
AUTOMATED FITTING OF X-RAY POWDER DIFFRACTION PATTERNS FROM

INTERSTRATIFIED PHYLLOSILICATES

HONGJI YUAN
1 ,* AND DAVID L. BISH

1

1 Department of Geological Sciences, Indiana University, Bloomington, IN 47405 USA

Abstract—NEWMOD#, developed by R.C. Reynolds, Jr., has been an important tool for evaluating
quantitatively X-ray diffraction (XRD) patterns from interstratified clay minerals for more than 20 years.
However, a significant drawback to the NEWMOD# approach is that analyses are done by forward
simulation, making results sensitive to user input and starting-model assumptions. In the present study, a
reverse-fitting procedure was implemented in a new program, FITMOD, which automatically minimizes
the differences between experimental and simulated XRD patterns. The differences are minimized by
varying model parameters (such as Reichweite, crystal-size distribution, cation content, type of disorder,
etc.) using the downhill simplex method. The downhill simplex method is a non-linear optimization
technique for determining minima of functions. This method does not require calculation of the derivatives
of the functions being minimized, an important consideration with many of the parameters in NEWMOD-
type simulations. Instead, the downhill simplex method calculates pseudo-derivatives by evaluating
sufficient points to define a derivative for each independent variable. The performance of FITMOD was
evaluated by fitting a series of synthetic XRD patterns generated by NEWMOD+, yielding agreement
factors, Rwp, of <0.3%. As long as the correct interstratified system was specified (e.g. illite-smectite),
excellent fits were obtained irrespective of the starting parameters for the simulations. FITMOD was also
tested using experimental XRD patterns, which gave very good fits, in agreement with previously
published results. The optimization routine yields good fits for both synthetic and experimental XRD
profiles in a reasonable time, with the possibility of varying all important structural parameters. FITMOD
automatically provides optimum fits to experimental XRD data without operator bias, and fitting efficiency
and accuracy were, therefore, significantly improved.
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INTRODUCTION

Interstratification in phyllosilicates has been an

important aspect of clay mineralogy since it was first

reported by Gruner (1934). Distinct from a physical

mixture, different interstratified component layers stack

along the Z direction to create a domain that diffracts

more or less coherently. Depending on the ordering of

stacking, interstratification can be categorized in one of

three ways: ordered, random, or partially ordered

(Reynolds, 1980). Ordered interstratification results in a

supercell along the Z direction, and diffraction occurs

from repeats (d001) equal to the sum of the thicknesses of

each individual layer within the superstructure. For

instance, an ordered alternating sequence of talc and

chlorite, the basal spacings of which are 9.4 Å and 14 Å,

respectively, produces a repeat in the Z direction of

23.4 Å and has been named kulkeite (Schreyer et al.,

1982). Unlike single phyllosilicate phases or ordered

interstratifications, randomly interstratified materials

exhibit an irrational series of basal reflections that

imperfectly satisfy the Bragg equation, nl = 2d siny.
The degree to which irrational basal reflections depart

from the Bragg condition is a sensitive indication of

interstratification and is controlled by the ordering and

proportions of interstratified components, component

repeat differences along Z, and departures from ration-

ality. Since interstratification was first recognized,

important contributions have been made by Hendricks

and Teller (1942), Méring (1949), MacEwan (1958),

MacEwan et al. (1961), Reynolds (1967), Drits and

Sakharov (1976), Plançon (1981), Bethke and Reynolds

(1986), and Drits et al. (1997a). Reynolds (1980)

reviewed the history of analysis of interstratified phyllo-

silicates by XRD, and the details will not be repeated here.

NEWMOD# was developed specifically for the study

of two-component interstratifications of clay minerals

(Reynolds, 1985). The program can generate simulated

XRD patterns, given the proportions of the two clay

mineral components and the state of ordering (Walker,

1993). Investigators have been able to extract structure

information by fitting experimental data with a calcu-

lated pattern by manually modifying input parameters.

Structure information includes component proportions,

ordering state (Reichweite value), as well as crystallite

size and size distribution. These parameters are difficult

or impossible to obtain using other analytical methods.

As a result, NEWMOD# has been used widely in the
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study of interstratified clay minerals (e.g. Wilson et al.,

1992; Hillier and Velde, 1992; Berkgaut et al., 1994;

Renac and Meunier, 1995; Jaboyedoff and Thelin, 1996;

Drits et al., 1997a, 1997b; Jaboyedoff and Cosca, 1999;

de la Fuente et al., 2002; Cuadros and Dudek, 2006;

Dudek et al., 2006; Gualtieri et al., 2008) and is one of

the primary tools for interpreting XRD patterns of such

materials.

In addition to NEWMOD#, the program developed

by Drits and Sakharov (1976) was recently modified to

interpret more complicated cases involving multiple

interstratifications of multiple components (Drits et al.,

1997b). The program DIFFaX (Treacy et al., 1991) uses

a general recursive method to simulate diffraction

effects from any crystal having planar defects. The

application of DIFFaX in clay mineralogy, however, has

been limited in practice because it requires the user to

define the complete stacking sequence, including

translational (and rotational) vectors and the stacking

transition probability matrix. Parametric refinement of

DIFFaX has been implemented in two extensions,

namely DIFFaX+ (Leoni et al., 2004) and FAULTS

(Casas-Cabanas et al., 2005). DIFFaX+ allows refine-

ment of crystal structure and microstructure simulta-

neously. However, the potential and stability of both

programs when applied to complex structures (e.g. clay

minerals) have been questioned (Gualtieri et al., 2008).

Recently, Ufer et al. (2008) modified the Rietveld code,

BGMN (Bergmann et al., 1994), by incorporating the

recursive method used in DIFFaX. Their modified

version of BGMN allows simulation of diffraction

patterns of layered materials with stacking defects and

it allows simultaneous refinement of both disorder and

structure parameters. The DISCUS program (Proffen and

Neder, 1997) provides a more general way to model the

effects of defects (atomic, dislocation, and vacancies)

and finite crystallite size/shape by constructing a super

cell containing a large number of elementary unit cells.

Refinement of structural parameters can be conducted

using the refinement routine DIFFEV. The DISCUS

program has generally been used to model highly

defective nano-materials with simple chemical

compositions.

In contrast to other least-squares crystallographic-

fitting applications, such as the Rietveld method, a trial-

and-error method has been used widely in fitting XRD

patterns of interstratified layered materials. This

approach has significant limits as it requires intense

interaction between the program (e.g. NEWMOD#) and

investigator and is, therefore, time consuming and

tedious. Moreover, the resulting fit is usually a semi-

quantitative match that is generally user dependent. The

profile fitting (matching) methodology used in

NEWMOD# relies purely on a trial-and-error method,

and the revised program of Drits and Sakharov (1976)

also employs this method to determine the structural,

chemical, and ordering probability parameters for each

interstratified phase (Drits et al., 2002). Although the

drawbacks of the trial-and-error approach are well

known, analysis of interstratified materials has not yet

advanced to an ‘inverse modeling’ approach that would

facilitate improvement in the efficiency and accuracy of

profile fitting. The combination of probability para-

meters that describe ordering of interstratified compo-

nents and integer parameters (e.g. coherent-scattering-

domain (CSD) size and minimum and maximum size

distribution) makes the automatic fitting of profiles

difficult when using common minimization techniques

that rely on function gradient (such as the method used

in the Rietveld method). Drits et al. (2002) reduced user

interaction and bias by employing numerical minimiza-

tion techniques to determine the fractions of different

interstratified phases. However, their method uses

compositions and ordering parameters that were pre-

selected by trial-and-error methods. Importantly, in this

case, user bias was already established during the

compositional and ordering parameter determination

process, and hence the application of numerical mini-

mization does not improve the accuracy. On the other

hand, the application of a genetic algorithm (GA) using

NEWMOD# by Pevear and Schuette (1993) in the

program MatchMod can be considered the only approach

to date that fundamentally reduces user bias. All

adjustable parameters are varied by the optimization

routine (the GA), but several problems can arise during

the application of a GA with the NEWMOD# archi-

tecture. First, the algorithm lacks a convergence

mechanism and, consequently, the program may con-

tinue for hours without significant improvement in the

result. Second, continuous parameters are split into

discrete values and a good fit result cannot be achieved

if the parameters were not split sufficiently finely.

However, the finer the segment size, the greater the

calculation time. As the number of adjustable parameters

increases, the application of a GA to profile fitting of

interstratified systems becomes impractical without

introducing a parallel computing methodology.

The application of a forward minimization algorithm

based on the downhill simplex method to automate

profile fitting of measured XRD patterns of interstrati-

fied clay minerals based on the NEWMOD# architecture

is presented here. The method is distinct from all

previous methods, including the GA method. The

downhill simplex method is a non-linear optimization

technique for determining minima of functions. Unlike

minimization methods used in traditional crystal-struc-

ture refinement (e.g. Levenberg-Marquardt or Gauss-

Newton), the downhill simplex method requires no

calculation of the derivatives of the functions being

minimized, which is an important consideration with

many of the parameters in NEWMOD-type simulations.

Instead, the downhill simplex method calculates pseudo-

derivatives by evaluating sufficient points to effectively

define a derivative for each independent variable.

728 Yuan and Bish Clays and Clay Minerals

https://doi.org/10.1346/CCMN.2010.0580601 Published online by Cambridge University Press

https://doi.org/10.1346/CCMN.2010.0580601


METHODS

NEWMOD+

The NEWMOD# program developed by Reynolds

(1985) suffers from several drawbacks related to

structural models and inconvenient operation. Yuan

and Bish (2010) developed a new program,

NEWMOD+, loosely based on NEWMOD#. This

program incorporates recent progress on mineral struc-

tures (Ferrage et al., 2005a, 2005b) and greatly improves

the fitting efficiency and accuracy within an integrated

simulation environment. The program also presents

convenient graphical comparisons as well as numerical

quantities to describe fit quality.

Modeling the ordering of interstratified components in

the NEWMOD approach involves a set of probability

parameters, e.g. PA, PBA, PBAA, and PBAAA (PA =

probability of A, PBA = probability of an A, given a B,

etc.). The probability parameters (PA, PBA, PBAA, and

PBAAA) are correlated and, therefore, only some

combinations of these parameters can lead to a sensible

ordering scheme. Therefore, parameters can vary only

over a limited range to produce a meaningful result.

NEWMOD# does not explicitly limit the possible range

for each of the probability parameters and, consequently,

the user can encounter difficulty in optimizing these

transition-probability parameters. The general assumption

is that the Reichweite value is an integer used to

quantitatively describe an observed diffraction pattern,

but the Reichweite value can have non-integer values.

Indeed, Reynolds (1985) combined the Reichweite value

with the probability parameters, e.g. PBA, PBAA, etc., to

describe interstratification order in NEWMOD# in which

Reichweite application was extended to non-integer

values, namely 0.5, 1.5, and 2.5. As a random inter-

stratification is ultimately based on a probabilistic

representation of the component layers, integer values of

Reichweite are merely a simplification. Assuming that no

long sequences of B (the minor component) layers exist,

i.e. the probability of occurrence of B depends only on the

preceding layer, the three transition probability para-

meters PBA, PBAA, and PBAAA can be calculated given

only a pair of PA and Reichweite values (see Reynolds,

1980, p. 255). The Reichweite value is treated in

NEWMOD+ as a continuous variable. Thus, the user

can adjust the three transition probability parameters

simultaneously simply by changing the Reichweite value,

thereby greatly improving the fitting efficiency and

accuracy. Moreover, replacement of the three transition-

probability parameters with one numerical value for

Reichweite facilitates automated fitting using numerical

optimization. Reducing the number of fitting parameters

from three (PBA, PBAA, and PBAAAA) to one

(Reichweite) minimizes the complexity of changing

boundary conditions during the optimization process.

Isomorphic substitutions in the tetrahedral and octahe-

dral sheets and heterogeneity in the interlayer (e.g. different

cations and H2O molecules at different sites) result in finite

thickness variations of individual layers (i.e. basal spacing).

The accumulated effects of such variations were termed

first-type or second-type disorder by Guinier (1964). The

effects of both of these on X-ray diffraction (XRD) profiles

were discussed in detail by Reynolds (1989) and Drits and

Tchoubar (1990), in which a first-type defect was treated as

a thermal effect. The second-type disorder was treated as

strain, which broadens peaks and lowers the intensities

(only 00l reflections, one-dimensional). Modeling first-type

and second-type disorder can be accomplished by assuming

that basal-spacing fluctuations follow a Gaussian distribu-

tion (Drits et al., 2005). Two parameters (eI and eII) are

required to describe apparent basal spacing deviations for

each layer component. Hence, four additional disorder

parameters (eI and eII) for each component were required to

simulate the two-component interstratified system imple-

mented in NEWMOD+.

Numerical optimization and profile-fitting methods

The numerical optimization routine developed in

FITMOD is a significant extension of NEWMOD+ as it

permits automated fitting of experimental diffraction

profiles. Numerous synthetic and experimental XRD

profiles were examined using FITMOD. The ultimate

profile-fitting goal is to obtain a best fit to an observed

profile by optimizing adjustable parameter values in the

model, thereby simulating a one-dimensional diffraction

pattern. The goodness of fit can be defined by equation 1:

R ¼
XN
i¼1

ðyoi � yciÞ ð1Þ

in which R, the agreement factor or total residual error,

is related to the sum of the discrepancies, on a point by

point basis, between yc, the calculated profile, and yo, the

observed profile, over the entire diffraction range. A

well distributed error tends to yield a value of zero for R

because positive and negative terms cancel. In order to

avoid cancelation of errors, two different schemes have

commonly been applied (Young, 1993), given by

equations 2 and 3:

R ¼
XN
i¼1

jyoi � ycij ð2Þ

R ¼
XN
i¼1

ðyoi � yciÞ2 ð3Þ

A general method for optimization is based on the fact

that changes in total residual error, DR, equal zero when R

reaches a minimum and thus the partial derivatives, (dR)aj,

with respect to each adjustable parameter, aj, in the model

equal zero. Such an approach was represented by the

Levenberg-Marquardt algorithm (Marquardt, 1963) and is

commonly used in powder diffraction-profile fitting
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(Howard and Preston, 1989). In contrast to this approach

requiring the calculation of derivatives at each point, the

downhill simplex method (Nelder and Mead, 1965) does

not require calculation of derivatives. Derivative-based

methods converge much more quickly than Nelder’s

downhill simplex method, if the derivatives can be solved

analytically (Howard and Snyder, 1983). However,

application of the Levenberg-Marquardt method to the

NEWMOD# model is problematic.

Close examination of the NEWMOD# model shows

that it is non-linear. This non-linearity can be observed in

the model intensity function (i.e. equation 11 in Reynolds,

1980) and also in the variable constraints, such as the

partial dependence of Reichweite value on component

properties. For example, the Reichweite value can vary

only between 0 (random) and 1.25 when the major-

component fraction, PA, is set to 0.6. Moreover,

calculation of the frequency term, s, in MacEwan’s

(1958) mixing function by the regression method renders

the analytical calculation of most parameter derivatives

impossible, with only several exceptions such as the scale

factor (SF). The frequency term, s, corresponds to the

occurrence probability of layer sequences that are

terminated by the same end layers and have identical

spacings and compositions (Reynolds, 1980). Alternately,

derivatives can be obtained by numerical approximation.

However, numerical differentiation increases calculation

time by up to an order of magnitude and is affected by

truncation and round-off errors. Furthermore, numerical

differentiation methods are inappropriate for calculating

derivatives of the two integer adjustable parameters,

HighN and LowN, which describe the minimum and

maximum CSD size, respectively.

In contrast to the Levenberg-Marquardt method,

Nelder’s downhill simplex method requires no deriva-

tives and instead calculates pseudo-derivatives by

evaluating sufficient points to effectively define a

derivative for each independent variable. This signifi-

cant advantage makes it the optimization method of

choice for fitting within the NEWMOD# architecture.

A brief introduction to Nelder’s downhill simplex

method would be useful here. Given M parameters to

refine, Nelder’s downhill simplex algorithm constructs

an initial simplex with M+1 vertices and each vertex

represents a vector (Press et al., 1992; en.wikipedia.org/

wiki/Nelder%E2%80%93Mead_method),

Pi = P0 + lei (4)

where the ei values are M unit vectors and l is a constant

that is the step size. Generally, ei is set to unity, so the

vectors are organized in the following way:

p0 = (x0,x1,x2,_xM)

p1 = (x0,x1+l,x2,_xM)

p2 = (x0,x1,x2+l,_xM) (5)

_ = _
pn = (x0,x1,x2,_xM+l)

where each vector Pi is associated with the value of the

evaluated function, which in the present case is the total

residual error, R, with the parameter configured in vector

Pi. Such a simplex (polytope, an n-dimensional geome-

trical object with flat sides) represents n-dimensional

parameter space, and the downhill simplex method

optimization progresses through a series of iterations.

In a ‘reflection’ operation, each iteration reflects the

largest R-value vertex, Pj, to the other side of the

simplex through a reflection plane or the simplex center.

In an ‘expansion’ operation, the residual is reduced and

the vertex, Pj, is moved further along the same direction,

which speeds convergence. The vertex, Pj, contracts

toward the simplex center if the previous reflection

operation failed to reduce the residual. The final

operation, termed ‘multiple contraction,’ contracts all

vertices until the residual is minimized. The downhill

simplex method manipulates the simplex through these

geometrical operations until certain termination criteria

have been met. Several criteria are available for

terminating the iteration. Iterations can be stopped either

when the amplitude of geometrical operation, i.e.

operation step size, is smaller than a preset tolerance

value, or when the decrease in function values reaches a

certain tolerance value. A maximum iteration number

can be set as an additional termination criterion when the

iteration converges extremely slowly. As with most

optimization methods, the downhill simplex method

yields a minimum without providing additional informa-

tion concerning whether it has reached a global

minimum. Consequently, an additional procedure is

required to test the results and, more importantly,

provide the downhill simplex method with the ability

to climb out of a local minimum. This procedure

involves perturbing a local minimum by taking a finite

amplitude step away from it and then determining

whether the refinement returns to a lower minimum or

consistently returns to the same minimum state.

Criteria for assessment of fitting results

The total residual errors defined by equations 2 and 3

increase with the number of observed points.

Consequently, the total residual errors must be normal-

ized for the purpose of comparing the goodness of fit for

different patterns. In accordance with the two different

schemes for R, R was normalized with two different

denominators given in equations 6 and 7:

Rp1 ¼
XN
i¼1

jyoi � ycij=
XN
i

yoi ð6Þ

Rp2 ¼
XN
i¼1

ðyoi � yciÞ2=
XN
i¼1

y2oi

8>>>>:
9>>>>;

1=2

ð7Þ

Equations 6 and 7 are termed unweighted profile

residual errors (Howard and Preston, 1989), and each
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point is assumed to have the same error distribution.

Thus, the errors contribute equally to the total residual

error, R. These two unweighted fitting schemes have

been used widely in crystallographic refinement meth-

ods, such as the Rietveld method and other optimization

routines (Ferrage et al., 2005a, 2005b). Rp2 is the

quantity typically used in least-squares refinements. The

intensity measured by a detector at each data point

through direct counting of quanta in X-ray diffractome-

try often deviates from the ‘‘true’’ value (Toby, 2006)

which follows a Gaussian distribution when the mea-

sured intensity is high (>20 counts, David, 2004). To

account for such deviations in measured intensities, a

weighted profile residual error, Rwp, is calculated using a

point-by-point weighting factor, wi, applied to each term

in the fitting scheme. The Rwp value, expected-R,

goodness-of-fit w2 (chi-square), and other fitting criteria

are favored in many crystallographic-optimization rou-

tines. The expressions used for these weighted fitting

schemes were given by David (2004) as:

Rwp ¼
XN
i¼1

wiðyoi � yciÞ2
8>>>>:

9>>>>;=
XN
i¼1

wiy2oi

" #1=2

ð8Þ

Rexp ¼ ðN � P þ CÞ=
XN
i¼1

wiy2oi

" #1=2

ð9Þ

w2 ¼ ðRwp=RexpÞ2 ¼
XN
i¼1

wiðyoi � yciÞ2=ðN � P þ CÞ

ð10Þ

where N is the number of observations, P is the number

of variable parameters, and C indicates the number of

constraints applied among adjustable parameters. The

term yoi is the observed intensity at point i, yci is the

calculated intensity at point i (based on model), and wi is

the weighting factor. A value of 1/yoi is commonly

applied as a weighting factor, wi, considering a Poisson

error distribution. However, one should carefully con-

sider the effect of applying 1/yoi weighting because it

accentuates the error contribution from the misfit where

the intensity is low, whereas the contribution from misfit

at high intensity (probably the tops of peaks) is greatly

reduced. Therefore, the optimization process can poten-

tially yield a diffraction profile that fits the portion of

the XRD pattern with low intensity well and greatly

differs from the fitting target (the observed data) for

high-intensity portions. The choice of a specific fitting

criterion thus depends strongly on the model as well as

on the data being fitted.

In addition to these fitting criteria that serve as

minimization goals in FITMOD, adjustable-parameter

values obtained by profile-fitting synthetic patterns can

be compared directly with preset values in fitting targets

through equation 11

Accuracy (%) = [1 � |Ptarget � Pfitting|/Ptarget]6100 (11)

This simple and direct comparison of the values of

fitting parameters can provide a means to evaluate the

performance of an optimization routine in terms of

fitting accuracy. More importantly, it facilitates

improved understanding of the nature of the parameters,

e.g. the effects of parameters on profile shapes and

intensities and correlations among parameters. This

information can then be used to improve confidence

when fitting unknown experimental profiles. Because

the accuracy of parameters determined from experi-

mental profiles of real interstratified samples cannot be

evaluated, fits to simulated patterns (calculated with

known structural parameters using NEWMOD+) were

performed to determine the influence of the adjustable

parameters on the XRD profiles. The more influence on

a profile (overall intensities) a particular parameter has,

the more accurate will be the refined value. Fitting

results obtained with simulated patterns suggested that

parameters related to the thickness of individual

components (d001 values), the fractional percentage of

individual interstratified components, ordering, and

sample orientation can be refined with high accuracy.

In contrast, refined parameters relating to chemical

composition, i.e. concentration of Fe, K, and interlayer

species, did not agree as well with preset values,

suggesting that further constraints during refinement

are required, such as reducing boundary conditions

during refinement or taking advantage of additional

information (e.g. chemical analyses) in formulating

refinement constraints.

RESULTS AND DISCUSSION

Evaluation of numerical optimization and profile fitting

using synthetic profiles

The accuracy and precision of FITMOD was eval-

uated by fitting synthetic XRD patterns generated by

NEWMOD+. These tests of the optimization routine

incorporated as many adjustable parameters as possible,

and different fitting criteria were evaluated, namely

unweighted fitting schemes (Rp1, Rp2) vs. a weighted

scheme (Rwp). Two interstratified systems, i.e. an

interstratified one-H2O layer-two-H2O layer (1W-2W)

smectite and an interstratified illite-smectite (I-S)

solvated with ethylene glycol (EG), abbreviated as

I-S(EG), were chosen as synthetic fitting targets,

followed by comparison with similar experimental

profiles.

Parameter values used (Tables 1 and 2) included

those to generate the synthetic profile of interstratified

1W-2W smectite, all fixed parameters, and X-ray

diffractometer and sample-mount characteristics. Note

that initial values of parameters used in fitting were

generally chosen to be different from the true values.

Optimum parameter values (Table 1) were obtained
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using the different fitting criteria (Rp1, Rp2, and Rwp).

Fitting-parameter accuracies were calculated using

equation 11, and the optimized fits were plotted

(Figure 1). Visual evaluation of results suggest that the

weighted fitting scheme (Rwp = 0.29%) provided a better

fit than unweighted fitting schemes (Rp1 = 0.685% and

Rp2 = 0.16%). Note that all three R values were very

small and reflect excellent fits. Although the Rp2 value

was smaller than the Rwp value, significant misfit in the

006 to 007 reflection region was observed (Figure 1b),

which was optimized using Rp2. Misfits in the

Rp1-optimized fit are also present in the 004 and 008

reflection regions. In contrast, the fit obtained using Rwp

matches the fitting target well with no significant

discrepancies. Misfits observed in the optimized profiles

yielded by the unweighted fitting schemes are located in

regions with relatively low intensity and arise from the

nature of Rp1 and Rp2, which focus on misfit in high-

intensity regions by applying more weight to these

discrepancies. On the other hand, Rwp does essentially

the opposite by effectively accentuating the error

contribution from misfit where the intensity is low and

reducing the contribution from misfit at high intensities

(the tops of peaks).

Table 1. Values of fitting parameters used for fits to synthetic interstratified one-H2O layer-two-H2O layer (1W-2W) smectite.

—— Rp1 —— —— Rp2 —— —— Rwp ——
Parameter Target

value
Initial
value

LB UB Refined
value

Accuracy Refined
value

Accuracy Refined
value

Accuracy

P(2W) 0.77 0.6 0.5 1 0.77 100.0 0.77 100.0 0.77 100.0
d001(2W) 15.30 15 15.1 15.8 15.31 99.9 15.30 100.0 15.30 100.0
eI(2W) 0.15 0.1 0 0.5 0.11 73.3 0.17 86.7 0.15 100.0
eII(2W) 0.30 0.1 0 0.5 0.33 90.0 0.30 100.0 0.30 100.0
d001(1W) 12.50 12.4 12.3 12.7 12.49 99.9 12.50 100.0 12.50 100.0
eI(1W) 0.10 0.1 0 0.5 0.18 20.0 0.18 20.0 0.18 20.0
eII(1W) 0.25 0.1 0 0.5 0.19 76.0 0.22 88.0 0.25 100.0
Fe 0.80 0.5 0 1.7 0.73 91.3 0.84 95.0 0.80 100.0
CEC 0.36 0.3 0.25 0.6 0.51 58.3 0.25 69.4 0.48 66.7
C1W 2.10 2 1 2.5 1.00 47.6 1.97 93.8 1.94 92.4
B1W 11.00 2 0 25 13.15 80.5 12.30 88.2 2.51 22.8
C2W 4.50 2.8 2.5 6 4.05 90.0 4.39 97.6 4.37 97.1
Ddwat 1.40 1.2 1.1 1.6 1.37 97.9 1.31 93.6 1.43 97.9
B2W 20.00 11 0 25 5.13 25.7 13.42 67.1 16.89 84.5
DFD 3.00 1.5 0 10 3.00 100.0 3.00 100.0 2.99 99.7
High N 25 14 4 50 24 96.0 24 96.0 25 100.0
Reichweite 1.50 1 0 3 1.53 98.0 1.50 100.0 1.50 100.0
Sigmastar 6.00 12 0 30 7.06 82.3 6.71 88.2 5.99 99.8
SF 1.50 6 0 1000 1.82 78.4 1.71 86.0 1.50 100.0

Target value: value used in calculating the synthetic profile; Initial value: parameter value used to begin the fit; LB, UB:
lower boundary, upper boundary of the parameter in the optimization; P(2W): the fraction of component 2W smectite; eI(1W),
eII(1W), eI(2W), eII(2W): first-type and second-type disorder in 1W and 2W smectite; C1W, C2W: concentration of interlayer H2O
in 1W and 2W smectite, respectively; B1W, B2W: thermal factor of interlayer H2O in 1W and 2W smectite; Ddwat: the position
of interlayer H2O away from mid-plane of interlayer region; DFD: defect-free distance; Sigmastar: quantity describing sample-
preferred orientation; SF: scale factor.

Table 2. Values of fixed parameters for interstratified one-H2O layer-two-H2O layer (1W-2W) smectite diffraction data.

Name Value Name Value

Major component Dismectite (2W) Mustar (cm2/g) 40
Minor component Dismectite (1W) Theta compensating slit FALSE
l (Å) 1.5406 RNDPWD TRUE
Divergence slit (º) 0.5 2y start (º) 2
Goniometer radius (cm) 21.75 2y end (º) 50
Soller slit1 (º) 2.5 2y increment (º) 0.02
Soller slit2 (º) 2.5 Crystal dist. scheme Defect broadening
Sample length (cm) 4 Exchangeable cation Ca2+

Note: Mustar: mass absorption coefficient. RNDPWD: random powder option for calculating the Lorentz factor.
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Figure 1. Fits to a simulated fitting target for interstratified 1W-2W smectite generated with NEWMOD+ using the parameters in

Tables 1 and 2 using different fitting criteria, Rp1, Rp2, and Rwp. Black crosses represent the fitting target, and the curved line

represents the fits to the simulated profile. Data are expanded by a factor of 15 above 8º2y and by a factor of 100 above 31º2y.
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Parameter accuracy in profile optimization is deter-

mined by parameter characteristics in the model, such as

whether a parameter affects intensity, peak position, or

both and whether a parameter is correlated with other

parameters. Generally, the more a parameter influences

intensity, the more accurate the refined parameter will

be. This rule of thumb and the accuracy of each

parameter (Table 1) provide insight into the choice of

fitting parameters and help to evaluate the quality of

refined parameters. The intensity contribution of the

first-type disorder, eI, effectively acts as a thermal factor

and is considerably smaller than the intensity contribu-

tion from the second-type disorder, eII, which acts as a

strain effect. As a result, eI accuracies are generally less

than eII accuracies (Table 1). Likewise, changes in

interlayer-H2O thermal factors, B1W and B2W, do not

significantly affect overall intensities, although the

consequences are evident at high diffraction angles.

The two refined parameter values were less accurate,

however. In addition, the cation-exchange capacity

(CEC) or interlayer cation concentration (i.e. Ca2+) is

strongly correlated with C1W and interlayer H2O

amounts in 1W smectite. This is based on the fact that

both Ca2+ and H2O are located at neighboring sites along

the Z axis. The Ca2+ intensity contribution can be

approximated by substituting the interlayer H2O con-

tribution or vice versa. For example, such correlations

lead to lesser CEC- and C1W -value accuracies of 66.5%

and 92.4%, respectively, obtained using Rwp. Such

correlations can be avoided or reduced by fixing the

amounts of interlayer cations or by allowing cation

amounts to vary between narrow limits, based on

elemental compositions measured by an independent

chemical method.

Fits to a synthetic profile for interstratified illite-

smectite, I-S(EG)

A simulated profile for interstratified illite-smectite,

I-S(EG), was generated using NEWMOD+ according to

the values in Table 3 and the instrumental parameters in

Table 2. Given the initial parameters shown in Table 3,

the optimization routine driven by three fitting criteria

yielded different ‘best’ fits, with Rp1 = 0.26%, Rp2 =

0.08%, and Rwp = 0.18%. Of the three ‘best’ fits shown in

Figure 2, the weighted fitting scheme Rwp again produced

the best visual fit compared with the two unweighted

fitting schemes, Rp1 and Rp2. The latter gave misfits in the

region of the 008 reflection, a peak with relatively low

intensity. In contrast to the fits to the synthetic profile of

interstratified 1W-2W smectite, all three fits to the

synthetic profile of I-S(EG) were of visually comparable

quality. This may result from the presence of fewer

parameter-correlation effects with the I-S(EG) optimiza-

tion. Like the fits for the interstratified 1W-2W smectite,

the fits for the I-S(EG) were all of high quality with very

low R factors. Refined values of fitting parameters and

boundary conditions for each fitting parameter are listed

in Table 3, together with the accuracy of each parameter

calculated according to equation 11. The CSD size for the

synthesized I-S(EG) was assumed to follow a log-normal

distribution (Środoń et al., 1992; Eberl et al., 1998),

which can be described by:

Nðx; m;sÞ ¼ 1

sx
ffiffiffiffiffiffi
2p

p exp �ðln x� mÞ2
2s2

8>>>:
9>>>; ð12Þ

where m and s represent the mean value and standard

deviation, respectively, of ln x, where x is an individual

Table 3. Fitting parameters for interstratified I-S(EG).

—— Rp1 —— —— Rp2 —— —— Rwp ——
Parameter Target

value
Initial
value

LB UB Refined
value

Accuracy Refined
value

Accuracy Refined
value

Accuracy

P(illite) 0.7 0.8 0.5 1 0.70 99.9 0.70 100.0 0.70 99.9
d001(I) (Å) 9.98 10 9.5 10.5 9.98 100.0 9.98 100.0 9.98 100.0
eI(I) 0.1 0.1 0 0.5 0.18 20.0 0.15 50.0 0.10 100.0
eII(I) 0.2 0.1 0 0.5 0.14 70.0 0.17 85.0 0.21 95.0
Fe(I) 0.2 0.5 0 0.6 0.21 95.0 0.20 100.0 0.20 100.0
K(I) 0.8 0.5 0.6 1 0.84 95.0 0.82 97.5 0.80 100.0
d001(S) (Å) 16.9 17.2 16.5 17.5 16.91 99.9 16.90 100.0 16.90 100.0
eI(S) 0.2 0.1 0 0.5 0.02 10.0 0.07 35.0 0.02 10.0
eII(S) 0.4 0.1 0 0.5 0.41 97.5 0.40 100.0 0.40 100.0
Fe(S) 0.8 0.5 0 1.7 0.76 95.0 0.79 98.8 0.81 98.8
CEC 0.36 0.3 0.25 0.6 0.60 33.3 0.54 50.0 0.30 83.3
Reichweite 0.5 1 0 3 0.51 98.0 0.50 100.0 0.50 100.0
mLognormal 2 1 0.3 4 1.95 97.5 1.97 98.5 2.02 99.0
Sigmastar 10 12 0 30 9.34 93.4 9.67 96.7 10.07 99.3
High N 30 14 0 50 24 80.0 49 36.7 24 80.0
SF 1 3 0 1000 0.90 89.7 0.95 94.7 1.01 99.0

Conventions as in Table 1.
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Figure 2. Fits to a simulated fitting target (I-S(EG)) generated using the parameters in Tables 2 and 3 based on three different fitting

criteria. Conventions as in Figure 1. Black crosses represent the fitting target, and the curved line represents the fits to the measured

profile. Data are expanded by a factor of 15 above 11º2y and by a factor of 50 above 31º2y.
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crystallite size. These two parameters can be further

correlated through s2 = 0.107m � 0.03 (Środoń et al.,

2000), as they are strongly correlated in authigenic clay

samples (Środoń et al., 1992; Drits et al., 1997b).

Fits to an experimental bi-hydrated smectite diffraction

pattern

The configuration of interlayer species in bi-hydrated

smectite, i.e. the concentration and position(s) of inter-

layer cations and H2O molecules, has attracted particular

interest recently (Ferrage et al., 2005a, 2005b). Ferrage et

al. (2005b) pointed out that the atomic positions and

concentrations of interlayer H2O molecules in bi-hydrated

smectite (2W) given by Moore and Reynolds (1997) are

incorrect. Their results suggested that significant discre-

pancies between experimental and simulated profiles for

higher-order 00l reflections arise from the use of an

incorrect structure model in which interlayer H2O

molecules are located at three distinct sites, 0.35 Å,

1.06 Å, and 1.20 Å along Z, with concentrations of 0.69,

0.69, and 1.4, respectively, per O10(OH)2. Ferrage et al.

(2005b) proposed a new structure model based on

molecular simulations in which interlayer H2O molecules

have a Gaussian distribution along the Z direction. In their

model, the maximum electron density is located ~�1.2 Å

away from the central interlayer cation, and the amount of

interlayer H2O molecules varies with relative humidity

(r.h.). The model includes variations in the full-width at

half-maximum (FWHM) and the Gaussian peak position

of the electron density along the Z axis and in the

concentration of interlayer H2O molecules. In addition,

Ferrage et al. (2005a, 2005b) assumed that the experi-

mental diffraction profile is a combination of two

interstratified systems with two or three components.

They were able to reproduce experimental profiles

measured under a wide range of relative humidities

using this model and these assumptions. However, the

assumption of a Gaussian distribution of interlayer H2O

molecules requires further investigation. First, their

results showed that the basal spacing, d001, of bi-hydrated

smectite (2W) in Ca-SWy-1 (80% r.h.) is 15.51 Å, which

leads to an interlayer region 5.51 Å thick, assuming a

value of 10 Å for d001 of the collapsed Ca-SWy-1 (0W).

According to Ferrage et al. (2005b), the interlayer H2O

Gaussian peak is located 1.37 Å from the mid-plane of the

interlayer region, with a FWHM of 1.7 Å. These values

give the interlayer H2O density distribution shown in

Figure 3 in which the density profile must drop to zero at

the interlayer edges. The density peaks are significantly

broader than the peaks derived from molecular simulation

(figure 7 in Ferrage et al., 2005b). Moreover, because the

O2� ionic radius in H2O is 1.21 Å (Shannon, 1976), the

interlayer region with H2O should further decrease to the

area designated by the two bold lines in Figure 3. This

suggests that the Gaussian interlayer H2O distribution

defined by the values above is too large (this argument

does not consider the possibility that H2O molecules can

partially penetrate the hexagonal rings). Second, the X-ray

scattering factor for normally distributed (Gaussian)

interlayer H2O molecules can only be calculated by

brute-force integration, which dramatically increases the

calculation time required for profile fitting. In light of

these limitations, a better approach is to describe the

distribution of interlayer H2O molecules using a conven-

tional Debye-Waller thermal factor, B, commonly used in

crystal structure refinements. Published values of B for

H2O in hydrated minerals, e.g. zeolites, can exceed 20

(e.g. Koyama and Takeuchi, 1977; Simoncic and

Armbruster, 2004).

A series of XRD measurements was made on a Ca2+-

saturated SWy-1 smectite under controlled relative

humidities at 23ºC using a BRUKER D8 diffractometer

Figure 3. Density distribution of Ca-SWy-1 (80% r.h.) interlayer H2Omolecules according to Ferrage et al. (2005b). The ‘‘interlayer
H2O zone’’ is defined as the region between the two bold lines, which takes into account the radius of O2�, 1.21 Å
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with 217.5 mm radius goniometer, a 1º divergence slit,

two 2.4º Soller slits, and a sample length of 4 cm. Data

were corrected for Lorentz-polarization effects prior to

analysis. The basal spacing and FWHM of the 001

reflection at various humidities were obtained through

peak fitting using the software package TOPAS (Coelho,

2003) with a split-Pearson VII (SP VII) profile function.

The measured FWHM001 was further corrected by

multiplying by cosy, where y is the corresponding

diffraction angle of the 001 peak (Drits et al., 2005).

Measured FWHM001 values plotted against relative

humidity show a desorption-path minimum FWHM001 of

0.371º2y at 70% r.h. (Figure 4). For a given sample,

FWHM001 variation results primarily from changes in

interstratified-component ordering as humidity changes,

with only minor contribution from crystallite-size

variation (Cases et al., 1992). Therefore, the de-

sorption-path interstratification effects were assumed to

be at a minimum at 70% r.h., which resulted in a nearly

pure bi-hydrate (2W). Thus, the 70% RH desorption

profile was used to evaluate the optimization routine in

FITMOD with particular attention to bi-hydrate smectite

(2W) interlayer-H2O configurations. Profile fitting for

Ca-SWy-1 (70% r.h.) assumed interstratification of one-

and two-layer H2O montmorillonite phases (1W-2W).

The fitting range was limited to 5�50º2y due to

significant experimental- and simulated-profile discre-

pancies at very low diffraction angles (<5º). During

fitting, disorder of the first- and second-type for the two

phases (i.e. eI and eII) and variables that describe

interlayer H2O configuration (e.g. concentration, posi-

tion, and thermal factor, B) were allowed to vary, as well

as other variables such as ordering and crystallite size.

Minimizing Rwp (Rwp =10.92%) yielded the best fit and

gave a 3.57% Rp2 value assuming crystal-defect broad-

ening. The larger R factors compared with fits to

simulated profiles resulted from statistical noise in the

experimental profiles and an imperfect model that may

not fully represent observed profiles. Important para-

meter values yielded by the optimization routine and the

boundary conditions used are listed in Table 4. The most

significant differences between calculated and experi-

mental profiles were in intensities and peak positions of

the 003 reflection (Figure 5). In addition, the calculated

004 reflection intensity was greater than the experi-

mental value. Ferrage et al. (2005b) discussed these

misfits in detail and solved them for both reflections by

introducing a third interstratified component (i.e. 0W,

1W, and 2W). Calculated higher-order reflections (006,

007, and 008) generally matched experimental profiles,

with the 007 reflection only slightly offset to higher

angles.

Minor misfit between the 006 and 007 and the 007

and 008 reflections (Figure 5) may be related to an

additional interstratified phase (0W-1W-2W). This

sample is dominantly (99%) a 2W smectite according

to the fit results (Table 4). The basal spacings of the 1W

and 2W components are 12.39 Å and 15.49 Å,

respectively, which indicates interlayer spacings of

2.39 Å and 5.49 Å based on an assumed 10 Å dehydrated

phase (0W). Given an O2� radius of 1.21 Å (Shannon,

1976), interlayer H2O molecules in 2W are more loosely

packed along the Z direction than in 1W. This

conclusion is supported by the 2W-component eI value
of 0.39 Å and eII value of 0.44 Å. These values are

greater than those for the 1W component, namely 0.23 Å

and 0.36 Å. Loose packing of interlayer H2O in 2W

caused greater fluctuations in basal spacings than for

1W. The 3.36 Å2 refined B value (thermal factor) for 1W

is smaller than the 22.14 Å2 value for 2W, consistent

with the above arguments relating to interlayer H2O

packing. FITMOD yielded a refined interlayer-H2O

concentration (C2W) of 4.32 H2O per O10(OH)2. This is

significantly larger than the Moore and Reynolds value

Figure 4. Relative humidity and d001 full-width at half-maximum (FMHM001) of Ca-SWy-1 along an adsorption and desorption path.
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of 2.78 H2O per O10(OH)2 but agrees with Ferrage et al.

(2005b) values.

Fitting experimental XRD profiles of the I-S system

Experimental XRD patterns of interstratified illite-

smectite, I-S(EG), samples were also used to test the

profile-fitting algorithm in FITMOD. The XRD data for

two purified I-S samples from Yucca Mountain drill

cores, G1-4958 and G2-4873, were obtained using a

Siemens D-500 diffractometer with a 1º divergence slit,

two 2.4º Soller slits, and a sample length equal to 5 cm

(Bish, 1989). These data were chosen for tests of

FITMOD because results for the samples are published

and the data were available. Sample G1-4958 was

previously characterized as Reichweite = 1 with 60%

illite layers and G2-4873 was characterized as

Reichweite = 3 with 90% illite layers (Bish, 1989; Bish

and Aronson, 1993). FITMOD minimized Rwp, and the

CSD size was assumed to follow a log-normal distribu-

tion. The experimental data and optimized XRD patterns

for two Yucca Mountain samples are plotted in Figures 6

and 7, and the fitting parameters, refined values, and

boundary conditions are listed in Table 5. Good fits were

obtained for the samples with Rwp values of 10.91% and

13.67% for samples G1-4958 and G2-4873, respectively,

in reasonable agreement with previous results. The illite

proportion for the G2-4873 sample was 0.85 and the

Reichweite value was 2.53. Yuan and Bish (2010) used a

traditional forward model in NEWMOD+ for G2-4873

and obtained an Rp2 = 13.90% (figure 2 in Yuan and

Bish, 2010), in contrast to Rp2 = 9.47% for the current

fit. They remarked that the misfit at ~8º, 17º, and 45º

could be greatly reduced by decreasing the amount of K+

in the illite component to an unrealistic value, 0.1 per

O10(OH)2.They also observed the intensity contribution

from the glass substrate at diffraction angles from

~12º2y to 38º2y, which suggests an insufficient sample

thickness. The fit was improved by introducing the

profile of the glass substrate as a background contribu-

tion. However, the intensities diffracted from a sample

Figure 5. Fit to Ca-SWy-1 experimental profile measured at 70% r.h. on the desorption loop. Black crosses indicate the measured profile

and the curved line is the optimized profile. Data were expanded by a factor of 15 above 8º2y and by a factor of 60 above 32º2y.

Table 4. Fitting results for Ca-SWy-1 recorded at 70% r.h. on the desorption path.

Fitting
parameter

Refined
values

LB UB Fitting
parameters

Refined
values

LB UB

P(2W) 0.991 0.5 1 C1W 2.33 1 2.5
d001(2W) (Å) 15.52 15.1 15.8 B1W (Å2) 3.36 0 25
eI(2W) 0.02 0 0.5 C2W 4.31 2.5 6
eII(2W) 0.35 0 0.5 Ddwat(Å) 1.47 1.1 1.6
d001(1W) (Å) 12.59 12.3 12.7 B2W (Å2) 21.14 0 25
eI(1W) 0.09 0 0.5 DFD 4.02 0 10
eII(1W) 0.17 0 0.5 High N 39 4 50
Fe 0.35 0 1.7 Reichweite 0.08 0 3
CEC 0.58 0.25 0.6

Conventions as in Table 1.
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with insufficient thickness must also be further corrected

by equation 13, discussed in detail by Moore and

Reynolds (equation 9.3, 1997):

I
Io

¼ sin y
2m�

1� e
�2m�g
sin y

h i
ð13Þ

where m* is the mean sample-mass absorption coeffi-

cient and g is total mass of the sample, which is the

product of sample density and sample thickness. With

the introduction of disorder of the first- and second-type

and, more importantly, the consideration of finite sample

thickness, the discrepancies at ~8º, 17º, and 45º2y were

decreased significantly, leading to the smaller Rp2 value

compared with the fit reported previously. Although

many studies have shown that the simulated profiles

yielded by NEWMOD# exhibit significantly greater

intensities at low diffraction angles compared with

experimental profiles (Ferrage et al., 2005a), good fits

were obtained for both samples, particularly for sample

G2-4873, in the low-angle region (<5º2y). Further

studies are required to investigate whether pattern misfit

at low angles is caused by an inaccurate structural

model, such as incorrect atomic positions or site

occupancies, or by incorrect assumptions regarding the

compositions of samples or perfect crystals vs. large

particles with defects (Plançon, 2002), etc.

The accuracy of the profile-fitting optimization

routine was demonstrated using both synthetic and

experimental patterns, but the efficiency of the optimi-

zation process, i.e. the average time required for the

optimization routine to achieve a reasonable fit, must

also be considered. The average time required for

optimization varies as a function of several factors,

Figure 6. Experimental profile of I-S(EG) sample G1-4958 from Yucca Mountain, Nevada, fit using an assumed log-normal crystal-

size distribution scheme.

Figure 7. Experimental profile of I-S(EG) sample G2-4873 from Yucca Mountain, Nevada, fit using an assumed log-normal crystal-

size distribution.
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including the number of data points (i.e. the 2y range),

the number of parameters varied in the fitting process,

the computing power, and the number of perturbations

(trials) applied in the optimization process. Statistical

information showing the efficiency of the optimization

routine during fitting of both the synthetic and experi-

mental profiles examined above was tabulated (Table 6).

The total time was recorded as processor time on a

3.0 GHz CPU for 10 perturbations. Experimental pro-

files exhibit more noise than synthetic profiles, and the

model generally is unable to reproduce experimental

profiles perfectly, leading to greater misfits in the

optimized profiles with experimental data. This aspect

of experimental patterns dramatically increases the

number of required iterations and, therefore, increases

the average time per perturbation from 2.4 min for fitting

a synthetic profile to ~5 min. In practice, a good fit can

be achieved with three or four perturbations. The

optimization routine can be implemented with a multiple

thread technique that allows distribution of the calcula-

tion load onto multiple central processing units, greatly

reducing the profile-optimization time.

CONCLUSIONS

This paper describes, for the first time, the applica-

tion of a reverse-modeling methodology for interpreting

diffraction patterns from interstratified clay minerals.

The program FITMOD used the downhill simplex

method to fit XRD profiles by automatically varying

all important structural and specimen parameters. The

downhill simplex method has significant advantages

over methods that rely on the function gradient, e.g. the

Levenberg-Marquardt method, in both calculation time

and the ability to adjust integer parameters. Compared

with the GA methodology, the downhill simplex method

converges (GA does not converge) and yields the

optimal result more efficiently. As a result, the downhill

simplex method is believed to be superior for fitting

XRD profiles of interstratified phyllosilicates. However,

most minimization techniques, including the downhill

simplex method, have the potential to yield a minimum

without knowing whether it is a global or a local

minimum. FITMOD evaluates whether a minimum is

global by perturbing the minimum with a slight change

Table 5. Fitting results for I-S samples G1-4958 and G2-4873 from Yucca Mountain, Nevada, USA.

Fitting parameter LB UB G1-4958 G2-4873

P(I) 0.5 1 0.68 0.854
d001(I) (Å) 9.5 10.5 9.96 10.03
eI(I) 0 0.5 0.02 0.01
eII(I) 0 0.5 0.33 0.15
Fe(I) 0 0.6 0.25 0.3
K(I) 0.6 1 0.61 0.6
d001(S) (Å) 16.5 17.4 16.72 16.78
eI(S) 0 0.5 0.08 0.5
eII(S) 0 0.5 0.17 0.15
Fe(S) 0 1.7 0.18 0.03
CEC 0.25 6 0.42 0.41
Sigmastar 0 30 2.93 3.49
mlog-normal 0.3 4 2.38 2.2
Reichweite 0 3 0.83 2.53
High N 4 50 32 35
Sample thickness (mm) 0 2000 13.46 9.63
Mustar (cm2/g) 30 70 56.05 36.88

Conventions as in Tables 1 and 2.

Table 6. Efficiency of the optimization routine for various XRD profiles.

Fitting samples Synthetic profiles ———— Experimental profiles ————
1W-2W I-S(EG) Ca-SWy-1 @ 70% r.h. G1-4958 G2-4873

Number of variable parameters 19 16 22 20 20
Number of data points 2400 2400 2250 1600 2400
Number of iterations 36787 22240 46444 48184 43725
Number of perturbations 10 10 10 10 10
Total time (s) 1460 1429 3305 3255 2568
Average iterations/perturbation 3679 2224 4644 4818 4373
Average time/perturbation (min) 2.4 2.4 5.5 5.4 4.3
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in refined parameters, providing the ability to climb out

of a local minimum. Based on the realistic outcomes of

the fits shown here and experience with other systems,

the downhill simplex method seems to efficiently avoid

false minima. The existence of correlations among

adjustable parameters has the potential to degrade the

accuracy of fitting results and can lead to poor

reproducibility in some cases, but this problem is

common with all current fitting methods and can be

minimized with judicious selection of refinable para-

meters and limits.

Three different unweighted and weighted fitting

schemes were investigated with two sets of synthesized

XRD profiles representing the interstratified 1W-2W and

I-S(EG) systems, respectively, and Rwp consistently

produced results which were superior to those obtained

with the unweighted schemes, Rp1 and Rp2. Thus, the

Rwp scheme is favored for fitting experimental profiles.

FITMOD was applied to simulated and real data with

excellent results, and results with simulated data

provided excellent accuracy, even when starting para-

meters were far from the correct values. Application to

previously published experimental data gave parameters

and fits that appear superior to literature results. The

methodology used in FITMOD can probably be extended

to other simulation programs, such as WILDFIRE, which

have similar difficulties with automatic parameter

optimization.
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B.A. and Drits, V.A. (2005b) New insights on the
distribution of interlayer water in bi-hydrated smectite from
X-ray diffraction profile modeling of 00l reflections.
Chemistry of Materials, 17, 3499�3512.

Gruner, J.W. (1934) The structure of vermiculites and their
collapse by dehydration. American Mineralogist, 19,
557�575.

Gualtieri, A.F., Ferrari, S., Leoni, M., Grathoff, G., Hugo, R.,
Shatnawi, M., Paglia, G., and Billinge, S. (2008) Structural
characterization of the clay mineral illite-1M. Journal of

Applied Crystallography, 41, 402�415.
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