevery i € [h], j € [£;], then

L]
—ZZ(Z(S,,)GU (5.2)
ielh] jel4;] te[m; ;] i

Note that yi, y2,...,y, are pairwise distinct, then there exists § > 0 such that
{Bpy (i, 8)}ie[n) are pairwise disjoint. By item (b) and the continuity of m, there exists
r € (0, rg) such that

T(Bpy (xi j> 1)) € Bpy (i, 8) and By (xir, r) N Bpy (xij,r) =0 (5.3)

for every i € [h] and different j, t € [¢;].
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Since m is open, ﬂf."zl 7 (Byy (xi,j, 1)) for every i € [h]is open. We set

i
V= {1: € My (Y): r< () 7 (Boy (xi, ,,r))) > k;— % i€ [h]}.

j=1

It is an open subset of M, (Y). Moreover, for every ig € [h],

Liy Ly
1(ﬂm&mmw0 —Zk%@jm&mwwﬂ
j=1 ilh] j=1
1 o
= ;kios)’i0< ﬂ 7T (Bpy (Xig, j» r)))
j=1
1 ki 1
= _ki() > f —_ %

Thus, v € V. Next, we shall show that V C ﬁn(ﬁ ).
Now fix any 7 € V € M, (Y). We have © = (1/n) Y _;_, 8, for some us € Y. For
every i € [h], we set

i
L(i) = {s €lnl:ug € ) m(Byy(xij, r))}. (5.4)
j=1
Byt e \7, one has
4 |
|um=nw(ﬂnwmmwnﬁ>h—5 (5.5)
j=1

for every i € [h]. Since |L(i)| € N, by (5.5), |L(i)| > k;. We note that L(i), i € [h] are
pairwise disjoint since ﬂf’: | T(Bpy (xi,j, 7)), i € [h] are pairwise disjoint. Moreover, by
Zie[h] ki = n, one has |L(i)| = k; for every i € [h]. Hence,

. : 1
ULi=|] L= and 7= - > ( > 5) (5.6)

ie[h] ielh] ie[h] *seL(i)

For every i € [h], since |L(i)|=k; @

> jele;) Miyj» Wwe can rewrite L(i) =
{s1,52,...,8}. For every i e€[h] and j € [{;], we denote R;(j)= Z{:] mi s
and R;(0) =0. Then R;(¢;) =k;. By (5.4), for every j € [¢;] and integer g with
Ri(j — 1)+ 1 <q < R;(j), there exists x[’q € B(x; j, r) such that n(xlf’q) = us,. Then

by (5.2), one has

R(j)

22 ) yel

i€[h] jelti] qg=R;(j—1D+I

:I»—*
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and
Ri(j) |
AGEED D DD DD D) D
ielh] jelti] q=R;(i—1)+1 it getki]
Ly oy

i€lh] seL(i)

This implies V C %,(U). Hence, 7%, (U) is an open subset of M,,(Y) and 7, is open.

(1) = (2). Now we assume that 7 is open. Let U be an open subset of M (X). We shall
show 7 (U) is open in M(Y).

For every v € 5?(17 ), there exists u € U such that v = 7 (). Next we shall show that
there exists § > 0 small enough such that if we set

={teMX):dp(, 1) <8},
where
dp(r,v) :=inf{8 > 0: 7(A) < v(A®) + § and v(A) < T(A%) + § forall A € By},

then V is an open neighbourhood of v contained in 5?((7 ).

Since U is open, by Proposition 2.2, there exist k € N and an open set of the
form W(Uy, Ua, . .., Ux; 01,12, - - ., nk) of M(X), where Uy, Ua, . . ., Uy are disjoint
non-empty open subsets of X and n1, 12, . . ., ni are positive real numbers with n; + 72 +

-+ ng < 1, such that

weWWU, Us, ..., Ui 1 as - - - s k) CW(UL, Ua, -, U 1, 025 - - - i) € U.

For any 11, 1, € {0, 1}/, we denote 11 > 12 if 1] # 12 and 11 (i) > 12(i) for every i € [k].
For every o € {0, 1} we set

Vy = ﬂ n(Up), V.:=V,\ U Vy

ielk] ae{0,1}]
o(i)=1 a>o
and
E:={ref0, v >0} (5.7

Recall that for any subset A of Y and a > 0, we denote A ={y €Y : py(y, A) < a},
where py is the compatible metric on Y. For every i € [k], since 7 is open and U; is open
in X, then 7 (U;) is an open subset of Y. Then by inner regularity, there exist ¢ > 0 small
enough, § € (0, ¢) and compact subsets C; of Y fori € [k] such that:
(cl) w(U;) > n; + 6Fe for every i € [k];
(c2) v(V)) > 5ke, forevery o € &;
(c3) C; CCPcCP U foreveryi € [k];
(c4) v(Cy) > v((U;)) —efori e [k].

Now we set

={t e M) :dp(v,7) < é}.
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Clearly, V is an open subset of M(Y) containing v. Now it is sufficient to prove that
V caU).
For every o € {0, 1}["], we set

Co(®):= () € and C,:=C,(\ ] Cul®.

ie[k] aef0,1}%
O(i):] oa>0

Then for every o € {0, l}[k], by items (c3) and (c4), we have

(Vo) = v( N n(U»)

ielk]
o(i)=1
(c4)
@u( N ((n(Uﬂ\c,-)uci)) < v( N Ci)“‘g- 9
i€lk] i €lk]
()= o()=1

We note that for any 7; # 12 € {0, 1}[], one has Ct/1 N Ct/2 = . In fact, if we define
1V 1 € {0, 1} by

(1 V 1) (0) = max{t; (i), £2(i)}
forevery i € [k], thenitis clear thatt; vV ) > t] ort V 1, > tr. Without loss of generality,

we can assume t; V t > tq, then Ct/l C C;, (O)\Cryvi, (8). However,

C; NC), S Cu)NCL®) = Crun®).

h —

Hence, C; N C;, = 0.
Now for any ﬁxed t € V, we shall show 7 € JT(U) By dp(v, T) < 8, one has 7(A%) >
V(A) — & for every A € By. Then forevery o € &,

8
r(c(,(a))=r< N Cf)zr<< N Ci)>
ieik] iclk]

o(i)=1 o(i)=1
(5.8)
v< ﬂ C,-) -8 > w(V,) —ke — 8. (5.9)
ielk]
o(i)=1

Moreover, for every o € {0, 1}¥],

U Ca(é)) U c.on’= | ( N cf)8

ae{0,1}1K {0,131 ac{0,1}K1 ~ i€[k]
oa>0 oa>0 oa>0 a(i)=1

E( U[k]( iD[kJ Ci25>> (g)( U ( ﬂ 7T(Ui)>)

ae{0,1} = ac{0,1}’1 * i€lk]
a>o a(i)=1 a>o a(i)=1

U V,. (5.10)

ae{0,1}K]
a>o
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Since dp(v, T) < §, one has
T(A) < v(A‘S) + 8 forevery A € By. (5.11)

Note that for every «, o € {0, 1}[¥] with & > &, one has Cy(8) € C,(8) and V, C V.
Then for every o € &,

(C)=1Cn -7 | Ca(5)>

ae{0,1}1
oa>o0
(5.9)
> (Vo) —ke—s—1( | Ca(6)>
ae{0,1}K]
o>o
G.11) 8
> v(Vg)—ks—S—v< U Ca(5)> )—5
ae{0,1}K]
oa>0

(5.10)
> v(V,) —ke —28 — v U Va)

ae{0,1}¥]
oa>o

=v(V)) —ke —28 > v(V)) — 3ke > 0. (5.12)

By U,ey Man(Y) = M(Y), there exist 7, = (1/n) Z’}zl 8y,; € Mu(Y) for n € N
and some y, ; € Y, j € [n], such that 7, — 7 as n — 00. Moreover, since Vs open in
M(Y), we can find Ny € N such that 7,, € V forn > Np.

Let n > Ny. For every o € {0, 1}[k], we set

Sti:={he[n]:yneCL}

Since 7, € V, by (5.12) and recall that for any #; # 1> € {0, 1}, one has C, N, =0,
then:

(i) S NSt =g@forany s # 1 € {0, 1}IK;

1) |87 = n((V)) — 3ke) for every o € &, where £ is defined as (5.7).

Now, for every o € {0, 1}[k] and i € [k], we set

Uo =Una YV and aiy = pnUis). (5.13)

Fix any o € {0, 151 We can rewrite {i € [k] :0(i) =1} as {ij <ir <--- < ig}
for some g € N. For ij, we choose arbitrarily a subset Sg’il of S with |S(’;’i1 =

Laiyo /3 vepiyo0)=1 .o |Szl], where we note: 8:0. For ip, we choose arbitrarily

a subset S i of S\ Sgi. with [S] l.2| = Laiz,a/Z[e[k]ﬂ(g)zl ars|SE|]. We continue
inductively obtaining

Sei S SEN(SE, Ut U USE

)] 0,i2 U»i/—l)
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for j=3,4,...,q =1, with IS}, | = ai,0/Ssepomt GeolSEII. We set SE, =
AN (U ). Additionally, we note that

q
yn €C, S [ 7W) =)=
i€lk] =1
o(i)=1

for every h € S;. Then we have the following properties for S ;, i € [k].

@i*) |S§J.| > Lai,g/zge[k]ﬂ(@:] arq|SE|] forevery i € [k] witho (i) = 1.

(ii*) Foreveryi € [k] witho (i) =1,if h € Sg ;» then there exists x,‘:,h € U; satisfying
75 ,) = Y

Gii*)y S, NSt =0 for every i'#i"e{ie[k]:o() =1} and Uicto =1
Sei =55

Since 7 is surjective, for every h" € S := [n]\(U, ¢(o.1)1 Si)- there exists x,, ,» € X such

that 77 (x,, ') = yn . Now we set

(T Togt ¥ o)

o€{0,1}k] heSt h'es;
i) 1
DS Y Saara,)  ow
oe{0,1}IK i€lk] heS] €Sy
o(i)=1

Clearly, 7 (n) = 1,. We claim that w,(U;,) > n;, for every io € [k] when n is
sufficiently large. Once it is true, we have

mn € WU, U, .., Uks 11, 02, -+ o, k).

Then we can find a sequence nj; < ny < --- such that limj_ oo y, = ' for some
u' € M(X). Thus,

W eWULUs, .. Uc iz ) CU

and 7 (') = lim; o0 T (p;) = lim; o Ty; = 7. By the arbitrariness of 7, one has
V C % (U). This will end our proof.

Now, we shall show the claim: u,(U;,) > n;, for every iy € [k] when n is sufficiently
large. To show that, for any fixed ig € {1, 2, . . ., k}, we need the following facts.

Fact I: Y, ce o (igy=1 H(Uig N =WV = nUi, N Usesoti)=1 7= YV))). In fact,
for any 11 # 1 € {0, I} if y € V’ NV, €V, NV, then y € Vi vy, Since 1y V 1o >
ty or t, one has y ¢ V/ or y ¢ V/, which is a contradiction of y € V/ NV/. Hence,
V/ NV/, =@. Then Fact 1 follows.

Fact 2: v((U oee Vé)A(er{o,l}[’f] Vs)) =0, where AAB denotes (A\ B)U

o (i)=1 o (ig)=1
(B \ A) for every A, B € By. In fact, it is clear that

U we U V. (5.15)

oef oef0,1}1M
o lio)=1 o (ig)=1

tz’
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Since o € {0, 1}K\& implies v(V)) = 0, one has

v( U Vé) = v( U v;). (5.16)
0865—1 o (0,114
0)= o (ig)=1
Clearly, U, cio.1y1 Vo 2 Uy eqo.1)im1 Vo - Moreover, for any given x € |, ¢(o. 1y Vo, if we

o (ig)=1 o (ig)=1 o (ig)=1
define o’ as

o' (i) = max{t (i) : 1 € {0, 1} with x € V;}

for every i € [k], then 6/(ip) = 1 and x € V(;/ - Uae{o,l}[k] V.. Hence,

o (ig)=1
U vw= U w (5.17)
o e{0,1}1% o €{0,1}*]
o (ig)=1 o (ig)=1

By (5.15), (5.16) and (5.17), Fact 2 holds.
Fact 3: For every o € &, Zee[k],ow):l age < v(V)). Note that Uy, Ua, . . ., Uy are
disjoint. Then by (5.13), we have

Z Ao (5é3) Z M(Uﬁ,o)

Lelklo(0)=1 Lelklo(0)=1
(5.13) _ _
= Y uUna (V)= u(( U Uz) sk ‘(V@)
Lelklo(0)=1 Lelkl,o(0)=1

< u@ N VD) =v(V).

Thus, Fact 3 holds.
Now by Facts 1-3, we have

(5.13) _
Yo aie = Y. uWnaT'V))

oe&,o(ig)=1 oe&,o(ig)=1

‘F“:”)M<Ui0m U nl(vg)> (5.18)

oeo(ig)=1

(Fat2) u(U,-O N n—1< U V(,)).

o e{0,1}]

o (ig)=1
We define ¢ € {0, 1}!¥] as #(ip) = 1 and #(i) = O for each i € [k]\{io}. Then 7 (U;,) =
V; C UJE{OJ}[H Vo. Thus, U;, < ”_I(Uge{o,u[k] V) and by (5.18), we have

o (ip)=1 o (ig)=1

> iy = nUi). (5.19)

oe&,0(ip)=1
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Then for any n > Ny, we have

THUSESEED DI DD SR FRUSELS SIb DED DR PN

o {0, 1}kl ic[k] heSy oe€ ielk] heS!,
o=l o(i)=1
1i*) 1 i) 1 Gigo
> = > — — > Sn
_n%um_n%{ IR
o o
a(ip)=1 olig=1 telklo®=1
1 a; 2k
n oeck Z Ao n

o(igy=1 Celklo®)=1
)1 ajy.o ) ok
. s V') — 3k 2
n< Z ( 3 ae,gn(v( ") €) -

(,goe)‘g:l eelklo(0)=1

IVE

oo ! k 2k

= Z —’U(Vo_) — ok 3fe — =

ce€ Z A "
olig=1 Celklo®)=1

(Fact 3)
>

2 G 2k
3" dige — 28 3ke - ~ L i) -2k 3ke — .

oe€
olig)=1

Then by letting n — oo, for every ig € [k] since w(U;,) > n;, + 6ke by (cl), we have
wn(Uiy) > ni,. This ends the proof of the claim. O]
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A. Appendix. Proof of Theorem 2.3
Let 7 : (X, G) — (Y, G) be a factor map between two G-systems. For any n € N and a
tuple V = (V1, Va, ..., V,) of subsets of X, recall that we denote by P{E the set of all
independence sets of V with respect to 7.

Identifying subsets of G with elements of {0, 1}© by taking indicator functions, we may
think of Pg as a subset of {0, 1}¢. Endow {0, 1} with the shift given by

(so)(t) =0 (15)

for all o € {0, l}G and s,t € G. It is clear that ”P{; is shift-invariant. Moreover, when
Vi, Va, ..., V, are closed subsets of X, Pg is also closed in {0, l}G.

We say a closed and shift-invariant subset P C {0, l}G has positive density if there
exists constant ¢ > 0 such that for every non-empty subset F of G, there exists I € P with
I C F such that |I| > c|F|. Then by Corollary 3.3, we immediately have the following
property.
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PROPOSITION A.l. Let w : (X, G) — (Y, G) be a factor map between two G-systems,
(x1, x2) € X x X\A(X). Then (x1, x) € E(X, G|m) if and only if for any disjoint open
subsets Vi, Vo of X with x; € V; fori =1, 2, P{”V] Val has positive density.

The following lemma is useful.

LEMMA A.2. [25, Lemma 12.6] Let A be a closed subset of X. Then Ps :={I € G :
ﬂge] g YA # @) has positive density if and only if there exists u € M(X, G) with
n(A) > 0.

The following lemma is proved when G = Z in [19, Proposition 3.9]. We omit the proof.

LEMMA A3. Let 7 : (X,G)—> (Z,G), m1:(X,G)—> (Y,G) and m: (Y,G) —
(Z, G) be three factor maps such that w = my - 1. Then w has rel-u.p.e. implies >
has rel-u.p.e.

For a factor map 7 : (X, Z) — (Y, Z) between two Z-systems, the authors in [19]
proved that if m has rel-u.p.e., then supp(Y) =Y implies supp(X) = X (see [19,
Theorem 5.4]). For discrete countable amenable group G, we have the same result.

PROPOSITION A4. Let w : (X, G) — (Y, G) be a factor map between two G-systems. If
7 has rel-u.p.e. and supp(Y) =Y, then supp(X) = X.

Proof. Assume that supp(X) # X, then there exist x; € X and an open neighbourhood V
of x1 such that V Nsupp(X) =@. Let U = Ugec g 'V, then U is open and w(U) =0
for every u € M(X, G). Thus, supp(X) € U€, where U = X \ U.

Let y = m(x;). We note that 7~ 1{y} N U¢ # @. In fact, since supp(Y) = Y, there
exits v € M(Y, G) such that y € supp(v). Then there exists & € M(X, G) such that
F(1)=v. If 77y} C U, there exists § >0 such that 7~ 'B(y,8) C U. Then
v(B(y,8)) = i(w~'B(y, 8)) = 0. This contradicts y € supp(v). Thus, there exists
xp € U° such that 7 (xp) = y.

By Urysohn’s lemma, there exists continuous function f : X — [0, 1] such that
f(x1) =0and f(x) =1 forany x € U°. We set

F:X —[0,11 by (F(x))(g) = f(gx).

Consider the G-action on [0, 1]¢ defined by (gw)(h) = w(hg) for every w € [0, 11¢ and
g, h € G. We define a factor map

¢ : (X, G)— (10,119 x ¥, G) by ¢(x) = (F(x), (x)).

Let W = ¢(X) and 7> : (W, G) — (Y, G) be the projection map to the second coor-
dinate. Then m = m; o ¢. By Proposition A.3, > has rel-u.p.e. Note that m(¢p(x1)) =
7 (x1) = w(x2) = m2(P(x2)) and ¢ (x1) # ¢ (x2). Thus,

(@(x1), #(x2)) € Rr, \ A(W) = E(W, G|m2).

Then, by Lemma A.2, one has ¢(x1) € supp(W). However, ¢(x1) ¢ {1G} x Y and
for every u € M(X, G), one has supp(u) € U, which implies supp(W) C ¢ (U) C
{16} x Y. Thus, ¢ (x1) ¢ supp(W). This is a contradiction. O
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Now we are ready to give the proof of Theorem 2.3.

THEOREM A.5. Let 7; : (X;, G) — (Y;, G) be two factor maps between G-systems and
supp(Y;) =Y fori = 1,2. Then my and 1y has rel-u.p.e. if and only if w1 x mp 1 (X1 X
X2, G) = (Y1 x Y2, G) has rel-u.p.e.

Proof. For the non-trivial direction, if w1 and mp have rel-u.p.e., for any u; = (x1, 21)
and uy = (x2,22) in X1 x Xo with (uy, u2) € Ry xn, \ A(X1 x X2), we shall prove
(u1, uz) € E(X1 x X2, G|y x my). Without loss of generality, we assume x| # x3.

Let ﬁl =U; x Vi, ﬁz = U, x V; be neighbourhoods of u and u», respectively. Note
that (x1, x2) € Ry, \ A(X1) = E(X1, G|my) since w1 has rel-u.p.e. Then by Corollary 3.3,
there exists ¢; > 0 such that for every F € F(G), there exists E C F with |E| > ¢1|F]|,
which is an independence set of {U1, U>} with respect to 1. For z1 and z;, there are two
cases.

Case 1: z1 # z2. In this case, (z1,22) € Ry, \ A(X2) = E(X2, G|m2) since m, has
rel-u.p.e. Then there exists ¢ > O such that for every F € F(G), there exists Fy C F
with | Fy| > c1 - ¢3| F|, which is an independence set of {171, (72} with respect to 7y X 5.
This implies (41, uz) € E(X1 x X2, G|my X m2).

Case 2: z1 =zp =z for some z € X5. We set V =V NV, Then V is an open
neighbourhood of z. Since supp(Y2) = Y» and m, has rel-u.p.e., by Proposition A.4, we
have supp(X3) = X3. Thus, there exists v € M (X2, G) such that v(V) > 0. By Lemma
A2, ’Pcz has positive density. Then by similar analysis in Case 1, we can also obtain that
(u1, uz) € E(X1 x X2, G|y x m). This ends our proof. O
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