J. Inst. Math. Jussieu (2023), 22(6), 2805–2831
 2805

 doi:10.1017/S1474748022000214
 © The Author(s), 2022. Published by Cambridge University Press.

HORN PROBLEM FOR QUASI-HERMITIAN LIE GROUPS

PAUL-EMILE PARADAN 💿

IMAG, Univ Montpellier, CNRS (paul-emile.paradan@umontpellier.fr)

(Received 15 January 2021; revised 4 March 2022; accepted 8 March 2022; first published online 26 May 2022)

 $Abstract\;$ In this paper, we prove some convexity results associated to orbit projection of noncompact real reductive Lie groups.

Contents

1	Introduction	2806
2	The cone $\Delta_{\text{hol}}(\tilde{G},G)$: first properties	2810
	2.1. The holomorphic chamber	2810
	2.2. The cone $\Delta_{\text{hol}}(\tilde{G}, G)$ is closed	2812
	2.3. Rational and weakly regular points	2813
	2.4. Weinstein's theorem	2814
3	Holomorphic discrete series	2815
	3.1. Definition	2815
	3.2. Restriction	2816
	3.3. Discrete analogues of $\Delta_{\text{hol}}(\tilde{G},G)$	2816
	3.4. Riemann–Roch numbers	2817
	3.5. Quantization commutes with reduction	2818
4	Proofs of the main results	2819
	4.1. Proof of Theorem A	2819
	4.2. The affine variety $\tilde{K}_{\mathbb{C}} \times \mathfrak{q}$	2821
	4.3. Proof of Theorem B	2822
	4.4. Proof of Theorem C	2822
5	Inequalities characterizing the cones $\Delta_{hol}(\tilde{G},G)$	2823
	5.1. Admissible elements	2823
	5.2. Ressayre's data	2824

5.3. Cohomological characterization of Ressayre's data 5.4. Parametrization of the facets	$2825 \\ 2826$
Example: the holomorphic Horn cone $\operatorname{Horn}_{\operatorname{hol}}(p,q)$	2826
A conjectural symplectomorphism	2828

1. Introduction

This paper is concerned with convexity properties associated to orbit projection.

Let us consider two Lie groups $G \subset G$ with Lie algebras $\mathfrak{g} \subset \tilde{\mathfrak{g}}$ and corresponding projection $\pi_{\mathfrak{g},\tilde{\mathfrak{g}}}: \tilde{\mathfrak{g}}^* \to \mathfrak{g}^*$. A longstanding problem has been to understand how a coadjoint orbit $\tilde{\mathcal{O}} \subset \tilde{\mathfrak{g}}^*$ decomposes under the projection $\pi_{\mathfrak{g},\tilde{\mathfrak{g}}}$. For this purpose, we may define

$$\Delta_G(\mathcal{O}) = \{ \mathcal{O} \in \mathfrak{g}^*/G; \ \mathcal{O} \subset \pi_{\mathfrak{g},\tilde{\mathfrak{g}}}(\mathcal{O}) \}.$$

When the Lie group G is compact and connected, the set \mathfrak{g}^*/G admits a natural identification with a Weyl chamber $\mathfrak{t}^*_{\geq 0}$. In this context, we have the well-known convexity theorem [12, 1, 10, 16, 13, 35, 22].

Theorem 1.1. Suppose that G is compact connected and that the projection $\pi_{\mathfrak{g},\tilde{\mathfrak{g}}}$ is proper when restricted to $\tilde{\mathcal{O}}$. Then $\Delta_G(\tilde{\mathcal{O}}) = \{\xi \in \mathfrak{t}^*_{\geq 0}; \ G\xi \subset \pi_{\mathfrak{g},\tilde{\mathfrak{g}}}(\tilde{\mathcal{O}})\}$ is a closed convex locally polyhedral subset of \mathfrak{t}^* .

When the Lie group \hat{G} is also compact and connected, we may consider

$$\Delta(\tilde{G},G) := \left\{ (\tilde{\xi},\xi) \in \tilde{\mathfrak{t}}_{\geq 0}^* \times \mathfrak{t}_{\geq 0}^*; \ G\xi \subset \pi_{\mathfrak{g},\tilde{\mathfrak{g}}}(\tilde{G}\tilde{\xi}) \right\}.$$
(1)

Here is another convexity theorem [14, 17, 4, 2, 3, 25, 19, 20, 36].

Theorem 1.2. Suppose that $G \subset \tilde{G}$ are compact connected Lie groups. Then $\Delta(\tilde{G}, G)$ is a closed convex polyhedral cone and we can parametrize its facets by cohomological means (i.e., Schubert calculus).

In this article, we obtain an extension of Theorems 1.1 and 1.2 in a case where G and \tilde{G} are both noncompact real reductive Lie groups.

Let us explain what framework we are considering. Let \tilde{K} be a maximal compact subgroup of \tilde{G} . We suppose that \tilde{G}/\tilde{K} is a Hermitian symmetric space of a noncompact type. Among the elliptic coadjoint orbits of \tilde{G} , some of them are naturally Kähler \tilde{K} manifolds. These orbits are called the holomorphic coadjoint orbits of \tilde{G} . They are the strongly elliptic coadjoint orbits closely related to the holomorphic discrete series of Harish–Chandra. These orbits intersect the Weyl chamber $\tilde{t}^*_{\geq 0}$ of \tilde{K} into a subchamber \tilde{C}_{hol} called the holomorphic chamber. The basic fact here is that the union

$$\mathcal{C}^0_{\tilde{G}/\tilde{K}} := \bigcup_{\tilde{a} \in \tilde{\mathcal{C}}_{\mathrm{hol}}} \tilde{G}\tilde{a}$$

is an open invariant convex cone of $\tilde{\mathfrak{g}}^*$. See §2.1 for more details.

6

In this article, we work in the context where \tilde{G}/\tilde{K} admits a sub-Hermitian symmetric space of a noncompact type G/K. For the convenience of the reader, we list below some examples of the pairs (G,G):

\tilde{C}	C
G	G
$U(p,q)^s, s \ge 2$	U(p,q)
$Sp(n,\mathbb{R})$	$Sp(p,\mathbb{R})\times Sp(n\!-\!p,\mathbb{R})$
$Sp(n,\mathbb{R})$	U(p,n-p)
SO(2,2n)	U(1,n)
SO(2,n)	$SO(2,p) \times SO(n-p)$
$SO^*(2n)$	U(p,n-p)
$SO^*(2n)$	$SO^*(2p) \times SO^*(2n - 2p)$
U(n,n)	$Sp(n,\mathbb{R})$
U(n,n)	$SO^*(2n)$
U(p,q)	$U(i,j) \times U(p-i,q-j).$

As the projection $\pi_{\mathfrak{g},\tilde{\mathfrak{g}}}: \tilde{\mathfrak{g}}^* \to \mathfrak{g}^*$ sends the convex cone $\mathcal{C}^0_{\tilde{G}/\tilde{K}}$ inside the convex cone $\mathcal{C}^{0}_{G/K}$, it is natural to study the following object reminiscent of equation (1):

$$\Delta_{\text{hol}}(\tilde{G},G) := \left\{ (\tilde{\xi},\xi) \in \tilde{\mathcal{C}}_{\text{hol}} \times \mathcal{C}_{\text{hol}}; \ G\xi \subset \pi_{\mathfrak{g},\tilde{\mathfrak{g}}}\big(\tilde{G}\tilde{\xi}\big) \right\}.$$
(2)

Let $\tilde{\mu} \in \tilde{\mathcal{C}}_{hol}$. We will also give a particular attention to the intersection of $\Delta_{hol}(\tilde{G}, G)$ with the linear subspace $\xi = \tilde{\mu}$, that is to say

$$\Delta_G(\tilde{G}\tilde{\mu}) := \left\{ \xi \in \mathcal{C}_{\text{hol}}; \ G\xi \subset \pi_{\mathfrak{g},\tilde{\mathfrak{g}}} \big(\tilde{G}\tilde{\mu} \big) \right\}.$$
(3)

Consider the case where G is embedded diagonally in $\tilde{G} := G^s$ for $s \ge 2$. The corresponding set $\Delta_{hol}(G^s, G)$ is called the holomorphic Horn cone, and it is defined as follows:

$$\operatorname{Horn}_{\operatorname{hol}}^{s}(G) := \Big\{ (\xi_{1}, \cdots, \xi_{s+1}) \in \mathcal{C}_{\operatorname{hol}}^{s+1}; \ G\xi_{s+1} \subset \sum_{j=1}^{s} G\xi_{j} \Big\}.$$

The first result of this article is the following theorem.

Theorem A.

- Δ_{hol}(G̃,G) is a closed convex cone of C̃_{hol} × C_{hol}.
 Horn^s_{hol}(G) is a closed convex cone of C^{s+1}_{hol} for any s ≥ 2.

We obtain the following corollary which corresponds to a result of A. Weinstein [38].

Corollary. For any $\tilde{\mu} \in \tilde{\mathcal{C}}_{hol}$, $\Delta_G(\tilde{G}\tilde{\mu})$ is a closed and convex subset of \mathcal{C}_{hol} .

A first description of the closed convex cone $\Delta_{\text{hol}}(\tilde{G},G)$ goes as follows. The quotient \mathfrak{q} of the tangent spaces $\mathbf{T}_e G/K$ and $\mathbf{T}_e \tilde{G}/\tilde{K}$ has a natural structure of a Hermitian

K-vector space. The symmetric algebra $\operatorname{Sym}(\mathfrak{q})$ of \mathfrak{q} defines an admissible K-module. The irreducible representations of K (resp. \tilde{K}) are parametrized by a semi-group \wedge_+^* (resp. $\tilde{\Lambda}_+^*$). For any $\lambda \in \wedge_+^*$ (resp. $\tilde{\lambda} \in \tilde{\Lambda}_+^*$), we denote by V_{λ}^K (resp. $V_{\tilde{\lambda}}^{\tilde{K}}$) the irreducible representation of K (resp. \tilde{K}) with highest weight λ (resp. $\tilde{\lambda}$). If E is a representation of K, we denote by $[V_{\lambda}^K : E]$ the multiplicity of V_{λ}^K in E.

Definition 1.3.

1. $\Pi^{\mathbb{Z}}_{\mathfrak{q}}(\tilde{K}, K)$ is the semigroup of $\tilde{\wedge}^*_+ \times \wedge^*_+$ defined by the conditions:

$$(\tilde{\lambda},\lambda) \in \Pi^{\mathbb{Z}}_{\mathfrak{q}}(\tilde{K},K) \quad \Longleftrightarrow \quad \left[V^K_{\lambda} : V^{\tilde{K}}_{\tilde{\lambda}} \otimes \operatorname{Sym}(\mathfrak{q})\right] \neq 0.$$

2. $\Pi_{\mathfrak{q}}(\tilde{K},K)$ is the convex cone defined as the closure of $\mathbb{Q}^{>0} \cdot \Pi^{\mathbb{Z}}_{\mathfrak{q}}(\tilde{K},K)$.

The second result of this article is the following theorem.

Theorem B. We have the equality

$$\Delta_{\text{hol}}(\tilde{G}, G) = \Pi_{\mathfrak{q}}(\tilde{K}, K) \bigcap \tilde{\mathcal{C}}_{\text{hol}} \times \mathcal{C}_{\text{hol}}.$$
(4)

A natural question is the description of the facets of the convex cone $\Delta_{\text{hol}}(\tilde{G}, G)$. In order to do that, we consider the group \tilde{K} endowed with the following $\tilde{K} \times K$ -action: $(\tilde{k},k) \cdot \tilde{a} = \tilde{k}\tilde{a}k^{-1}$. The cotangent space $\mathbf{T}^*\tilde{K}$ is then a symplectic manifold equipped with a Hamiltonian action of $\tilde{K} \times K$. We consider now the Hamiltonian $\tilde{K} \times K$ -manifold $\mathbf{T}^*\tilde{K} \times \mathfrak{q}$, and we denote by $\Delta(\mathbf{T}^*\tilde{K} \times \mathfrak{q})$ the corresponding Kirwan polyhedron.

Let W = N(T)/T be the Weyl group of (K,T), and let w_0 be the longest Weyl group element. Define an involution $*: \mathfrak{t}^* \to \mathfrak{t}^*$ by $\xi^* = -w_0\xi$. A standard result permits to affirm that $(\tilde{\xi},\xi) \in \Pi_{\mathfrak{q}}(\tilde{K},K)$ if and only if $(\tilde{\xi},\xi^*) \in \Delta(\mathbf{T}^*\tilde{K} \times \mathfrak{q})$ (see §4.2).

We obtain then another version of Theorem B.

Theorem B, second version. An element $(\tilde{\xi}, \xi)$ belongs to $\Delta_{\text{hol}}(\tilde{G}, G)$ if and only if $(\tilde{\xi}, \xi) \in \tilde{\mathcal{C}}_{\text{hol}} \times \mathcal{C}_{\text{hol}}$ and $(\tilde{\xi}, \xi^*) \in \Delta(\mathbf{T}^* \tilde{K} \times \mathfrak{q}).$

Thanks to the second version of Theorem B, a natural way to describe the facets of the cone $\Delta_{\text{hol}}(\tilde{G}, G)$ is to exhibit those of the Kirwan polyhedron $\Delta(\mathbf{T}^*\tilde{K} \times \mathfrak{q})$. In this later case, it can be done using Ressayre's data (see §5).

The second version of Theorem B permits also the following description of the convex subsets $\Delta_G(\tilde{G}\tilde{\mu}), \tilde{\mu} \in \tilde{C}_{\text{hol}}$. Let $\Delta_K(\tilde{K}\tilde{\mu} \times \overline{\mathfrak{q}})$ be the Kirwan polyhedron associated to the Hamiltonian action of K on $\tilde{K}\tilde{\mu} \times \overline{\mathfrak{q}}$, where $\overline{\mathfrak{q}}$ denotes the K-module \mathfrak{q} with opposite complex structure.

Theorem C. For any $\tilde{\mu} \in \tilde{\mathcal{C}}_{hol}$, we have $\Delta_G(\tilde{G}\tilde{\mu}) = \Delta_K(\tilde{K}\tilde{\mu} \times \overline{\mathfrak{q}})$.

Let us detail Theorem C in the case where G is embedded in $\tilde{G} = G \times G$ diagonally. We denote by \mathfrak{p} the K-Hermitian space $\mathbf{T}_e G/K$. Let κ be the Killing form of the Lie algebra \mathfrak{g} . The vector space $\overline{\mathfrak{p}}$ is equipped with the symplectic 2-form $\Omega_{\overline{\mathfrak{p}}}(X,Y) = -\kappa(z,[X,Y])$ and the compatible complex structure $-\mathrm{ad}(z)$.

Let us denote by $\Delta_K(K\mu_1 \times K\mu_2 \times \overline{\mathfrak{p}})$ and by $\Delta_K(\overline{\mathfrak{p}})$ the Kirwan polyhedrons relative to the Hamiltonian actions of K on $K\mu_1 \times K\mu_2 \times \overline{\mathfrak{p}}$ and on $\overline{\mathfrak{p}}$. Theorem C says that, for any $\mu_1, \mu_2 \in \mathcal{C}_{hol}$, the convex set $\Delta_G(G\mu_1 \times G\mu_2)$ is equal to the Kirwan polyhedron $\Delta_K(K\mu_1 \times K\mu_2 \times \overline{\mathfrak{p}})$.

To any nonempty subset C of a real vector space E, we may associate its asymptotic cone $\operatorname{As}(C) \subset E$ which is the set formed by the limits $y = \lim_{k \to \infty} t_k y_k$, where (t_k) is a sequence of nonnegative reals converging to 0 and $y_k \in C$.

We finally get the following description of the asymptotic cone of $\Delta_G(G\mu_1 \times G\mu_2)$.

Corollary D. For any $\mu_1, \mu_2 \in C_{\text{hol}}$, the asymptotic cone of $\Delta_G(G\mu_1 \times G\mu_2)$ is equal to $\Delta_K(\overline{\mathfrak{p}})$.

In [29] §5, we explained how to describe the cone $\Delta_K(\bar{\mathfrak{p}})$ in terms of strongly orthogonal roots.

Let us finish this introduction with few remarks on related works:

- When G is compact, equal to the maximal compact subgroup \tilde{K} of \tilde{G} , the results of Theorems B and C were already obtained by G. Deltour in his thesis [6, 7]. He proved the equality $\Delta_{\tilde{K}}(\tilde{G}\tilde{\mu}) = \Delta_{\tilde{K}}(\tilde{K}\tilde{\mu}\times\bar{\tilde{\mathfrak{p}}})$ by showing that the coadjoint orbit $\tilde{G}\tilde{\mu}$ admits a \tilde{K} -equivariant symplectomorphism with $\tilde{K}\tilde{\mu}\times\bar{\tilde{\mathfrak{p}}}$, thus generalizing an earlier result of D. McDuff [26]. We explain in §7 a conjectural symplectomorphism that would lead to the relation $\Delta_G(\tilde{G}\tilde{\mu}) = \Delta_K(\tilde{K}\tilde{\mu}\times\bar{\mathfrak{q}})$.
- In [9], A. Eshmatov and P. Foth proposed a description of the set $\Delta_G(G\mu_1 \times G\mu_2)$. **But their computations do not give the same result as ours**. From their main result (Theorem 3.2), it follows that the asymptotic cone of $\Delta_G(G\mu_1 \times G\mu_2)$ is equal to the intersection of the Kirwan polyhedron $\Delta_T(\bar{\mathfrak{p}})$ with the Weyl chamber $\mathfrak{t}^*_{\geq 0}$. But since $\Delta_K(\bar{\mathfrak{p}}) \neq \Delta_T(\bar{\mathfrak{p}}) \cap \mathfrak{t}^*_{>0}$ in general, it is in contradiction with Corollary D.

Notations

In this paper, we take the convention of A. Knapp [18]: A connected real reductive Lie group G means that we have a Cartan involution Θ on G such that the fixed point set $K := G^{\Theta}$ is a connected maximal compact subgroup. We have Cartan decompositions at the level of Lie algebras $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ and at the level of the group $G \simeq K \times \exp(\mathfrak{p})$. We denote by b a G-invariant nondegenerate bilinear form on \mathfrak{g} that is equal to the Killing form on $[\mathfrak{g},\mathfrak{g}]$, and that defines a K-invariant scalar product $(X,Y) := -b(X,\Theta(Y))$. We will use the K-equivariant identification $\xi \mapsto \tilde{\xi}$, $\mathfrak{g}^* \simeq \mathfrak{g}$ defined by $(\tilde{\xi},X) := \langle \xi,X \rangle$ for $\xi \in \mathfrak{g}^*$ and $X \in \mathfrak{g}$.

When a Lie group H acts on a manifold N, the stabilizer subgroup of $n \in N$ is denoted by $H_n = \{g \in G, gn = n\}$ and its Lie algebra by \mathfrak{h}_n . Let us define

$$\dim_{H}(\mathcal{X}) = \min_{n \in \mathcal{X}} \dim(\mathfrak{h}_{n})$$
(5)

for any subset $\mathcal{X} \subset N$.

2. The cone $\Delta_{\text{hol}}(\tilde{G}, G)$: first properties

We assume here that G/K is a Hermitian symmetric space of a noncompact type, that is to say, there exists a G-invariant complex structure on the manifold G/K or, equivalently, there exists a K-invariant element $z \in \mathfrak{k}$ such that $\mathrm{ad}(z)|_{\mathfrak{p}}$ defines a complex structure on $\mathfrak{p}: (\mathrm{ad}(z)|_{\mathfrak{p}})^2 = -\mathrm{Id}_{\mathfrak{p}}$. This condition imposes that the ranks of G and K are equal.

We are interested in the following closed invariant convex cone of \mathfrak{g}^* :

$$\mathcal{C}_{G/K} = \left\{ \xi \in \mathfrak{g}^*, \langle \xi, gz \rangle \ge 0, \ \forall g \in G \right\}.$$

2.1. The holomorphic chamber

Let T be a maximal torus of K, with Lie algebra t. Its dual t^{*} can be seen as the subspace of \mathfrak{g}^* fixed by T. Let us denote by \mathfrak{g}_e^* the set formed by the elliptic elements: In other words, $\mathfrak{g}_e^* := \mathrm{Ad}^*(G) \cdot \mathfrak{t}^*$.

Following [38], we consider the invariant open subset $\mathfrak{g}_{se}^* = \{\xi \in \mathfrak{g}^* | G_{\xi} \text{ is compact} \}$ of strongly elliptic elements. It is nonempty since the groups G and K have the same rank.

We start with the following basic facts.

Lemma 2.1.

- g^{*}_{se} is contained in g^{*}_e.
 The interior C⁰_{G/K} of the cone C_{G/K} is contained in g^{*}_{se}.

Proof. The first point is due to the fact that every compact subgroup of G is conjugate to a subgroup of K.

Let $\xi \in \mathcal{C}^0_{G/K}$. There exists $\epsilon > 0$ so that

$$\langle \xi + \eta, gz \rangle \ge 0, \quad \forall g \in G, \quad \forall \|\eta\| \le \epsilon.$$

It implies that $|\langle \eta, gz \rangle| \leq \langle \xi, z \rangle$, $\forall g \in G_{\xi}$ and $\forall \|\eta\| \leq \epsilon$. In other words, the adjoint orbit $G_{\xi} \cdot z \subset \mathfrak{g}$ is bounded. For any $g = e^X k$, with $(X, k) \in \mathfrak{p} \times K$, a direct computation shows that $||gz|| = ||e^X z|| \ge ||[z,X]|| = ||X||$. Then, there exists $\rho > 0$ such that $||X|| \le \rho$ if $e^X k \in \mathbb{R}$ G_{ξ} for some $k \in K$. It follows that the stabilizer subgroup G_{ξ} is compact.

Let $\wedge^* \subset \mathfrak{t}^*$ be the weight lattice: By definition, $\alpha \in \wedge^*$ if and only if $i\alpha$ is the differential of a character of T. Let $\mathfrak{R} \subset \wedge^*$ be the set of roots for the action of T on $\mathfrak{g} \otimes \mathbb{C}$. We have $\mathfrak{R} = \mathfrak{R}_c \cup \mathfrak{R}_n$, where \mathfrak{R}_c and \mathfrak{R}_n are, respectively, the set of roots for the action of T on $\mathfrak{k} \otimes \mathbb{C}$ and $\mathfrak{p} \otimes \mathbb{C}$. We fix a system of positive roots \mathfrak{R}_c^+ in \mathfrak{R}_c , and we denote by $\mathfrak{t}_{\geq 0}^*$ the corresponding Weyl chamber.

We have $\mathfrak{p} \otimes \mathbb{C} = \mathfrak{p}^+ \oplus \mathfrak{p}^-$, where the K-module \mathfrak{p}^{\pm} is equal to ker(ad(z) $\mp i$). Let $\mathfrak{R}_n^{\pm,z}$ be the set of roots for the action of T on \mathfrak{p}^{\pm} . The union

$$\mathfrak{R}^+ = \mathfrak{R}_c^+ \cup \mathfrak{R}_n^{+,z} \tag{6}$$

defines then a system of positive roots in \mathfrak{R} . We notice that $\mathfrak{R}_{n}^{+,z}$ is the set of roots $\beta \in \mathfrak{R}$ satisfying $\langle \beta, z \rangle = 1$. Hence, $\mathfrak{R}_n^{+,z}$ is invariant relatively to the action of the Weyl group W = N(T)/T.

Let us recall the following classical fact concerning the parametrization of the *G*-orbits in $\mathcal{C}^0_{G/K}$ via the holomorphic chamber

$$\mathcal{C}_{\text{hol}} := \{ \xi \in \mathfrak{t}_{>0}^*, (\xi, \beta) > 0, \ \forall \beta \in \mathfrak{R}_n^{+, z} \}.$$

The elliptic coadjoint orbits of G, i.e., those contained in \mathfrak{g}_e^* , are parameterized by the Weyl chamber $\mathfrak{t}_{\geq 0}^*$. Thus, we have a projection $p: \mathfrak{g}_e^* \to \mathfrak{t}_{\geq 0}^*$, defined by the relations $G\xi \cap \mathfrak{t}_{\geq 0}^* = \{p(\xi)\}$, and that induces a bijection $\mathfrak{g}_e^*/G \simeq \mathfrak{t}_{\geq 0}^*$.

Proposition 2.2. The set $p(\mathcal{C}_{G/K}^0)$ is equal to \mathcal{C}_{hol} . In other words, the map p induces a bijective map between the set of G-orbits in $\mathcal{C}_{G/K}^0$ and the holomorphic chamber \mathcal{C}_{hol} .

Proof. Let us first prove that $p(\mathcal{C}_{G/K}^0) = \mathfrak{t}_{\geq 0}^* \cap \mathcal{C}_{G/K}^0$ is contained in \mathcal{C}_{hol} . Let $\xi \in \mathfrak{t}_{\geq 0}^* \cap \mathcal{C}_{G/K}^0$: We have to check that $(\xi, \beta) > 0$ for any $\beta \in \mathfrak{R}_n^{+,z}$. Let $X_{\beta}, Y_{\beta} \in \mathfrak{p}$ such that $X_{\beta} + iY_{\beta} \in (\mathfrak{p} \otimes \mathbb{C})_{\beta}$. We choose the following normalization: The vector $h_{\beta} := [X_{\beta}, Y_{\beta}]$ satisfies $\langle \beta, h_{\beta} \rangle = 1$. We see then that $(\xi, \beta) = \frac{1}{\|h_{\beta}\|^2} \langle \xi, h_{\beta} \rangle$ for any $\xi \in \mathfrak{g}^*$. Standard computation [28] gives: $e^{t \operatorname{ad}(X_{\beta})} z = z + (\operatorname{cosh}(t) - 1)h_{\beta} + \operatorname{sinh}(t)Y_{\beta}, \forall t \in \mathbb{R}$. By definition, we must have $\langle \xi + \eta, e^{t \operatorname{ad}(X_{\beta})} z \rangle \geq 0, \forall t \in \mathbb{R}$, for any $\eta \in \mathfrak{t}^*$ small enough. It imposes that $\langle \xi, h_{\beta} \rangle > 0$. The first point is settled.

The other inclusion $\mathcal{C}_{\text{hol}} \subset \mathfrak{t}^*_{>0} \cap \mathcal{C}^0_{G/K}$ is a consequence of the next lemma.

Lemma 2.3. For any compact subset \mathcal{K} of \mathcal{C}_{hol} , there exists $c_{\mathcal{K}} > 0$ such that $\langle \xi, gz \rangle \geq c_{\mathcal{K}} ||gz||, \forall g \in G, \forall \xi \in \mathcal{K}.$

Proof. Let us choose some maximal strongly orthogonal system $\Sigma \subset \mathfrak{R}_n^{+,z}$. The real span \mathfrak{a} of the $X_{\beta}, \beta \in \Sigma$ is a maximal abelian subspace of \mathfrak{p} . Hence, any element $g \in G$ can be written $g = ke^{X(t)}k'$ with $X(t) = \sum_{\beta \in \Sigma} t_{\beta}X_{\beta}$ and $k, k' \in K$. We get

$$gz = k \left(z + \sum_{\beta \in \Sigma} (\cosh(t_{\beta}) - 1)h_{\beta} + \sum_{\beta \in \Sigma} \sinh(t_{\beta})Y_{\beta} \right)$$
(7)

and

$$\langle \xi, gz \rangle = \langle k^{-1}\xi, z \rangle + \sum_{\beta \in \Sigma} (\cosh(t_{\beta}) - 1) \langle k^{-1}\xi, h_{\beta} \rangle.$$

For any $\xi \in \mathcal{C}_{hol}$, we define $c_{\xi} := \min_{\beta \in \mathfrak{R}_{n}^{+,z}} \langle \xi, h_{\beta} \rangle > 0$. Let $\pi : \mathfrak{k}^{*} \to \mathfrak{t}^{*}$ be the projection. We have $\langle k^{-1}\xi, z \rangle = \langle \pi(k^{-1}\xi), z \rangle$ and $\langle k^{-1}\xi, h_{\beta} \rangle = \langle \pi(k^{-1}\xi), h_{\beta} \rangle$. The convexity theorem of Kostant tell us that $\pi(k^{-1}\xi)$ belongs to the convex hull of $\{w\xi, w \in W\}$. It follows that $\langle k^{-1}\xi, z \rangle \geq \langle \xi, z \rangle > 0$ and $\langle k^{-1}\xi, h_{\beta} \rangle \geq c_{\xi} > 0$ for any $k \in K$. We obtain then that $\langle \xi, gz \rangle \geq \frac{1}{2}\min(\langle \xi, z \rangle, c_{\xi})e^{||X(t)||}$ for any $\xi \in \mathcal{C}_{hol}$, where $||X(t)|| = \sup_{\beta} |t_{\beta}|$. From equation (7), it is not difficult to see that there exists C > 0 such that $||gz|| \leq Ce^{||X(t)||}$ for any $g = ke^{X(t)}k' \in G$.

Let \mathcal{K} be a compact subset of \mathcal{C}_{hol} . Take $c_{\mathcal{K}} = \frac{1}{2C} \min(\min_{\xi \in \mathcal{K}} \langle \xi, z \rangle, \min_{\xi \in \mathcal{K}} c_{\xi}) > 0$. The previous computations show that $\langle \xi, gz \rangle \geq c_{\mathcal{K}} ||gz||, \forall g \in G, \forall \xi \in \mathcal{K}$.

The following result is needed in 4.1.

Lemma 2.4. The map $p: \mathcal{C}^0_{G/K} \to \mathcal{C}_{hol}$ is continuous.

Proof. Let (ξ_n) be a sequence of $\mathcal{C}^0_{G/K}$ converging to $\xi_{\infty} \in \mathcal{C}^0_{G/K}$. Let $\xi'_n = p(\xi_n)$ and $\xi'_{\infty} = p(\xi_{\infty})$: We have to prove that the sequence (ξ'_n) converges to ξ'_{∞} . We choose elements $g_n, g_{\infty} \in G$ such that $\xi_n = g_n \xi'_n, \forall n$ and $\xi_{\infty} = g_{\infty} \xi'_{\infty}$.

First, we notice that $-b(\xi_n,\xi_n) = \|\xi'_n\|^2$; hence, the sequence (ξ'_n) is bounded. We will now prove that the sequence (g_n) is bounded. Let $\epsilon > 0$ such that $\langle \xi_{\infty} + \eta, g_z \rangle \ge 0$, $\forall g \in G$, $\forall \|\eta\| \le \epsilon$. If $\|\xi - \xi_{\infty}\| \le \epsilon/2$, we write $\xi = \frac{1}{2}(\xi_{\infty} + 2(\xi - \xi_{\infty})) + \frac{1}{2}\xi_{\infty}$, and then

$$\langle \xi, gz \rangle = \frac{1}{2} \langle \xi_{\infty} + 2(\xi - \xi_{\infty}), gz \rangle + \frac{1}{2} \langle \xi_{\infty}, gz \rangle \ge \frac{1}{2} \langle \xi_{\infty}, gz \rangle, \quad \forall g \in G.$$

Now we have $\langle \xi'_n, z \rangle = \langle \xi_n, g_n z \rangle \ge \frac{1}{2} \langle \xi_\infty, g_n z \rangle$ if *n* is large enough. This shows that the sequence $\langle \xi_\infty, g_n z \rangle$ is bounded. If we use Lemma 2.3, we can conclude that the sequence (g_n) is bounded.

Let $(\xi'_{\phi(n)})$ be a subsequence converging to $\ell \in \mathfrak{t}_{\geq 0}^*$. Since $(g_{\phi(n)})$ is bounded, there exists a subsequence $(g_{\phi\circ\psi(n)})$ converging to $h \in G$. From the relations $\xi_{\phi\circ\psi(n)} = g_{\phi\circ\psi(n)}\xi'_{\phi\circ\psi(n)}, \forall n \in \mathbb{N}$, we obtain $\xi_{\infty} = h\ell$. Then $\ell = p(\xi_{\infty}) = \xi'_{\infty}$. Since every subsequence of (ξ'_n) has a subsequential limit to ξ'_{∞} , then the sequence (ξ'_n) converges to ξ'_{∞} .

2.2. The cone $\Delta_{\text{hol}}(\tilde{G}, G)$ is closed

We suppose that G/K is a complex submanifold of a Hermitian symmetric space \tilde{G}/\tilde{K} . In other words, \tilde{G} is a reductive real Lie group such that $G \subset \tilde{G}$ is a closed connected subgroup preserved by the Cartan involution, and \tilde{K} is a maximal compact subgroup of \tilde{G} containing K. We denote by $\tilde{\mathfrak{g}}$ and $\tilde{\mathfrak{k}}$ the Lie algebras of \tilde{G} and \tilde{K} , respectively. We suppose that there exists a \tilde{K} -invariant element $z \in \mathfrak{k}$ such that $\mathrm{ad}(z)|_{\tilde{\mathfrak{p}}}$ defines a complex structure on $\tilde{\mathfrak{p}}$: $(\mathrm{ad}(z)|_{\tilde{\mathfrak{p}}})^2 = -Id_{\tilde{\mathfrak{p}}}$.

Let $\mathcal{C}_{\tilde{G}/\tilde{K}} \subset \tilde{\mathfrak{g}}^*$ be the closed invariant cone associated to the Hermitian symmetric space \tilde{G}/\tilde{K} . We start with the following key fact.

Lemma 2.5. The projection $\pi_{\mathfrak{g},\tilde{\mathfrak{g}}}: \tilde{\mathfrak{g}}^* \to \mathfrak{g}^*$ sends $\mathcal{C}^0_{\tilde{G}/\tilde{K}}$ into $\mathcal{C}^0_{G/K}$.

Proof. Let $\tilde{\xi} \in \mathcal{C}^0_{\tilde{G}/\tilde{K}}$ and $\xi = \pi_{\mathfrak{g},\tilde{\mathfrak{g}}}(\tilde{\xi})$. Then $\langle \tilde{\xi} + \tilde{\eta}, \tilde{g}z \rangle \geq 0$, $\forall \tilde{g} \in \tilde{G}$ if $\tilde{\eta} \in \tilde{\mathfrak{g}}^*$ is small enough. It follows that $\langle \xi + \pi_{\mathfrak{g},\tilde{\mathfrak{g}}}(\tilde{\eta}), gz \rangle = \langle \tilde{\xi} + \tilde{\eta}, gz \rangle \geq 0$, $\forall g \in G$ if $\tilde{\eta}$ is small enough. Since $\pi_{\mathfrak{g},\tilde{\mathfrak{g}}}$ is an open map, we can conclude that $\xi \in \mathcal{C}^0_{G/K}$.

Let \tilde{T} be a maximal torus of \tilde{K} , with Lie algebra $\tilde{\mathfrak{t}}$. The \tilde{G} -orbits in the interior of $\mathcal{C}_{\tilde{G}/\tilde{K}}$ are parametrized by the holomorphic chamber $\tilde{\mathcal{C}}_{\mathrm{hol}} \subset \tilde{\mathfrak{t}}^*$. The previous lemma says that the projection $\pi_{\mathfrak{g},\tilde{\mathfrak{g}}}(\tilde{\mathcal{O}})$ of any \tilde{G} -orbit $\tilde{\mathcal{O}} \subset \mathcal{C}_{\tilde{G}/\tilde{K}}^0$ is the union of G-orbits $\mathcal{O} \subset \mathcal{C}_{G/K}^0$. So it is natural to study the following object:

$$\Delta_{\text{hol}}(\tilde{G},G) := \left\{ (\tilde{\xi},\xi) \in \tilde{\mathcal{C}}_{\text{hol}} \times \mathcal{C}_{\text{hol}}; \ G\xi \subset \pi_{\mathfrak{g},\tilde{\mathfrak{g}}}(\tilde{G}\tilde{\xi}) \right\}.$$
(8)

Here is a first result.

Proposition 2.6. $\Delta_{\text{hol}}(\tilde{G}, G)$ is a closed cone of $\tilde{\mathcal{C}}_{\text{hol}} \times \mathcal{C}_{\text{hol}}$.

Proof. Suppose that a sequence $(\tilde{\xi}_n, \xi_n) \in \Delta_{\text{hol}}(\tilde{G}, G)$ converges to $(\tilde{\xi}_{\infty}, \xi_{\infty}) \in \tilde{C}_{\text{hol}} \times C_{\text{hol}}$. By definition, there exists a sequence $(\tilde{g}_n, g_n) \in \tilde{G} \times G$ such that $g_n \xi_n = \pi_{\mathfrak{g}, \tilde{\mathfrak{g}}}(\tilde{g}_n \tilde{\xi}_n)$. Let $\tilde{h}_n := g_n^{-1} \tilde{g}_n$ so that $\xi_n = \pi_{\mathfrak{g}, \tilde{\mathfrak{g}}}(\tilde{h}_n \tilde{\xi}_n)$ and $\langle \tilde{h}_n \tilde{\xi}_n, z \rangle = \langle \xi_n, z \rangle$. We use now that the sequence $\langle \xi_n, z \rangle$ is bounded and that the sequence $\tilde{\xi}_n$ belongs to a compact subset of \tilde{C}_{hol} . Thanks to Lemma 2.3, these facts imply that $\|\tilde{h}_n^{-1}z\|$ is a bounded sequence. Hence, \tilde{h}_n admits a subsequence converging to \tilde{h}_{∞} . So we get $\xi_{\infty} = \pi_{\mathfrak{g}, \tilde{\mathfrak{g}}}(\tilde{h}_{\infty} \tilde{\xi}_{\infty})$, and that proves that $(\tilde{\xi}_{\infty}, \xi_{\infty}) \in \Delta_{\text{hol}}(\tilde{G}, G)$.

2.3. Rational and weakly regular points

Let (M,Ω) be a symplectic manifold. We suppose that there exists a line bundle \mathcal{L} with connection ∇ that prequantizes the 2-form Ω : In other words, $\nabla^2 = -i\Omega$. Let K be a compact connected Lie group acting on $\mathcal{L} \to M$, and leaving the connection invariant. Let $\Phi_K : M \to \mathfrak{k}^*$ be the moment map defined by Kostant's relations

$$L_X - \nabla_X = i \langle \Phi_K, X \rangle, \quad \forall X \in \mathfrak{k}.$$
(9)

Here L_X is the Lie derivative acting on the sections of $\mathcal{L} \to M$.

Remark that relations (9) imply, via the equivariant Bianchi formula, the relations

$$\iota(X_M)\Omega = -d\langle \Phi_K, X \rangle, \quad \forall X \in \mathfrak{k},\tag{10}$$

where $X_M(m) := \frac{d}{dt}|_{t=0} e^{-tX}m$ is the vector field on M generated by $X \in \mathfrak{k}$.

Definition 2.7. Let $\dim_K(M) := \min_{m \in M} \dim \mathfrak{k}_m$. An element $\xi \in \mathfrak{k}^*$ is a weakly regular value of Φ_K if for all $m \in \Phi_K^{-1}(\xi)$ we have $\dim \mathfrak{k}_m = \dim_K(M)$.

When $\xi \in \mathfrak{k}^*$ is a weakly regular value of Φ_K , the constant rank theorem tells us that $\Phi_K^{-1}(\xi)$ is a submanifold of M stable under the action of the stabilizer subgroup K_{ξ} . We see then that the reduced space

$$M_{\xi} := \Phi_K^{-1}(\xi) / K_{\xi} \tag{11}$$

is a symplectic orbifold.

Let $T \subset K$ be a maximal torus with Lie algebra \mathfrak{t} . We consider the lattice $\wedge := \frac{1}{2\pi} \ker(\exp : \mathfrak{t} \to T)$ and the dual lattice $\wedge^* \subset \mathfrak{t}^*$ defined by $\wedge^* = \hom(\wedge, \mathbb{Z})$. We remark that $i\eta$ is a differential of a character of T if and only if $\eta \in \wedge^*$. The \mathbb{Q} -vector space generated by the lattice \wedge^* is denoted by $\mathfrak{t}^*_{\mathbb{Q}}$: The vectors belonging to $\mathfrak{t}^*_{\mathbb{Q}}$ are designed as rational. An affine subspace $V \subset \mathfrak{t}^*$ is called rational if it is affinely generated by its rational points.

We also fix a closed positive Weyl chamber $\mathfrak{t}_{\geq 0}^*$. For each relatively open face $\sigma \subset \mathfrak{t}_{\geq 0}^*$, the stabilizer K_{ξ} of points $\xi \in \sigma$ under the coadjoint action does not depend on ξ and will be denoted by K_{σ} . The Lie algebra \mathfrak{k}_{σ} decomposes into its semisimple and central parts $\mathfrak{k}_{\sigma} = [\mathfrak{k}_{\sigma}, \mathfrak{k}_{\sigma}] \oplus \mathfrak{z}_{\sigma}$. The subspace \mathfrak{z}_{σ}^* is defined to be the annihilator of $[\mathfrak{k}_{\sigma}, \mathfrak{k}_{\sigma}]$ or, equivalently, the fixed point set of the coadjoint K_{σ} action. Notice that \mathfrak{z}_{σ}^* is a rational subspace of \mathfrak{t}^* and that the face σ is an open cone of \mathfrak{z}_{σ}^* , We suppose that the moment map Φ_K is proper. The convexity theorem [1, 10, 16, 35, 22] tells us that $\Delta_K(M) := \text{Image}(\Phi_K) \bigcap \mathfrak{t}_{>0}^*$ is a closed, convex, locally polyhedral set.

Definition 2.8. We denote by $\Delta_K(M)^0$ the subset of $\Delta_K(M)$ formed by the *weakly* regular values of the moment map Φ_K contained in $\Delta_K(M)$.

We will use the following remark in the next sections.

Lemma 2.9. The subset $\Delta_K(M)^0 \cap \mathfrak{t}^*_{\mathbb{O}}$ is dense in $\Delta_K(M)$.

Proof. Let us first explain why $\Delta_K(M)^0$ is a dense open subset of $\Delta_K(M)$. There exists a unique open face τ of the Weyl chamber $\mathfrak{t}^*_{\geq 0}$ such as $\Delta_K(M) \cap \tau$ is dense in $\Delta_K(M)$: τ is called the *principal* face in [22]. The principal-cross-section theorem [22] tells us that $Y_\tau := \Phi^{-1}(\tau)$ is a symplectic K_τ -manifold, with a trivial action of $[K_\tau, K_\tau]$. The line bundle $\mathcal{L}_\tau := \mathcal{L}|_{Y_\tau}$ prequantizes the symplectic structure on Y_τ , and relations (10) show that $[K_\tau, K_\tau]$ acts trivially on \mathcal{L}_τ . Moreover, the restriction of Φ_K on Y_τ is the moment map $\Phi_\tau : Y_\tau \to \mathfrak{z}^*_\tau$ associated to the action of the torus $Z_\tau = \exp(\mathfrak{z}_\tau)$ on \mathcal{L}_τ .

Let $I \subset \mathfrak{z}_{\tau}^*$ be the smallest affine subspace containing $\Delta_K(M)$. Let $\mathfrak{z}_I \subset \mathfrak{z}_{\tau}$ be the annihilator of the subspace parallel to I: Relations (10) show that \mathfrak{z}_I is the generic infinitesimal stabilizer of the \mathfrak{z}_{τ} -action on Y_{τ} . Hence, \mathfrak{z}_I is the Lie algebra of the torus $Z_I := \exp(\mathfrak{z}_I)$.

We see then that any regular value of $\Phi_{\tau}: Y_{\tau} \to I$, viewed as a map with codomain I, is a weakly regular value of the moment map Φ_K . It explains why $\Delta_K(M)^0$ is a dense open subset of $\Delta_K(M)$.

As the convex set $\Delta_K(M) \cap \tau$ is equal to $\Delta_{Z_\tau}(Y_\tau) := \operatorname{Image}(\Phi_\tau)$, it is sufficient to check that $\Delta_{Z_\tau}(Y_\tau)^0 \cap \mathfrak{t}^*_{\mathbb{Q}}$ is dense in $\Delta_{Z_\tau}(Y_\tau)$. The subtorus $Z_I \subset Z_\tau$ acts trivially on Y_τ , and it acts on the line bundle \mathcal{L}_τ through a character χ . Let $\eta \in \wedge^* \cap \mathfrak{t}^*_\tau$ such that $d\chi = i\eta|_{\mathfrak{z}_I}$. The affine subspace I which is equal to $\eta + (\mathfrak{z}_I)^{\perp}$ is rational. Since the open subset $\Delta_{Z_\tau}(Y_\tau)^0$ generates the rational affine subspace I, we can conclude that $\Delta_{Z_\tau}(Y_\tau)^0 \cap \mathfrak{t}^*_{\mathbb{Q}}$ is dense in $\Delta_{Z_\tau}(Y_\tau)$.

2.4. Weinstein's theorem

Let $\tilde{a} \in \tilde{C}_{hol}$. Consider the Hamiltonian action of the group G on the coadjoint orbit $\tilde{G}\tilde{a}$. The moment map $\Phi_{G}^{\tilde{a}}: \tilde{G}\tilde{a} \to \mathfrak{g}^{*}$ corresponds to the restriction of the projection $\pi_{\mathfrak{g},\tilde{\mathfrak{g}}}$ to $\tilde{G}\tilde{a}$. In this setting, the following conditions holds:

- 1. The action of G on $\tilde{G}\tilde{a}$ is proper.
- 2. The moment map $\Phi_{G}^{\tilde{a}}$ is a proper map since the map $\langle \Phi_{G}^{\tilde{a}}, z \rangle$ is proper (see Lemma 2.3).

Conditions 1 and 2 impose that the image of $\Phi_G^{\tilde{a}}$ is contained in the open subset \mathfrak{g}_{se}^* of strongly elliptic elements [31]. Thus, the *G*-orbits contained in the image of $\Phi_G^{\tilde{a}}$ are parametrized by the following subset of the holomorphic chamber \mathcal{C}_{hol} :

$$\Delta_G(\tilde{G}\tilde{a}) := \operatorname{Image}(\Phi_G^{\tilde{a}}) \bigcap \mathfrak{t}_{\geq 0}^*.$$

We notice that $\Delta_{\text{hol}}(\tilde{G},G) = \bigcup_{\tilde{a}\in\tilde{\mathcal{C}}_{\text{hol}}} \{\tilde{a}\} \times \Delta_G(\tilde{G}\tilde{a}).$

Like in Definition 2.7, an element $\xi \in \mathfrak{g}^*$ is a *weakly regular* value of $\Phi_G^{\tilde{a}}$ if for all $m \in (\Phi_G^{\tilde{a}})^{-1}(\xi)$ we have $\dim \mathfrak{g}_m = \min_{x \in \tilde{G}\tilde{a}} \dim(\mathfrak{g}_x)$. We denote by $\Delta_G(\tilde{G}\tilde{a})^0$ the set of elements $\xi \in \Delta_G(\tilde{G}\tilde{a})$ that are weakly regular for $\Phi_G^{\tilde{a}}$.

Theorem 2.10 (Weinstein). For any $\tilde{a} \in \tilde{C}_{hol}$, $\Delta_G(\tilde{G}\tilde{a})$ is a closed convex subset contained in C_{hol} .

Proof. We recall briefly the arguments of the proof (see [38] or [31][§2]). Under Conditions 1 and 2, one checks easily that $Y_{\tilde{a}} := (\Phi_{G}^{\tilde{a}})^{-1}(\mathfrak{k}^*)$ is a smooth *K*-invariant symplectic submanifold of $\tilde{G}\tilde{a}$ such that

$$\tilde{G}\tilde{a} \simeq G \times_K Y_{\tilde{a}}.\tag{12}$$

The moment map $\Phi_{K}^{\tilde{a}}: Y_{\tilde{a}} \to \mathfrak{k}^{*}$, which corresponds to the restriction of the map $\Phi_{G}^{\tilde{a}}$ to $Y_{\tilde{a}}$, is a proper map. Hence, the convexity theorem tells us that $\Delta_{K}(Y_{\tilde{a}}) := \operatorname{Image}(\Phi_{K}^{\tilde{a}}) \cap \mathfrak{t}_{\geq 0}^{*}$ is a closed, convex, locally polyhedral set. Thanks to the isomorphism (12), we see that $\Delta_{G}(\tilde{G}\tilde{a})$ coincides with the closed convex subset $\Delta_{K}(Y_{\tilde{a}})$. The proof is completed. \Box

The next lemma is used in 4.1.

Lemma 2.11. Let $\tilde{a} \in \tilde{\mathcal{C}}_{hol}$ be a rational element. Then $\Delta_G(\tilde{G}\tilde{a})^0 \cap \mathfrak{t}^*_{\mathbb{O}}$ is dense in $\Delta_G(\tilde{G}\tilde{a})$.

Proof. Thanks to equation (12), we know that $\Delta_G(\tilde{G}\tilde{a}) = \Delta_K(Y_{\tilde{a}})$. Relation (12) shows also that $\Delta_G(\tilde{G}\tilde{a})^0 = \Delta_K(Y_{\tilde{a}})^0$. Let $N \ge 1$ such that $\tilde{\mu} = N\tilde{a} \in \wedge^* \cap \mathcal{C}_{hol}$. The stabilizer subgroup $\tilde{G}_{\tilde{\mu}}$ is compact, equal to $\tilde{K}_{\tilde{\mu}}$. Let us denote by $\mathbb{C}_{\tilde{\mu}}$ the one-dimensional representation of $\tilde{K}_{\tilde{\mu}}$ associated to $\tilde{\mu}$. The convex set $\Delta_G(\tilde{G}\tilde{a})$ is equal to $\frac{1}{N}\Delta_G(\tilde{G}\tilde{\mu})$, so it is sufficient to check that $\Delta_G(\tilde{G}\tilde{\mu})^0 \cap \mathfrak{t}^*_{\mathbb{Q}} = \Delta_K(Y_{\tilde{\mu}})^0 \cap \mathfrak{t}^*_{\mathbb{Q}}$ is dense in $\Delta_G(\tilde{G}\tilde{\mu}) = \Delta_K(Y_{\tilde{\mu}})$. The coadjoint orbit $\tilde{G}\tilde{\mu}$ is prequantized by the line bundle $\tilde{G} \times_{K_{\tilde{\mu}}} \mathbb{C}_{\tilde{\mu}}$, and the symplectic slice $Y_{\tilde{\mu}}$ is prequantized by the line bundle $\mathcal{L}_{\tilde{\mu}} := \tilde{G} \times_{K_{\tilde{\mu}}} \mathbb{C}_{\tilde{\mu}} |_{Y_{\tilde{\mu}}}$. Thanks to Lemma 2.9, we know that $\Delta_K(Y_{\tilde{\mu}})^0 \cap \mathfrak{t}^*_{\mathbb{Q}}$ is dense in $\Delta_K(Y_{\tilde{\mu}})$: The proof is complete. \Box

3. Holomorphic discrete series

3.1. Definition

We return to the framework of §2.1. We recall the notion of holomorphic discrete series representations associated to a Hermitian symmetric spaces G/K. Let us introduce

$$\mathcal{C}_{\text{hol}}^{\rho} := \left\{ \xi \in \mathfrak{t}_{\geq 0}^{*} | (\xi, \beta) \geq (2\rho_{n}, \beta), \, \forall \beta \in \mathfrak{R}_{n}^{+, z} \right\},\,$$

where $2\rho_n = \sum_{\beta \in \mathfrak{R}_n^{+, z}} \beta$ is *W*-invariant.

Lemma 3.1.

- 1. We have $\mathcal{C}_{hol}^{\rho} \subset \mathcal{C}_{hol}$.
- 2. For any $\xi \in \mathcal{C}_{hol}$, there exists $N \geq 1$ such that $N\xi \in \mathcal{C}_{hol}^{\rho}$.

Proof. The first point is due to the fact that $(\beta_0, \beta_1) \ge 0$ for any $\beta_0, \beta_1 \in \mathfrak{R}_n^{+,z}$. The second point is obvious.

We will be interested in the following subset of dominant weights:

$$\widehat{G}_{\mathrm{hol}} := \wedge_+^* \bigcap \mathcal{C}_{\mathrm{hol}}^{\rho}.$$

Let $\text{Sym}(\mathfrak{p})$ be the symmetric algebra of the complex K-module $(\mathfrak{p}, \text{ad}(z))$.

Theorem 3.2 (Harish–Chandra). For any $\lambda \in \widehat{G}_{hol}$, there exists an irreducible unitary representation of G, denoted by V_{λ}^{G} , such that the vector space of K-finite vectors is $V_{\lambda}^{G}|_{K} := V_{\lambda}^{K} \otimes \text{Sym}(\mathfrak{p}).$

The set $V_{\lambda}^{G}, \lambda \in \widehat{G}_{hol}$ corresponds to the holomorphic discrete series representations associated to the complex structure ad(z).

3.2. Restriction

We come back to the framework of §2.2. We consider two compatible Hermitian symmetric spaces $G/K \subset \tilde{G}/\tilde{K}$, and we look after the restriction of holomorphic discrete series representations of \tilde{G} to the subgroup G.

Let $\tilde{\lambda} \in \tilde{\tilde{G}}_{hol}$. Since the representation $V_{\tilde{\lambda}}^{\tilde{G}}$ is discretely admissible relatively to the circle group $\exp(\mathbb{R}z)$, it is also discretely admissible relatively to G. We can be more precise [15, 24, 21]:

Proposition 3.3. We have an Hilbertian direct sum

$$V_{\tilde{\lambda}}^{\tilde{G}}|_{G} = \bigoplus_{\lambda \in \widehat{G}_{\text{hol}}} m_{\tilde{\lambda}}^{\lambda} V_{\lambda}^{G},$$

where the multiplicity $m_{\tilde{\lambda}}^{\lambda} := [V_{\lambda}^{G} : V_{\tilde{\lambda}}^{\tilde{G}}]$ is finite for any λ .

The Hermitian K-vector space $\tilde{\mathfrak{p}}$, when restricted to the K-action, admits an orthogonal decomposition $\tilde{\mathfrak{p}} = \mathfrak{p} \oplus \mathfrak{q}$. Notice that the symmetric algebra $\text{Sym}(\mathfrak{q})$ is an admissible K-module.

In [15], H. P. Jakobsen and M. Vergne obtained the following nice characterization of the multiplicities $[V_{\lambda}^{G}: V_{\tilde{\lambda}}^{\tilde{G}}]$. Another proof is given in [31], §4.4.

Theorem 3.4 (Jakobsen–Vergne). Let $(\tilde{\lambda}, \lambda) \in \widehat{\tilde{G}}_{hol} \times \widehat{G}_{hol}$. The multiplicity $[V_{\lambda}^G : V_{\tilde{\lambda}}^{\tilde{G}}]$ is equal to the multiplicity of the representation V_{λ}^K in $\operatorname{Sym}(\mathfrak{q}) \otimes V_{\tilde{\lambda}}^{\tilde{K}}|_K$.

3.3. Discrete analogues of $\Delta_{hol}(\tilde{G}, G)$

We define the following discrete analogues of the cone $\Delta_{\text{hol}}(\tilde{G}, G)$:

$$\Pi^{\mathbb{Z}}_{\text{hol}}(\tilde{G},G) := \left\{ (\tilde{\lambda},\lambda) \in \widehat{\tilde{G}}_{\text{hol}} \times \widehat{G}_{\text{hol}} \ [V^G_{\lambda} : V^{\tilde{G}}_{\tilde{\lambda}}] \neq 0 \right\},\tag{13}$$

and

$$\Pi^{\mathbb{Q}}_{\mathrm{hol}}(\tilde{G},G) := \left\{ (\tilde{\xi},\xi) \in \tilde{\mathcal{C}}_{\mathrm{hol}} \times \mathcal{C}_{\mathrm{hol}} \; \exists N \ge 1, \; (N\xi,N\tilde{\xi}) \in \Pi^{\mathbb{Z}}_{\mathrm{hol}}(\tilde{G},G) \right\}.$$
(14)

We have the following key fact.

Proposition 3.5.

- Π^Z_{hol}(G̃,G) is a subset of Λ̃^{*} × Λ^{*} stable under the addition.
 Π^Q_{hol}(G̃,G) is a Q-convex cone of the Q-vector space t̃^{*}_Q × t^{*}_Q.

Proof. Suppose that $a_1 := (\tilde{\lambda}_1, \lambda_1)$ and $a_2 := (\tilde{\lambda}_2, \lambda_2)$ belongs to $\Pi^{\mathbb{Z}}_{hol}(\tilde{G}, G)$. Thanks to Theorem 3.4, we know that the K-modules $\operatorname{Sym}(\mathfrak{q}) \otimes (V_{\lambda_j}^K)^* \otimes V_{\tilde{\lambda}_i}^{\tilde{K}}|_K$ possess a nonzero invariant vector ϕ_j , for j = 1, 2.

Let $\mathbb{X} := \overline{K/T} \times \tilde{K}/\tilde{T}$ be the product of flag manifolds. The complex structure is normalized so that $\mathbf{T}_{([e], [\tilde{e}])} \mathbb{X} \simeq \mathfrak{n}_{-} \oplus \tilde{\mathfrak{n}}_{+}$, where $\mathfrak{n}_{-} = \sum_{\alpha < 0} (\mathfrak{k}_{\mathbb{C}})_{\alpha}$ and $\tilde{\mathfrak{n}}_{+} = \sum_{\tilde{\alpha} > 0} (\tilde{\mathfrak{k}}_{\mathbb{C}})_{\tilde{\alpha}}$. We associate to each data a_j , the holomorphic line bundle $\mathcal{L}_j := K \times_T \mathbb{C}_{-\lambda_j} \boxtimes \tilde{K} \times_{\tilde{T}} \mathbb{C}_{-\tilde{\lambda}_j}$ on X. Let $H^0(\mathbb{X}, \mathcal{L}_j)$ be the space of holomorphic sections of the line bundle \mathcal{L}_j . The Borel–Weil theorem tells us that $H^0(\mathbb{X}, \mathcal{L}_j) \simeq (V_{\lambda_j}^K)^* \otimes V_{\tilde{\lambda}_j}^{\tilde{K}}|_K, \forall j \in \{1, 2\}.$

We have $\phi_j \in \left[\operatorname{Sym}(\mathfrak{q}) \otimes H^0(\mathbb{X}, \mathcal{L}_j)\right]^K$, $\forall j$, and then $\phi_1 \phi_2 \in \operatorname{Sym}(\mathfrak{q}) \otimes H^0(\mathbb{X}, \mathcal{L}_1 \otimes \mathcal{L}_2)$ is a nonzero invariant vector. Hence, $[\operatorname{Sym}(\mathfrak{q}) \otimes (V_{\lambda_1+\lambda_2}^K)^* \otimes V_{\tilde{\lambda}_1+\tilde{\lambda}_2}^{\tilde{K}}|_K]^K \neq 0$. Thanks to Theorem 3.4, we can conclude that $a_1 + a_2 = (\tilde{\lambda}_1 + \tilde{\lambda}_2, \lambda_1 + \lambda_2)$ belongs to $\Pi^{\mathbb{Z}}_{hol}(\tilde{G}, G)$. The first point is proved. From the first point, one checks easily that

- $\Pi^{\mathbb{Q}}_{hol}(\tilde{G}, G)$ is stable under addition,
- $\Pi^{\mathbb{Q}}_{hol}(\tilde{G}, G)$ is stable by expansion by a nonnegative rational number.

The second point is settled.

3.4. Riemann–Roch numbers

We come back to the framework of $\S2.3$.

We associate to a dominant weight $\mu \in \wedge_+^*$ the (possibly singular) symplectic reduced space $M_{\mu} := \Phi_K^{-1}(\mu)/K_{\mu}$ and the (possibly singular) line bundle over M_{μ} :

$$\mathcal{L}_{\mu} := \left(\mathcal{L}|_{\Phi_{K}^{-1}(\mu)} \otimes \mathbb{C}_{-\mu} \right) / K_{\mu}.$$

Suppose first that μ is a weakly regular value of Φ_K . Then M_{μ} is an orbifold equipped with a symplectic structure Ω_{μ} , and \mathcal{L}_{μ} is a line orbi-bundle over M_{μ} that prequantizes the symplectic structure. By choosing an almost complex structure on M_{μ} compatible with Ω_{μ} , we get a decomposition $\wedge \mathbf{T}^* M_{\mu} \otimes \mathbb{C} = \bigoplus_{i,j} \wedge^{i,j} \mathbf{T}^* M_{\mu}$ of the bundle of differential forms. Using Hermitian structures in the tangent bundle $\mathbf{T}M_{\mu}$ of M_{μ} and in the fibers of \mathcal{L}_{μ} , we define a Dolbeaut–Dirac operator

$$D^+_{\mu}: \mathcal{A}^{0,+}(M_{\mu}, \mathcal{L}_{\mu}) \longrightarrow \mathcal{A}^{0,-}(M_{\mu}, \mathcal{L}_{\mu}),$$

where $\mathcal{A}^{i,j}(M_{\mu},\mathcal{L}_{\mu}) = \Gamma(M_{\mu},\wedge^{i,j} \mathbf{T}^*M_{\mu}\otimes\mathcal{L}_{\mu}).$

Definition 3.6. Let $\mu \in \wedge_+^*$ be a weakly regular value of the moment map Φ_K . The Riemann-Roch number $RR(M_{\mu}, \mathcal{L}_{\mu}) \in \mathbb{Z}$ is defined as the index of the elliptic operator $D^+_{\mu} \colon RR(M_{\mu}, \mathcal{L}_{\mu}) = \dim(ker(D^+_{\mu})) - \dim(coker(D^+_{\mu})).$

Suppose that $\mu \notin \Delta_K(M)$. Then $M_\mu = \emptyset$, and we take $RR(M_\mu, \mathcal{L}_\mu) = 0$.

Suppose now that $\mu \in \Delta_K(M)$ is not (necessarily) a weakly regular value of Φ_K . Take a small element $\epsilon \in \mathfrak{t}^*$ such that $\mu + \epsilon$ is a weakly regular value of Φ_K belonging to $\Delta_K(M)$. We consider the symplectic orbifold $M_{\mu+\epsilon}$: If ϵ is small enough,

$$\mathcal{L}_{\mu,\epsilon} := \left(\mathcal{L}|_{\Phi_K^{-1}(\mu+\epsilon)} \otimes \mathbb{C}_{-\mu} \right) / K_{\mu+\epsilon}.$$

is a line orbi-bundle over $M_{\mu+\epsilon}$.

We have the following important result (see $\S3.4.3$ in [34]).

Proposition 3.7. Let $\mu \in \Delta_K(M) \cap \wedge^*$. The Riemann–Roch number $RR(M_{\mu+\epsilon}, \mathcal{L}_{\mu,\epsilon})$ do not depend on the choice of ϵ small enough so that $\mu + \epsilon \in \Delta_K(M)$ is a weakly regular value of Φ_K .

We can now introduce the following definition.

Definition 3.8. Let $\mu \in \wedge_+^*$. We define

$$\mathcal{Q}(M_{\mu}, \Omega_{\mu}) = \begin{cases} 0 & \text{if } \mu \notin \Delta_{K}(M) \\ RR(M_{\mu+\epsilon}, \mathcal{L}_{\mu, \epsilon}) & \text{if } \mu \in \Delta_{K}(M) \end{cases}$$

Above, ϵ is chosen small enough so that $\mu + \epsilon \in \Delta_K(M)$ is a weakly regular value of Φ_K .

Let $n \geq 1$. The manifold M, equipped with the symplectic structure $n\Omega$, is prequantized by the line bundle $\mathcal{L}^{\otimes n}$: The corresponding moment map is $n\Phi_K$. For any dominant weight $\mu \in \wedge_+^*$, the symplectic reduction of $(M, n\Omega)$ relatively to the weight $n\mu$ is $(M_\mu, n\Omega_\mu)$. Like in Definition 3.8, we consider the following Riemann–Roch numbers

$$\mathcal{Q}(M_{\mu}, n\Omega_{\mu}) = \begin{cases} 0 & \text{if} \quad \mu \notin \Delta_{K}(M), \\ RR(M_{\mu+\epsilon}, (\mathcal{L}_{\mu,\epsilon})^{\otimes n}) & \text{if} \quad \mu \in \Delta_{K}(M) \text{ and } \|\epsilon\| << 1 \end{cases}$$

The Kawasaki–Riemann–Roch formula shows that $n \ge 1 \mapsto \mathcal{Q}(M_{\mu}, n\Omega_{\mu})$ is a quasipolynomial map [37, 23]. When μ is a weakly regular value of Φ_K , we denote by $\operatorname{vol}(M_{\mu}) := \frac{1}{d_{\mu}} \int_{M_{\mu}} \left(\frac{\Omega_{\mu}}{2\pi}\right)^{\frac{\dim M_{\mu}}{2}}$ the symplectic volume of the symplectic orbifold (M_{μ}, Ω_{μ}) . Here, d_{μ} is the generic value of the map $m \in \Phi_K^{-1}(\mu) \mapsto \operatorname{cardinal}(K_m/K_m^0)$.

The following proposition is a direct consequence of the Kawasaki–Riemann–Roch formula (see [23] or §1.3.4 in [30]).

Proposition 3.9. Let $\mu \in \Delta_K(M) \cap \wedge_+^*$ be a weakly regular value of Φ_K . Then we have $\mathcal{Q}(M_\mu, n\Omega_\mu) \sim \operatorname{vol}(M_\mu) n^{\frac{\dim M_\mu}{2}}$ when $n \to \infty$. In particular, the map $n \ge 1 \mapsto \mathcal{Q}(M_\mu, n\Omega_\mu)$ is nonzero.

3.5. Quantization commutes with reduction

Let us explain the "quantization commutes with reduction" theorem proved in [31].

We fix $\tilde{\lambda} \in \widehat{\tilde{G}}_{hol}$. The coadjoint orbit $\tilde{G}\tilde{\lambda}$ is prequantized by the line bundle $\tilde{G} \times_{K_{\tilde{\lambda}}} \mathbb{C}_{\tilde{\lambda}}$, and the moment map $\Phi_{G}^{\tilde{\lambda}} : \tilde{G}\tilde{\lambda} \to \mathfrak{g}^{*}$ corresponding to the *G*-action on $\tilde{G} \times_{K_{\tilde{\lambda}}} \mathbb{C}_{\tilde{\lambda}}$ is equal to the restriction of the map $\pi_{\mathfrak{g},\tilde{\mathfrak{g}}}$ to $\tilde{G}\tilde{\lambda}$.

2819

The symplectic slice $Y_{\tilde{\lambda}} = (\Phi_G^{\tilde{\lambda}})^{-1}(\mathfrak{k}^*)$ is prequantized by the line bundle $\mathcal{L}_{\tilde{\lambda}} := \tilde{G} \times_{K_{\tilde{\lambda}}} \mathbb{C}_{\tilde{\lambda}}|_{Y_{\tilde{\lambda}}}$. The moment map $\Phi_K^{\tilde{\lambda}} : Y_{\tilde{\lambda}} \to \mathfrak{k}^*$ corresponding to the K-action is equal to the restriction of $\Phi_G^{\tilde{\lambda}}$ to $Y_{\tilde{\lambda}}$.

For any $\lambda \in \widehat{G}_{hol}$, we consider the (possibly singular) symplectic reduced space

$$\mathbb{X}_{\tilde{\lambda},\lambda} := (\Phi_K^{\tilde{\lambda}})^{-1}(\lambda)/K_{\lambda},$$

equipped with the reduced symplectic form $\Omega_{\tilde{\lambda},\lambda}$, and the (possibly singular) line bundle

$$\mathbb{L}_{\tilde{\lambda},\lambda} := \left(\mathcal{L}_{\tilde{\lambda}} |_{(\Phi_{K}^{\tilde{\lambda}})^{-1}(\lambda)} \otimes \mathbb{C}_{-\lambda} \right) / K_{\lambda}.$$

Thanks to Definition 3.8, the geometric quantization $\mathcal{Q}(\mathbb{X}_{\tilde{\lambda},\lambda},\Omega_{\tilde{\lambda},\lambda}) \in \mathbb{Z}$ of those compact symplectic spaces $(\mathbb{X}_{\tilde{\lambda},\lambda},\Omega_{\tilde{\lambda},\lambda})$ are well-defined even if they are singular. In particular, $\mathcal{Q}(\mathbb{X}_{\tilde{\lambda},\lambda},\Omega_{\tilde{\lambda},\lambda}) = 0$ when $\mathbb{X}_{\tilde{\lambda},\lambda} = \emptyset$.

The following theorem is proved in [31].

Theorem 3.10. Let $\tilde{\lambda} \in \widehat{\tilde{G}}_{hol}$. We have an Hilbertian direct sum

$$V^G_{\tilde{\lambda}}|_G = \bigoplus_{\lambda \in \widehat{G}_{\mathrm{hol}}} \mathcal{Q}(\mathbb{X}_{\tilde{\lambda},\lambda},\Omega_{\tilde{\lambda},\lambda}) \ V^G_{\lambda}.$$

It means that, for any $\lambda \in \widehat{G}_{hol}$, the multiplicity of the representation V_{λ}^{G} in the restriction $V_{\tilde{\lambda}}^{\tilde{G}}|_{G}$ is equal to the geometric quantization $\mathcal{Q}(\mathbb{X}_{\tilde{\lambda},\lambda},\Omega_{\tilde{\lambda},\lambda})$ of the (compact) reduced space $\mathbb{X}_{\tilde{\lambda},\lambda}^{\tilde{\lambda}}$.

Remark 3.11. Let $(\tilde{\lambda}, \lambda) \in \hat{\tilde{G}}_{hol} \times \hat{G}_{hol}$. Theorem 3.10. shows that

$$\left[V_{n\lambda}^G:V_{n\tilde{\lambda}}^{\tilde{G}}\right] = \mathcal{Q}(\mathbb{X}_{\tilde{\lambda},\lambda},n\Omega_{\tilde{\lambda},\lambda})$$

for any $n \ge 1$.

4. Proofs of the main results

We come back to the setting of §2.2: G/K is a complex submanifold of a Hermitian symmetric space \tilde{G}/\tilde{K} . It means that there exits a \tilde{K} -invariant element $z \in \mathfrak{k}$ such that $\operatorname{ad}(z)$ defines complex structures on $\tilde{\mathfrak{p}}$ and \mathfrak{p} . We consider the orthogonal decomposition $\tilde{\mathfrak{p}} = \mathfrak{p} \oplus \mathfrak{q}$, and we denote by $\operatorname{Sym}(\mathfrak{q})$ the symmetric algebra of the complex K-module $(\mathfrak{q}, \operatorname{ad}(z))$.

4.1. Proof of Theorem A

The set $\Delta_{\text{hol}}(\tilde{G},G)$ is equal to $\bigcup_{\tilde{a}\in\tilde{C}_{\text{hol}}}{\{\tilde{a}\}\times\Delta_G(\tilde{G}\tilde{a})}$. We define

$$\Delta_{\mathrm{hol}}(\tilde{G},G)^0 := \bigcup_{\tilde{a}\in\tilde{\mathcal{C}}_{\mathrm{hol}}} \{\tilde{a}\} \times \Delta_G(\tilde{G}\tilde{a})^0.$$

We start with the following result.

Lemma 4.1. The set $\Delta_{\text{hol}}(\tilde{G},G)^0 \cap \tilde{\mathfrak{t}}^*_{\mathbb{O}} \times \mathfrak{t}^*_{\mathbb{O}}$ is dense in $\Delta_{\text{hol}}(\tilde{G},G)$.

Proof. Let $(\tilde{\xi},\xi) \in \Delta_{\text{hol}}(\tilde{G},G)$: take $\tilde{g} \in \tilde{G}$ such that $\xi = \pi_{\mathfrak{q},\tilde{\mathfrak{q}}}(\tilde{g}\tilde{\xi})$. We consider a sequence $\tilde{\xi}_n \in \tilde{\mathcal{C}}_{\text{hol}} \cap \tilde{\mathfrak{t}}^*_{\mathbb{O}}$ converging to $\tilde{\xi}$. Then $\xi_n := \pi_{\mathfrak{g}, \tilde{\mathfrak{g}}}(\tilde{g}\tilde{\xi}_n)$ is a sequence of $\mathcal{C}^0_{G/K}$ converging to $\xi \in \mathcal{C}_{hol}$. Since the map $p: \mathcal{C}_{G/K}^0 \to \mathcal{C}_{hol}$ is continuous (see Lemma 2.4), the sequence $\eta_n := p(\xi_n)$ converges to $p(\xi) = \xi$. By definition, we have $\eta_n \in \Delta_G(\tilde{G}\tilde{\xi}_n)$ for any $n \in \mathbb{N}$. Since ξ_n are rational, each subset $\Delta_G(\tilde{G}\xi_n)^0 \cap \mathfrak{t}^*_{\mathbb{Q}}$ is dense in $\Delta_G(\tilde{G}\xi_n)$ (see Lemma 2.11). Hence, $\forall n \in \mathbb{N}$, there exists $\zeta_n \in \Delta_G(\tilde{G}\tilde{\xi}_n)^0 \cap \mathfrak{t}^*_{\mathbb{Q}}$ such that $\|\zeta_n - \eta_n\| \leq 2^{-n}$. Finally, we see that $(\tilde{\xi}_n, \zeta_n)$ is a sequence of rational elements of $\Delta_{\text{hol}}(\tilde{G}, G)^0$ converging to $(\xi, \tilde{\xi})$. \Box

The main purpose of this section is the proof of the following theorem.

Theorem 4.2. For any rational element $(\tilde{\mu}, \mu)$ of the holomorphic chamber $\hat{\mathcal{C}}_{hol} \times \hat{\mathcal{C}}_{hol}$, the following statements hold:

- If μ ∈ Δ_G(G̃μ)⁰, then (μ̃,μ) ∈ Π^Q_{hol}(G̃,G).
 If (μ̃,μ) ∈ Π^Q_{hol}(G̃,G), then μ ∈ Δ_G(G̃μ).

In other words, we have the following inclusions:

$$\Delta_{\mathrm{hol}}(\tilde{G},G)^0 \bigcap \tilde{\mathfrak{t}}^*_{\mathbb{Q}} \times \mathfrak{t}^*_{\mathbb{Q}} \quad \underset{(1)}{\subset} \quad \Pi^{\mathbb{Q}}_{\mathrm{hol}}(\tilde{G},G) \quad \underset{(2)}{\subset} \quad \Delta_{\mathrm{hol}}(\tilde{G},G).$$

Lemma 4.1 and Theorem 4.2 gives the important corollary.

Corollary 4.3. $\Pi^{\mathbb{Q}}_{hol}(\tilde{G}, G)$ is dense in $\Delta_{hol}(\tilde{G}, G)$.

Proof of Theorem 4.2. Let $(\tilde{\mu}, \mu) \in \Pi^{\mathbb{Q}}_{hol}(\tilde{G}, G)$: There exists $N \ge 1$ such that $(N\tilde{\mu}, N\mu) \in$ $\Pi^{\mathbb{Z}}_{\text{hol}}(\tilde{G}, G)$. The multiplicity $[V^G_{N\mu} : V^{\tilde{G}}_{N\tilde{\mu}}]$ is nonzero, and thanks to Theorem 3.10, it implies that the reduced space $\mathbb{X}_{N\tilde{\mu},N\mu}$ is nonempty. In other words, $(N\tilde{\mu},N\mu) \in \Delta_{\text{hol}}(\tilde{G},G)$. The inclusion (2) is proven.

Let $(\tilde{\mu}, \mu) \in \Delta_{\text{hol}}(\tilde{G}, G)^0 \bigcap \mathfrak{t}^*_{\mathbb{O}} \times \tilde{\mathfrak{t}}^*_{\mathbb{O}}$. There exists $N_o \geq 1$ such that $\lambda := N_o \mu \in \widehat{G}_{\text{hol}}, \ \tilde{\lambda} :=$ $N_o \tilde{\mu} \in \tilde{\tilde{G}}_{hol}$ and $\lambda \in \Delta_G(\tilde{G}\tilde{\lambda})^0$: The element λ is a weakly regular value of the moment map $\tilde{G}\tilde{\lambda} \to \mathfrak{g}^*$. Theorem 3.10 tells us that, for any $n \ge 1$, the multiplicity $[V_{n\lambda}^G : V_{n\tilde{\lambda}}^{\tilde{G}}]$ is equal to Riemann–Roch number $\mathcal{Q}(\mathbb{X}_{\tilde{\lambda},\lambda}, n\Omega_{\tilde{\lambda},\lambda})$. Since the map $n \mapsto \mathcal{Q}(\mathbb{X}_{\tilde{\lambda},\lambda}, n\Omega_{\tilde{\lambda},\lambda})$ is nonzero (see Proposition 3.9), we can conclude that there exists $n_o \ge 1$ such that $[V_{n_o\lambda}^G : V_{n_o\tilde{\lambda}}^{\tilde{G}}] \neq 0$. In other words, we obtain $n_o N_o(\tilde{\mu}, \mu) \in \Pi^{\mathbb{Z}}_{\text{hol}}(\tilde{G}, G)$ and so $(\tilde{\mu}, \mu) \in \Pi^{\mathbb{Q}}_{\text{hol}}(\tilde{G}, G)$. The inclusion (1) is settled.

Now we can terminate the proof of Theorem A.

Thanks to Proposition 3.5, we know that $\prod_{h=0}^{\mathbb{Q}}(\tilde{G},G)$ is a \mathbb{Q} -convex cone. Since $\Delta_{\text{hol}}(\tilde{G},G)$ is a closed subset of $\tilde{\mathcal{C}}_{\text{hol}} \times \mathcal{C}_{\text{hol}}$ (see Proposition 2.6), we can conclude, by a density argument, that $\Delta_{\text{hol}}(\tilde{G}, G)$ is a closed convex cone of $\tilde{\mathcal{C}}_{\text{hol}} \times \mathcal{C}_{\text{hol}}$.

4.2. The affine variety $\tilde{K}_{\mathbb{C}} \times \mathfrak{q}$

Let $\tilde{\kappa}$ be the Killing form on the Lie algebra $\tilde{\mathfrak{g}}$. We consider the \tilde{K} -invariant symplectic structures $\Omega_{\tilde{\mathfrak{p}}}$ on $\tilde{\mathfrak{p}}$, defined by the relation

$$\Omega_{\tilde{\mathfrak{p}}}(\tilde{Y}, \tilde{Y}') = \tilde{\kappa}(z, [\tilde{Y}, \tilde{Y}']), \quad \forall \tilde{Y}, \tilde{Y}' \in \tilde{\mathfrak{p}}.$$

We notice that the complex structure $\operatorname{ad}(z)$ is adapted to $\Omega_{\tilde{\mathfrak{p}}} \colon \Omega_{\tilde{\mathfrak{p}}}(\tilde{Y}, \operatorname{ad}(z)\tilde{Y}) > 0$ if $\tilde{Y} \neq 0$.

We denote by $\Omega_{\mathfrak{q}}$ the restriction of $\Omega_{\tilde{\mathfrak{p}}}$ on the symplectic subspace \mathfrak{q} . The moment map $\Phi_{\mathfrak{q}}$ associated to the *K*-action on $(\mathfrak{q}, \Omega_{\mathfrak{q}})$ is defined by the relations $\langle \Phi_{\mathfrak{q}}(Y), X \rangle = \frac{-1}{2} \tilde{\kappa}([X,Y],[z,Y]), \ \forall (X,Y) \in \mathfrak{p} \times \mathfrak{q}$. In particular, $\langle \Phi_{\mathfrak{q}}(Y), z \rangle = \frac{-1}{2} ||Y||^2, \ \forall Y \in \mathfrak{q}$, so the map $\langle \Phi_{\mathfrak{q}}, z \rangle$ is proper.

The complex reductive group $\tilde{K}_{\mathbb{C}}$ is equipped with the following action of $\tilde{K} \times K$: $(\tilde{k},k) \cdot a = \tilde{k}ak^{-1}$. It has a canonical structure of a smooth affine variety. There is a diffeomorphism of the cotangent bundle $\mathbf{T}^*\tilde{K}$ with $\tilde{K}_{\mathbb{C}}$ defined as follows. We identify $\mathbf{T}^*\tilde{K}$ with $\tilde{K} \times \tilde{\mathfrak{t}}^*$ by means of left-translation and then with $\tilde{K} \times \tilde{\mathfrak{t}}$ by means of an invariant inner product on $\tilde{\mathfrak{t}}$. The map $\varphi : \tilde{K} \times \tilde{\mathfrak{t}} \to \tilde{K}_{\mathbb{C}}$ given by $\varphi(a, X) = ae^{iX}$ is a diffeomorphism. If we use φ to transport the complex structure of $\tilde{K}_{\mathbb{C}}$ to $\mathbf{T}^*\tilde{K}$, then the resulting complex structure on $\mathbf{T}^*\tilde{K}$ is compatible with the symplectic structure on

 $\mathbf{T}^*\tilde{K}$ so that $\mathbf{T}^*\tilde{K}$ becomes a Kähler Hamiltonian $\tilde{K} \times K$ -manifold (see [11], §3). The moment map relative to the $\tilde{K} \times K$ -action is the proper map $\Phi_{\tilde{K}} \oplus \Phi_K : \mathbf{T}^*\tilde{K} \to \mathfrak{k}^* \oplus \mathfrak{k}^*$ defined by $\Phi_{\tilde{K}}(\tilde{a},\tilde{\eta}) = -\tilde{a}\tilde{\eta}$ and $\Phi_K(\tilde{a},\tilde{\eta}) = \pi_{\mathfrak{k},\tilde{\mathfrak{k}}}(\tilde{\eta})$. Here $\pi_{\mathfrak{k},\tilde{\mathfrak{k}}} : \mathfrak{k}^* \to \mathfrak{k}^*$ is the projection dual to the inclusion $\mathfrak{k} \hookrightarrow \tilde{\mathfrak{k}}$ of Lie algebras.

Finally, we consider the Kähler Hamiltonian $\tilde{K} \times K$ -manifold $\mathbf{T}^* \tilde{K} \times \mathfrak{q}$, where \mathfrak{q} is equipped with the symplectic structure $\Omega_{\mathfrak{q}}$. Let us denote by $\Phi : \mathbf{T}^* \tilde{K} \times \mathfrak{q} \to \tilde{\mathfrak{t}}^* \oplus \mathfrak{k}^*$ the moment map relative to the $\tilde{K} \times K$ -action:

$$\Phi(\tilde{a},\tilde{\eta},Y) = \left(-\tilde{a}\tilde{\eta},\pi_{\mathfrak{k},\tilde{\mathfrak{k}}}(\tilde{\eta}) + \Phi_{\mathfrak{q}}(Y)\right).$$
(15)

Since Φ is proper map, the convexity theorem tells us that

$$\Delta(\mathbf{T}^*\tilde{K}\times\mathfrak{q}):=\mathrm{Image}(\Phi)\bigcap\tilde{\mathfrak{t}}_{\geq 0}^*\times\mathfrak{t}_{\geq 0}^*$$

is a closed convex locally polyhedral set.

We consider now the action of $\tilde{K} \times K$ on the affine variety $\tilde{K}_{\mathbb{C}} \times \mathfrak{q}$. The set of highest weights of $\tilde{K}_{\mathbb{C}} \times \mathfrak{q}$ is the semigroup $\Pi^{\mathbb{Z}}(\tilde{K}_{\mathbb{C}} \times \mathfrak{q}) \subset \tilde{\wedge}^*_+ \times \wedge^*_+$ consisting of all dominant weights $(\tilde{\lambda}, \lambda)$ such that the irreducible $\tilde{K} \times K$ -representation $V_{\tilde{\lambda}}^{\tilde{K}} \otimes V_{\lambda}^{K}$ occurs in the coordinate ring $\mathbb{C}[\tilde{K}_{\mathbb{C}} \times \mathfrak{q}]$. We denote by $\Pi^{\mathbb{Q}}(\tilde{K}_{\mathbb{C}} \times \mathfrak{q})$ the \mathbb{Q} -convex cone generated by the semigroup $\Pi^{\mathbb{Z}}(\tilde{K}_{\mathbb{C}} \times \mathfrak{q})$: $(\tilde{\xi}, \xi) \in \Pi^{\mathbb{Q}}(\tilde{K}_{\mathbb{C}} \times \mathfrak{q})$ if and only if $\exists N \geq 1$, $N(\tilde{\xi}, \xi) \in \Pi^{\mathbb{Z}}(\tilde{K}_{\mathbb{C}} \times \mathfrak{q})$.

The following important fact is classical (see Theorem 4.9 in [35]).

Proposition 4.4. The Kirwan polyhedron $\Delta(\mathbf{T}^*\tilde{K} \times \mathfrak{q})$ is equal to the closure of the \mathbb{Q} -convex cone $\Pi^{\mathbb{Q}}(\tilde{K}_{\mathbb{C}} \times \mathfrak{q})$.

A direct application of the Peter–Weyl theorem gives the following characterization:

$$(\tilde{\lambda}, \lambda) \in \Pi^{\mathbb{Z}}(\tilde{K}_{\mathbb{C}} \times \mathfrak{q}) \Longleftrightarrow \left[V_{\tilde{\lambda}}^{\tilde{K}} |_{K} \otimes V_{\lambda}^{K} \otimes \operatorname{Sym}(\mathfrak{q}) \right]^{K} \neq 0$$

$$\iff \left[V_{\lambda^{*}}^{K} : V_{\tilde{\lambda}}^{\tilde{K}} |_{K} \otimes \operatorname{Sym}(\mathfrak{q}) \right] \neq 0$$

$$\iff (\tilde{\lambda}, \lambda^{*}) \in \Pi^{\mathbb{Z}}_{\mathfrak{q}}(\tilde{K}, K).$$
(16)

4.3. Proof of Theorem B

Consider the semigroup $\Pi^{\mathbb{Z}}_{\mathfrak{q}}(\tilde{K},K)$ of $\tilde{\wedge}^*_+ \times \wedge^*_+$ (see Definition 1.3) and the \mathbb{Q} -convex cone $\Pi^{\mathbb{Q}}_{\mathfrak{q}}(\tilde{K},K) := \{(\tilde{\xi},\xi) \in \tilde{\mathfrak{t}}^*_{>0} \times \mathfrak{t}^*_{>0} \ \exists N \geq 1, N(\tilde{\xi},\xi) \in \Pi^{\mathbb{Z}}_{\mathfrak{q}}(\tilde{K},K)\}.$

The Jakobsen–Vergne theorem says that $\Pi^{\mathbb{Z}}_{\text{hol}}(\tilde{G},G) = \Pi^{\mathbb{Z}}_{\mathfrak{q}}(\tilde{K},K) \cap \hat{\tilde{G}}_{\text{hol}} \times \hat{G}_{\text{hol}}$. Hence, the convex cone $\Pi^{\mathbb{Q}}_{\text{hol}}(\tilde{G},G)$ is equal to $\Pi^{\mathbb{Q}}_{\mathfrak{q}}(\tilde{K},K) \cap \tilde{\mathcal{C}}_{\text{hol}} \times \mathcal{C}_{\text{hol}}$. Thanks to equation (16), we know that $(\tilde{\xi},\xi) \in \Pi^{\mathbb{Q}}_{\mathfrak{q}}(\tilde{K},K)$ if and only if $(\tilde{\xi},\xi^*) \in \Pi^{\mathbb{Q}}(\tilde{K}_{\mathbb{C}} \times \mathfrak{q})$. The density results obtained in Proposition 4.4 and Corollary 4.3 gives finally Theorem B.

4.4. Proof of Theorem C

We denote by $\bar{\mathfrak{q}}$ the *K*-vector space \mathfrak{q} equipped with the opposite symplectic form $-\Omega_{\mathfrak{q}}$ and opposite complex structure $-\operatorname{ad}(z)$. The moment map relative to the *K*-action on $\bar{\mathfrak{q}}$ is denoted by $\Phi_{\bar{\mathfrak{q}}} = -\Phi_{\mathfrak{q}}$.

Lemma 4.5. Any element $(\tilde{\xi}, \xi) \in \tilde{\mathfrak{t}}_{>0}^* \times \mathfrak{t}_{>0}^*$ satisfies the equivalence

$$(\tilde{\xi}, \xi^*) \in \Delta(\mathbf{T}^* \tilde{K} \times \mathfrak{q}) \Longleftrightarrow \xi \in \Delta_K(\tilde{K} \tilde{\xi} \times \overline{\mathfrak{q}}).$$

Proof. Thanks to equation (15), we see immediatly that $\exists (\tilde{a}, \tilde{\eta}, Y) \in \mathbf{T}^* \tilde{K} \times \mathfrak{q}$ such that $(\tilde{\xi}, \xi^*) = \Phi(\tilde{a}, \tilde{\eta}, Y)$ if and only if $\exists (\tilde{b}, Z) \in \tilde{K} \times \mathfrak{q}$ such that $\xi = \pi_{\mathfrak{k}, \tilde{\mathfrak{k}}} (\tilde{b}\tilde{\xi}) + \Phi_{\bar{\mathfrak{q}}}(Z)$. \Box

At this stage, we know that $\Delta_G(\tilde{G}\tilde{\mu}) = \Delta_K(\tilde{K}\tilde{\mu}\times\overline{\mathfrak{q}}) \cap \mathcal{C}_{\text{hol}}$. Hence, Theorem C will follow from the next result.

Proposition 4.6. For any $\tilde{\mu} \in \tilde{C}_{hol}$, the Kirwan polyhedron $\Delta_K(\tilde{K}\tilde{\mu} \times \bar{\mathfrak{q}})$ is contained in C_{hol} .

Proof. By definition $C_{\text{hol}} = C^0_{G/K} \cap \mathfrak{t}^*_{\geq 0}$, so we have to prove that $\pi_{\mathfrak{k},\tilde{\mathfrak{k}}}(\tilde{K}\tilde{\mu}) + \text{Image}(\Phi_{\bar{\mathfrak{q}}})$ is contained in $\mathcal{C}^0_{G/K}$. By definition $\tilde{K}\tilde{\mu} \subset \mathcal{C}^0_{\tilde{G}/\tilde{K}}$, and then $\pi_{\mathfrak{k},\tilde{\mathfrak{k}}}(\tilde{K}\tilde{\mu}) \subset \mathcal{C}^0_{G/K}$. Since $\mathcal{C}^0_{G/K} + \mathcal{C}^0_{G/K} \subset \mathcal{C}^0_{G/K}$, it is sufficient to check that $\text{Image}(\Phi_{\bar{\mathfrak{q}}}) \subset \mathcal{C}_{G/K}$. Let $\Phi_{\tilde{\mathfrak{p}}}$ be the moment map relative to the action of \tilde{K} on $(\tilde{\mathfrak{p}}, \Omega_{\tilde{\mathfrak{p}}})$. As $\text{Image}(\Phi_{\bar{\mathfrak{q}}}) \subset \pi_{\mathfrak{k},\tilde{\mathfrak{k}}}(\text{Image}(-\Phi_{\tilde{\mathfrak{p}}}))$, the following lemma will terminate the proof of Proposition 4.6.

Lemma 4.7. The image of the moment map $-\Phi_{\tilde{\mathfrak{p}}}$ is contained in $\mathcal{C}_{\tilde{G}/\tilde{K}}$.

Proof. Let $z^* \in \tilde{\mathfrak{t}}^*$ such that $\langle z^*, \tilde{X} \rangle = -\tilde{\kappa}(z, \tilde{X}), \forall \tilde{X} \in \tilde{\mathfrak{g}}$. Consider the coadjoint orbit $\tilde{\mathcal{O}} = \tilde{G}z^*$ equipped with its canonical symplectic structure $\Omega_{\tilde{\mathcal{O}}}$: The symplectic vector space $\mathbf{T}_{z^*}\tilde{\mathcal{O}}$ is canonically isomorphic to $(\tilde{\mathfrak{p}}, -\Omega_{\tilde{\mathfrak{p}}})$. In [26], McDuff proved that $(\tilde{\mathcal{O}}, \Omega_{\tilde{\mathcal{O}}})$ is diffeomorphic, as a \tilde{K} -symplectic manifold, to the symplectic vector space $(\tilde{\mathfrak{p}}, -\Omega_{\tilde{\mathfrak{p}}})$

(see [6, 8] for a generalization of this fact). McDuff's results show in particular that Image($-\Phi_{\tilde{\mathfrak{p}}}$) = $\pi_{\tilde{\mathfrak{g}},\tilde{\mathfrak{t}}}(\tilde{\mathcal{O}})$. Our proof is completed if we check that $\pi_{\tilde{\mathfrak{g}},\tilde{\mathfrak{t}}}(\tilde{\mathcal{O}}) \subset C_{\tilde{G}/\tilde{K}}$: In other words, if $\langle \pi_{\tilde{\mathfrak{a}},\tilde{\mathfrak{t}}}(\tilde{g}_0 z^*), \tilde{g}_1 z \rangle \geq 0, \forall \tilde{g}_0, \tilde{g}_1 \in \tilde{G}$. But

$$2\langle \pi_{\tilde{\mathfrak{g}},\tilde{\mathfrak{k}}}(\tilde{g}_0 z^*), \tilde{g}_1 z \rangle = \langle \tilde{g}_0 z^*, \tilde{g}_1 z + \Theta(\tilde{g}_1) z \rangle$$
$$= -\tilde{\kappa}(z, \tilde{g}_0^{-1} \tilde{g}_1 z) - \tilde{\kappa}(z, \tilde{g}_0^{-1} \Theta(\tilde{g}_1) z).$$

With equation (7) in hand, it is not difficult to see that $-\tilde{\kappa}(z,\tilde{g}\,z) \ge 0$ for every $\tilde{g} \in \tilde{G}$. We thus verified that $\pi_{\tilde{\mathfrak{a}},\tilde{\mathfrak{k}}}(\tilde{\mathcal{O}}) \subset \mathcal{C}_{\tilde{G}/\tilde{K}}$.

5. Inequalities characterizing the cones $\Delta_{\text{hol}}(\tilde{G}, G)$

We come back to the framework of §4.2. We consider the Kähler Hamiltonian $\tilde{K} \times K$ manifold $\mathbf{T}^* \tilde{K} \times \mathfrak{q}$. The moment map, $\Phi : \mathbf{T}^* \tilde{K} \times \mathfrak{q} \to \tilde{\mathfrak{k}}^* \oplus \mathfrak{k}^*$, relative to the $\tilde{K} \times K$ action, is defined by equation (15).

In this section, we adapt to our case the result of §6 of [32] concerning the parametrization of the facets of Kirwan polyhedrons in terms of Ressayre's data.

5.1. Admissible elements

We choose maximal tori $\tilde{T} \subset \tilde{K}$ and $T \subset K$ such that $T \subset \tilde{T}$. Let \mathfrak{R}_o and \mathfrak{R} be, respectively, the set of roots for the action of T on $(\tilde{\mathfrak{g}}/\mathfrak{g}) \otimes \mathbb{C}$ and $\mathfrak{g} \otimes \mathbb{C}$. Let $\tilde{\mathfrak{R}}$ be the set of roots for the action of \tilde{T} on $\tilde{\mathfrak{g}} \otimes \mathbb{C}$. Let $\mathfrak{R}^+ \subset \mathfrak{R}$ and $\tilde{\mathfrak{R}}^+ \subset \tilde{\mathfrak{R}}$ be the systems of positive roots defined in equation (6). Let W, \tilde{W} be the Weyl groups of (T, K) and (\tilde{T}, \tilde{K}) . Let $w_o \in W$ be the longest element.

We start by introducing the notion of admissible elements. The group hom(U(1),T)admits a natural identification with the lattice $\wedge := \frac{1}{2\pi} \ker(\exp : \mathfrak{t} \to T)$. A vector $\gamma \in \mathfrak{t}$ is called rational if it belongs to the Q-vector space $\mathfrak{t}_{\mathbb{Q}}$ generated by \wedge .

We consider the $\tilde{K} \times K$ -action on $N := \mathbf{T}^* \tilde{K} \times \mathfrak{q}$. We associate to any subset $\mathcal{X} \subset N$, the integer $\dim_{\tilde{K} \times K}(\mathcal{X})$ (see equation (5)).

Definition 5.1. A nonzero element $(\tilde{\gamma}, \gamma) \in \tilde{\mathfrak{t}} \times \mathfrak{t}$ is called *admissible* if the elements $\tilde{\gamma}$ and γ are rational and if $\dim_{\tilde{K} \times K}(N^{(\tilde{\gamma}, \gamma)}) - \dim_{\tilde{K} \times K}(N) \in \{0, 1\}$.

If $\gamma \in \mathfrak{t}$, we denote by $\mathfrak{R}_o \cap \gamma^{\perp}$ the subsets of weight vanishing against γ . We start with the following lemma whose proof is left to the reader (see §6.1.1 of [32]).

Lemma 5.2.

- 1. $N^{(\tilde{\gamma},\gamma)} \neq \emptyset$ if and only if $\tilde{\gamma} \in \tilde{W}\gamma$.
- 2. $\dim_{\tilde{K}\times K}(N) = \dim_T(\tilde{\mathfrak{g}}/\mathfrak{g}) = \dim(\mathfrak{t}) \dim(\operatorname{Vect}(\mathfrak{R}_o)).$
- 3. For any $\tilde{w} \in \tilde{W}$, $\dim_{\tilde{K} \times K}(N^{(\tilde{w}\gamma,\gamma)}) = \dim_T(\tilde{\mathfrak{g}}^{\gamma}/\mathfrak{g}^{\gamma}) = \dim(\mathfrak{t}) \dim(\operatorname{Vect}(\mathfrak{R}_o \cap \gamma^{\perp})).$

The next result is a direct consequence of the previous lemma.

Lemma 5.3. The admissible elements relative to the $\tilde{K} \times K$ -action on $T^*\tilde{K} \times \mathfrak{q}$ are of the form $(\tilde{w}\gamma,\gamma)$, where $\tilde{w} \in \tilde{W}$ and γ is a nonzero rational element satisfying $\operatorname{Vect}(\mathfrak{R}_o) \cap \gamma^{\perp} = \operatorname{Vect}(\mathfrak{R}_o \cap \gamma^{\perp}).$

5.2. Ressayre's data

Definition 5.4.

- 1. Consider the linear action $\rho: G \to \operatorname{GL}_{\mathbb{C}}(V)$ of a compact Lie group on a complex vector space V. For any $(\eta, a) \in \mathfrak{g} \times \mathbb{R}$, we define the vector subspace $V^{\eta=a} = \{v \in V\}$ $V, d\rho(\eta)v = iav\}$. Thus, for any $\eta \in \mathfrak{g}$, we have the decomposition $V = V^{\eta \ge 0} \oplus V^{\eta \ge 0} \oplus V^{\eta \ge 0}$ $V^{\eta < 0}$, where $V^{\eta > 0} = \sum_{a > 0} V^{\eta = a}$, and $V^{\eta < 0} = \sum_{a < 0} V^{\eta = a}$.
- 2. The real number $\operatorname{Tr}_n(V^{\eta>0})$ is defined as the sum $\sum_{a>0} a \dim(V^{\eta=a})$.

We consider an admissible element $(\tilde{w}\gamma,\gamma)$. The submanifold of $N \simeq \tilde{K}_{\mathbb{C}} \times \mathfrak{q}$ fixed by $(\tilde{w}\gamma,\gamma)$ is $N^{(\tilde{w}\gamma,\gamma)} = \tilde{w}\tilde{K}^{\gamma}_{\mathbb{C}} \times \mathfrak{q}^{\gamma}$. There is a canonical isomorphism between the manifold $N^{(\tilde{w}\gamma,\gamma)}$ equipped with the action of $\tilde{w}\tilde{K}^{\gamma}\tilde{w}^{-1}\times K^{\gamma}$ with the manifold $\tilde{K}^{\gamma}_{\mathbb{C}}\times\mathfrak{q}^{\gamma}$ equipped with the action of $\tilde{K}^{\gamma} \times K^{\gamma}$. The tangent bundle $(\mathbf{T}N|_{N^{(\tilde{w}\gamma,\gamma)}})^{(\tilde{w}\gamma,\gamma)>0}$ is isomorphic to $N^{\gamma_w} \times \tilde{\mathfrak{k}}_{\mathbb{C}}^{\gamma > 0} \times \mathfrak{q}^{\gamma > 0}.$

The choice of positive roots \mathfrak{R}^+ (resp. $\tilde{\mathfrak{R}}^+$) induces a decomposition $\mathfrak{k}_{\mathbb{C}} = \mathfrak{n} \oplus \mathfrak{t}_{\mathbb{C}} \oplus \overline{\mathfrak{n}}$ (resp. $\tilde{\mathfrak{k}}_{\mathbb{C}} = \tilde{\mathfrak{n}} \oplus \tilde{\mathfrak{t}}_{\mathbb{C}} \oplus \overline{\tilde{\mathfrak{n}}})$, where $\mathfrak{n} = \sum_{\alpha \in \mathfrak{R}^+} (\mathfrak{k} \otimes \mathbb{C})_{\alpha}$ (resp. $\tilde{\mathfrak{n}} = \sum_{\tilde{\alpha} \in \tilde{\mathfrak{R}}^+} (\tilde{\mathfrak{k}} \otimes \mathbb{C})_{\tilde{\alpha}}$). We consider the map

$$\rho^{\tilde{w},\gamma}: \tilde{K}^{\gamma}_{\mathbb{C}} \times \mathfrak{q}^{\gamma} \longrightarrow \hom\left(\tilde{\mathfrak{n}}^{\tilde{w}\gamma > 0} \times \mathfrak{n}^{\gamma > 0}, \tilde{\mathfrak{t}}^{\gamma > 0}_{\mathbb{C}} \times \mathfrak{q}^{\gamma > 0}\right)$$

defined by the relation

$$\rho^{\tilde{w},\gamma}(\tilde{x},v):(\tilde{X},X)\longmapsto((\tilde{w}\tilde{x})^{-1}\tilde{X}-X;X\cdot v)$$

for any $(\tilde{x}, v) \in \tilde{K}^{\gamma}_{\mathbb{C}} \times \mathfrak{q}^{\gamma}$.

Definition 5.5. $(\gamma, \tilde{w}) \in \mathfrak{t} \times \tilde{W}$ is a Ressayre's datum if

- 1. $(\tilde{w}\gamma,\gamma)$ is admissible,
- 2. $\exists (\tilde{x}, v)$ such that $\rho^{\tilde{w}, \gamma}(\tilde{x}, v)$ is bijective.

Remark 5.6. In [32], the Ressavre's data were called *regular infinitesimal B-Ressayre's* pairs.

Since the linear map $\rho^{\tilde{w},\gamma}(\tilde{x},v)$ commutes with the γ -actions, we obtain the following necessary conditions.

Lemma 5.7. If $(\gamma, \tilde{w}) \in \mathfrak{t} \times \tilde{W}$ is a Ressayre's datum, then

- Relation (A): dim(ñ^{w̃γ>0}) + dim(n^{γ>0}) = dim(ℓ̃_C^{γ>0}) + dim(q^{γ>0}).
 Relation (B): Tr_{w̃γ}(ñ^{w̃γ>0}) + Tr_γ(n^{γ>0}) = Tr_γ(ℓ̃_C^{γ>0}) + Tr_γ(q^{γ>0}).

Lemma 5.8. Relation (B) is equivalent to

$$\sum_{\substack{\alpha \in \mathfrak{R}^+ \\ \langle \alpha, \gamma \rangle > 0}} \langle \alpha, \gamma \rangle = \sum_{\substack{\tilde{\alpha} \in \mathfrak{R}^+ \\ \langle \tilde{\alpha}, \tilde{w}_0 \tilde{w} \gamma \rangle > 0}} \langle \tilde{\alpha}, \tilde{w}_0 \tilde{w} \gamma \rangle.$$
(17)

Proof. First, one sees that $\operatorname{Tr}_{\gamma}(\mathfrak{q}^{\gamma>0}) = \operatorname{Tr}_{\gamma}(\tilde{\mathfrak{p}}^{\gamma>0}) - \operatorname{Tr}_{\gamma}(\mathfrak{p}^{\gamma>0}) = \sum_{\substack{\tilde{\alpha}\in\tilde{\mathfrak{R}}_{n}^{+}\\ \langle\tilde{\alpha},\gamma\rangle>0}} \langle\tilde{\alpha},\gamma\rangle - \sum_{\substack{\alpha\in\mathfrak{R}_{n}^{+}\\ \langle\alpha,\gamma\rangle>0}} \langle\alpha,\gamma\rangle, \text{ and } \operatorname{Tr}_{\gamma}(\tilde{\mathfrak{t}}_{\mathbb{C}}^{\gamma>0}) = \operatorname{Tr}_{\tilde{w}\gamma}(\tilde{\mathfrak{t}}_{\mathbb{C}}^{\tilde{w}\gamma>0}) = \operatorname{Tr}_{\tilde{w}\gamma}(\tilde{\mathfrak{n}}^{\tilde{w}\gamma>0}) + \sum_{\substack{\tilde{\alpha}\in\tilde{\mathfrak{R}}_{n}^{+}\\ \langle\tilde{\alpha},\tilde{w}_{0}\tilde{w}\gamma\rangle>0}} \langle\tilde{\alpha},\tilde{w}_{0}\tilde{w}\gamma\rangle.$ Relation (B) is equivalent to

$$\operatorname{Tr}_{\gamma}(\mathfrak{n}^{\gamma>0}) + \sum_{\substack{\alpha \in \mathfrak{N}_{n}^{+} \\ \langle \alpha, \gamma \rangle > 0}} \langle \alpha, \gamma \rangle = \sum_{\substack{\tilde{\alpha} \in \tilde{\mathfrak{N}}_{n}^{+} \\ \langle \tilde{\alpha}, \gamma \rangle > 0}} \langle \tilde{\alpha}, \gamma \rangle + \sum_{\substack{\tilde{\alpha} \in \tilde{\mathfrak{N}}_{c}^{+} \\ \langle \tilde{\alpha}, \tilde{w}_{0} \tilde{w} \gamma \rangle > 0}} \langle \tilde{\alpha}, \tilde{w}_{0} \tilde{w} \gamma \rangle.$$
(18)

Since $\tilde{\mathfrak{R}}_n^+$ is invariant under the action of the Weyl group \tilde{W} , the right-hand side of equation (18) is equal to $\sum_{\substack{\check{\alpha}\in\mathfrak{R}^+\\\langle\check{\alpha},\check{w}_0\check{w}\gamma\rangle>0}}\langle\check{\alpha},\check{w}_0\check{w}\gamma\rangle$. Since the left-hand side of equation (18) is equal to $\sum_{\substack{\alpha\in\mathfrak{R}^+\\\langle\alpha,\gamma\rangle>0}}\langle\alpha,\gamma\rangle$, the proof of the lemma is complete.

5.3. Cohomological characterization of Ressayre's data

Let $\gamma \in \mathfrak{t}$ be a nonzero rational element. We denote by $B \subset K_{\mathbb{C}}$ and by $\tilde{B} \subset \tilde{K}_{\mathbb{C}}$ the Borel subgroups with Lie algebra $\mathfrak{b} = \mathfrak{t}_{\mathbb{C}} \oplus \mathfrak{n}$ and $\tilde{\mathfrak{b}} = \tilde{\mathfrak{t}}_{\mathbb{C}} \oplus \tilde{\mathfrak{n}}$. Consider the parabolic subgroup $P_{\gamma} \subset K_{\mathbb{C}}$ defined by

$$P_{\gamma} = \{g \in K_{\mathbb{C}}, \lim_{t \to \infty} \exp(-it\gamma)g\exp(it\gamma) \text{ exists}\}.$$
(19)

Similarly, one defines a parabolic subgroup $\tilde{P}_{\gamma} \subset \tilde{K}_{\mathbb{C}}$.

We work with the projective varieties $\mathcal{F}_{\gamma} := K_{\mathbb{C}}/P_{\gamma}$, $\mathcal{F}_{\gamma} := \tilde{K}_{\mathbb{C}}/\tilde{P}_{\gamma}$ and the canonical embedding $\iota : \mathcal{F}_{\gamma} \to \tilde{\mathcal{F}}_{\gamma}$. We associate to any $\tilde{w} \in \tilde{W}$, the Schubert cell

$$\tilde{\mathfrak{X}}^o_{\tilde{w},\gamma} := \tilde{B}[\tilde{w}] \subset \tilde{\mathcal{F}}_{\gamma}$$

and the Schubert variety $\tilde{\mathfrak{X}}_{\tilde{w},\gamma} := \overline{\tilde{\mathfrak{X}}_{\tilde{w},\gamma}^{o}}$. If \tilde{W}^{γ} denotes the subgroup of \tilde{W} that fixes γ , we see that the Schubert cell $\tilde{\mathfrak{X}}_{\tilde{w},\gamma}^{o}$ and the Schubert variety $\tilde{\mathfrak{X}}_{\tilde{w},\gamma}$ depend only of the class of \tilde{w} in $\tilde{W}/\tilde{W}^{\gamma}$.

On the variety \mathcal{F}_{γ} , we consider the Schubert cell $\mathfrak{X}_{\gamma}^{o} := B[e]$ and the Schubert variety $\mathfrak{X}_{\gamma} := \overline{\mathfrak{X}_{\gamma}^{o}}$.

We consider the cohomology¹ ring $H^*(\tilde{\mathcal{F}}_{\gamma},\mathbb{Z})$ of $\tilde{\mathcal{F}}_{\gamma}$. If Y is an irreducible closed subvariety of $\tilde{\mathcal{F}}_{\gamma}$, we denote by $[Y] \in H^{2n_Y}(\tilde{\mathcal{F}}_{\gamma},\mathbb{Z})$ its cycle class in cohomology: Here $n_Y = \operatorname{codim}_{\mathbb{C}}(Y)$. Let $\iota^*: H^*(\tilde{\mathcal{F}}_{\gamma},\mathbb{Z}) \to H^*(\mathcal{F}_{\gamma},\mathbb{Z})$ be the pull-back map in cohomology. Recall that the cohomology class [pt] associated to a singleton $Y = \{pt\} \subset \mathcal{F}_{\gamma}$ is a basis of $H^{\max}(\mathcal{F}_{\gamma},\mathbb{Z})$.

¹Here, we use singular cohomology with integer coefficients.

To an oriented real vector bundle $\mathcal{E} \to N$ of rank r, we can associate its Euler class $\operatorname{Eul}(\mathcal{E}) \in H^{2r}(N,\mathbb{Z})$. When $\mathcal{V} \to N$ is a complex vector bundle, then $\operatorname{Eul}(\mathcal{V}_{\mathbb{R}})$ corresponds to the top Chern class $c_p(\mathcal{V})$, where p is the complex rank of \mathcal{V} , and $\mathcal{V}_{\mathbb{R}}$ means \mathcal{V} viewed as a real vector bundle oriented by its complex structure (see $[5], \S{21}$).

The isomorphism $\mathfrak{q}^{\gamma>0} \simeq \mathfrak{q}/\mathfrak{q}^{\gamma\leq 0}$ shows that $\mathfrak{q}^{\gamma>0}$ can be viewed as a P_{γ} -module. Let $[\mathfrak{q}^{\gamma>0}] = K_{\mathbb{C}} \times_{P_{\gamma}} \mathfrak{q}^{\gamma>0}$ be the corresponding complex vector bundle on \mathcal{F}_{γ} . We denote simply by $\operatorname{Eul}(\mathfrak{q}^{\gamma>0})$ the Euler class $\operatorname{Eul}([\mathfrak{q}^{\gamma>0}]_{\mathbb{R}}) \in H^*(\mathcal{F}_{\gamma},\mathbb{Z}).$

The following characterization of Ressayre's data was obtained in [32], §6. Recall that \mathfrak{R}_o denotes the set of weights relative to the *T*-action on $(\tilde{\mathfrak{g}}/\mathfrak{g}) \otimes \mathbb{C}$.

Proposition 5.9. An element $(\gamma, \tilde{w}) \in \mathfrak{t} \times \tilde{W}$ is a Ressayre's datum if and only if the following conditions hold:

- γ is nonzero and rational.
- Vect $(\mathfrak{R}_o \cap \gamma^{\perp}) =$ Vect $(\mathfrak{R}_o) \cap \gamma^{\perp}$.
- $[\mathfrak{X}_{\gamma}] \cdot \iota^*([\tilde{\mathfrak{X}}_{\tilde{w},\gamma}]) \cdot \operatorname{Eul}(\mathfrak{q}^{\gamma>0}) = k[pt], \ k \ge 1 \ in \ H^*(\mathcal{F}_{\gamma},\mathbb{Z}).$ $\sum_{\substack{\alpha \in \mathfrak{R}^+ \\ \langle \alpha, \gamma \rangle > 0}} \langle \alpha, \gamma \rangle = \sum_{\substack{\tilde{\alpha} \in \tilde{\mathfrak{R}}^+ \\ \langle \tilde{\alpha}, \tilde{w}_0 \tilde{w} \gamma \rangle > 0}} \langle \tilde{\alpha}, \tilde{w}_0 \tilde{w} \gamma \rangle.$

5.4. Parametrization of the facets

We can finally describe the Kirwan polyhedron $\Delta(\mathbf{T}^*\tilde{K}\times\mathfrak{q})$ (see [32], §6).

Theorem 5.10. An element $(\tilde{\xi},\xi) \in \tilde{\mathfrak{t}}_{>0}^* \times \mathfrak{t}_{>0}^*$ belongs to $\Delta(\mathbf{T}^*\tilde{K} \times \mathfrak{q})$ if and only if

$$\langle \tilde{\xi}, \tilde{w}\gamma \rangle + \langle \xi, \gamma \rangle \ge 0$$

for any Ressayre's datum $(\gamma, \tilde{w}) \in \mathfrak{t} \times \tilde{W}$.

Theorem 5.10 and Theorem B permit us to give the following description of the convex cone $\Delta_{\text{hol}}(\tilde{G}, G)$.

Theorem 5.11. An element $(\tilde{\xi}, \xi)$ belongs to $\Delta_{\text{hol}}(\tilde{G}, G)$ if and only if $(\tilde{\xi}, \xi) \in \tilde{\mathcal{C}}_{\text{hol}} \times \mathcal{C}_{\text{hol}}$ and

$$\langle \tilde{\xi}, \tilde{w}\gamma \rangle \ge \langle \xi, w_0\gamma \rangle$$

for any $(\gamma, \tilde{w}) \in \mathfrak{t} \times \tilde{W}$ satisfying the following conditions:

- γ is nonzero and rational.

- Vect $(\mathfrak{R}_o \cap \gamma^{\perp}) =$ Vect $(\mathfrak{R}_o) \cap \gamma^{\perp}$. $[\mathfrak{X}_{\gamma}] \cdot \iota^*([\tilde{\mathfrak{X}}_{\tilde{w},\gamma}]) \cdot \operatorname{Eul}(\mathfrak{q}^{\gamma>0}) = k[pt], \ k \ge 1 \ in \ H^*(\mathcal{F}_{\gamma},\mathbb{Z}).$ $\sum_{\substack{\alpha \in \mathfrak{R}^+ \\ \langle \alpha, \gamma \rangle > 0}} \langle \alpha, \gamma \rangle = \sum_{\substack{\tilde{\alpha} \in \tilde{\mathfrak{R}}^+ \\ \langle \tilde{\alpha}, \tilde{w}_0 \tilde{w} \gamma \rangle > 0}} \langle \tilde{\alpha}, \tilde{w}_0 \tilde{w} \gamma \rangle.$

6. Example: the holomorphic Horn cone $Horn_{hol}(p,q)$

Let $p \ge q \ge 1$. We consider the pseudo-unitary group $G = U(p,q) \subset GL_{p+q}(\mathbb{C})$ defined by the relation: $g \in U(p,q)$ if and only if $g \operatorname{Id}_{p,q} g^* = \operatorname{Id}_{p,q}$, where $\operatorname{Id}_{p,q}$ is the diagonal matrix $\operatorname{Diag}(\operatorname{Id}_p, -\operatorname{Id}_q).$

We work with the maximal compact subgroup $K = U(p) \times U(q) \subset G$. We have the Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$, where \mathfrak{p} is identified with the vector space $M_{p,q}$ of $p \times q$ matrices through the map

$$X \in M_{p,q} \longmapsto \begin{pmatrix} 0 & X \\ X^* & 0 \end{pmatrix}.$$

We work with the element $z_{p,q} = \frac{i}{2} \mathrm{Id}_{p,q}$ which belongs to the center of \mathfrak{k} . The adjoint action of $z_{p,q}$ on \mathfrak{p} corresponds to the standard complex structure on $M_{p,q}$.

The trace on $\mathfrak{gl}_{p+q}(\mathbb{C})$ defines an identification $\mathfrak{g} \simeq \mathfrak{g}^* = \hom(\mathfrak{g},\mathbb{R})$: To $X \in \mathfrak{g}$ we associate $\xi_X \in \mathfrak{g}^*$ defined by $\langle \xi_X, Y \rangle = -\operatorname{Tr}(XY)$. Thus, the *G*-invariant cone $\mathcal{C}_{G/K}$ defined by $z_{p,q}$ can be viewed as the following cone of \mathfrak{g} :

$$\mathcal{C}(p,q) = \left\{ X \in \mathfrak{g}, \operatorname{Im}\left(\operatorname{Tr}(gXg^{-1}\operatorname{Id}_{p,q})\right) \ge 0, \forall g \in U(p,q) \right\}.$$

Let $T \subset U(p) \times U(q)$ be the maximal torus formed by the diagonal matrices. The Lie algebra \mathfrak{t} is identified with $\mathbb{R}^p \times \mathbb{R}^q$ through the map $\mathbf{d} : \mathbb{R}^p \times \mathbb{R}^q \to \mathfrak{u}(p) \times \mathfrak{u}(q)$: $\mathbf{d}_x =$ Diag $(ix_1, \dots, ix_p, ix_{p+1}, \dots, ix_{p+q})$. The Weyl chamber is

$$\mathfrak{t}_{\geq 0} = \left\{ x \in \mathbb{R}^p \times \mathbb{R}^q, \ x_1 \geq \cdots \geq x_p \text{ and } x_{p+1} \geq \cdots \geq x_{p+q} \right\}.$$

Proposition 2.2 tells us that the U(p,q) adjoint orbits in the interior of $\mathcal{C}(p,q)$ are parametrized by the holomorphic chamber

$$\mathcal{C}_{p,q} = \{ x \in \mathbb{R}^p \times \mathbb{R}^q, x_1 \ge \dots \ge x_p > x_{p+1} \ge \dots \ge x_{p+q} \} \subset \mathfrak{t}_{\ge 0}.$$

Definition 6.1. The holomorphic Horn cone $\operatorname{Horn}_{hol}(p,q) := \operatorname{Horn}_{hol}^2(U(p,q))$ is defined by the relations

$$\operatorname{Horn}_{\operatorname{hol}}(p,q) = \left\{ (A,B,C) \in (\mathcal{C}_{p,q})^3, \ U(p,q)\mathbf{d}_C \subset U(p,q)\mathbf{d}_A + U(p,q)\mathbf{d}_B \right\}.$$

Let us detail the description given of $\operatorname{Horn}_{\operatorname{hol}}(p,q)$ by Theorem B. For any $n \geq 1$, we consider the semigroup $\wedge_n^+ = \{(\lambda_1 \geq \cdots \geq \lambda_n)\} \subset \mathbb{Z}^n$. If $\lambda = (\lambda', \lambda'') \in \wedge_p^+ \times \wedge_q^+$, then $V_{\lambda} := V_{\lambda'}^{U(p)} \otimes V_{\lambda''}^{U(q)}$ denotes the irreducible representation of $U(p) \times U(q)$ with highest weight λ . We denote by $\operatorname{Sym}(M_{p,q})$ the symmetric algebra of $M_{p,q}$.

Definition 6.2.

1. Horn^{$\mathbb{Z}}(p,q)$ is the semigroup of $(\wedge_p^+ \times \wedge_q^+)^3$ defined by the conditions:</sup>

$$(\lambda,\mu,\nu) \in \operatorname{Horn}^{\mathbb{Z}}(p,q) \iff [V_{\nu}: V_{\lambda} \otimes V_{\mu} \otimes \operatorname{Sym}(M_{p,q})] \neq 0.$$

2. Horn(p,q) is the convex cone of $(\mathfrak{t}_{>0})^3$ defined as the closure of $\mathbb{Q}^{>0} \cdot \operatorname{Horn}^{\mathbb{Z}}(p,q)$.

Theorem B asserts that

$$\operatorname{Horn}_{\operatorname{hol}}(p,q) = \operatorname{Horn}(p,q) \bigcap (\mathcal{C}_{p,q})^3.$$
(20)

In another article [33], we obtained a recursive description of the cones Horn(p,q). This allows us to give the following description of the holomorphic Horn cone $\text{Horn}_{hol}(2,2)$.

Example 6.3. An element $(A, B, C) \in (\mathbb{R}^4)^3$ belongs to Horn_{bol}(2,2) if and only if the following conditions hold:

$$\begin{array}{rrrr} a_1 \geq a_2 & > & a_3 \geq a_4 \\ b_1 \geq b_2 & > & b_3 \geq b_4 \\ c_1 \geq c_2 & > & c_3 \geq c_4 \end{array}$$

$a_1 + a_2 + a_3 + a_4 +$	$b_1 + b_2 + b_3 + b_4 = c_1 + c_2 + c_3 + c_4$
$a_1 + c_2$	$a_2 + b_1 + b_2 \le c_1 + c_2$
	$a_2 + b_2 \leq c_2$ $a_2 + b_1 \leq c_1$ $a_1 + b_2 \leq c_1$
	$\begin{array}{rcl}a_3+b_3&\geq&c_3\\a_3+b_4&\geq&c_4\\a_4+b_3&\geq&c_4\end{array}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{rcl} +b_2+b_4 &\leq & c_1+c_4 \\ +b_2+b_4 &\leq & c_2+c_3 \\ +b_1+b_4 &\leq & c_1+c_3 \\ +b_2+b_4 &\leq & c_1+c_3 \end{array} $
$\begin{array}{c} a_2 + a_4 \\ a_2 + a_3 \end{array}$	$b_1 + b_2 + b_3 \leq c_1 + c_3$ $b_1 + b_2 + b_4 \leq c_1 + c_3$

7. A conjectural symplectomorphism

Let $\tilde{\mu} \in \tilde{\mathcal{C}}_{hol}$. In this section, we are interested in the geometry of the coadjoint orbit $\tilde{G}\tilde{\mu}$ viewed as a Hamiltonian G-manifold with proper moment map $\Phi_G^{\tilde{\mu}}: \tilde{G}\tilde{\mu} \to \mathfrak{g}^*$.

We start with a decomposition that we have already used. The pullback $Y_{\tilde{\mu}} = (\Phi_G^{\tilde{\mu}})^{-1}(\mathfrak{k}^*)$ is a symplectic submanifold of $\tilde{G}\tilde{\mu}$ which is stable under the K-action: Let $\Omega_{\tilde{\mu}}$ be the corresponding two form on $Y_{\tilde{\mu}}$. The action of K on $(Y_{\tilde{\mu}}, \Omega_{\tilde{\mu}})$ is Hamiltonian, with a proper moment map $\Phi_K^{\tilde{\mu}}: Y_{\tilde{\mu}} \to \mathfrak{k}^*$ equal to the restriction of $\Phi_G^{\tilde{\mu}}$ to $Y_{\tilde{\mu}}$. The map $[g,x] \mapsto gx$ defines a symplectomorphism

$$G \times_K Y_{\tilde{\mu}} \simeq \tilde{G}\tilde{\mu} \tag{21}$$

so that $\Phi_G^{\tilde{\mu}}([g,x]) = g \cdot \Phi_K^{\tilde{\mu}}(x)$ [31]. This allows us to see that the Kirwan polytope $\Delta_G(\tilde{G}\tilde{\mu})$ relative to the G-action on $\tilde{G}\tilde{\mu}$ is equal to the Kirwan polytope $\Delta_K(Y_{\tilde{\mu}})$ relative to the K-action on $Y_{\tilde{\mu}}$.

2829

We consider the orthogonal decomposition $\tilde{\mathfrak{p}} = \mathfrak{p} \oplus \mathfrak{q}$. Mostow's decomposition theorem [27] says that the map $\psi : \mathfrak{p} \times \mathfrak{q} \times \tilde{K} \to \tilde{G}$, $(X, Y, \tilde{k}) \mapsto e^X e^Y \tilde{k}$ is a diffeomorphism. This leads to the following result.

Lemma 7.1. We have the following G-equivariant diffeomorphisms:

$$\psi_{o}: G \times_{K} \left(\mathfrak{q} \times \tilde{K}\right) \longrightarrow \tilde{G}$$
$$\left[g; Y, \tilde{k}\right] \longmapsto g e^{Y} \tilde{k},$$
$$\psi_{\tilde{\mu}}: G \times_{K} \left(\mathfrak{q} \times \tilde{K} \tilde{\mu}\right) \longrightarrow \tilde{G} \tilde{\mu}$$
$$\left[g; Y, \xi\right] \longmapsto g e^{Y} \xi.$$

We obtain the following geometric information on the K-manifold $Y_{\tilde{\mu}}$.

Corollary 7.2. There exists a K-equivariant diffeomorphism $\mathbf{q} \times \tilde{K} \tilde{\mu} \simeq Y_{\tilde{\mu}}$.

Proof. Thanks to the diffeomorphisms (21) and $\psi_{\tilde{\mu}}$, we know that the manifolds $G \times_K Y_{\tilde{\mu}}$ and $G \times_K (\mathfrak{q} \times \tilde{K}\tilde{\mu})$ admit a *G*-equivariant diffeomorphism. Our result follows from this.

Let $\tilde{\kappa}$ be the Killing form on the Lie algebra $\tilde{\mathfrak{g}}$. We consider the \tilde{K} -invariant symplectic structures $\Omega_{\tilde{\mathfrak{p}}}$ on $\tilde{\mathfrak{p}}$, defined by the relation $\Omega_{\tilde{\mathfrak{p}}}(\tilde{Y}, \tilde{Y}') = \tilde{\kappa}(z, [\tilde{Y}, \tilde{Y}']), \forall \tilde{Y}, \tilde{Y}' \in \tilde{\mathfrak{p}}$. We denote by $\Omega_{\mathfrak{q}}$ the restriction of $\Omega_{\tilde{\mathfrak{p}}}$ on the symplectic subspace \mathfrak{q} .

We consider the following symplectic structure $-\Omega_{\mathfrak{q}} \times \Omega_{\tilde{K}\tilde{\mu}}$ on $\mathfrak{q} \times \tilde{K}\tilde{\mu}$. Knowing that $\Delta_G(\tilde{G}\tilde{\mu}) = \Delta_K(Y_{\tilde{\mu}})$, the following conjectural result would give another proof of Theorem C.

Conjecture 7.3. There exists a *K*-equivariant symplectomorphism between $(Y_{\tilde{\mu}}, \Omega_{\tilde{\mu}})$ and $(\mathfrak{q} \times \tilde{K}\tilde{\mu}, -\Omega_{\mathfrak{q}} \times \Omega_{\tilde{K}\tilde{\mu}})$.

This conjecture generalizes some results obtained when $G = \tilde{K}$:

- 1. In [26], McDuff showed that $\tilde{G}\tilde{\mu} \simeq \tilde{G}/\tilde{K}$ admit a \tilde{K} -equivariant symplectomorphism with $(\tilde{\mathfrak{p}}, -\Omega_{\tilde{\mathfrak{p}}})$ when $\tilde{\mu}$ is a central element of $\tilde{\mathfrak{k}}^*$.
- 2. In [8], Deltour extended the result of McDuff by showing that $\tilde{G}\tilde{\mu}$ admits a \tilde{K} equivariant symplectomorphism with $(\tilde{\mathfrak{p}} \times \tilde{K}\tilde{\mu}, -\Omega_{\tilde{\mathfrak{p}}} \times \Omega_{\tilde{K}\tilde{\mu}})$ for any $\tilde{\mu} \in \tilde{C}_{hol}$.

Acknowledgements. I am grateful to the anonymous referee for her/his suggestions that allowed me to improve the quality of the article.

Competing Interests. None.

References

- M.F. ATIYAH, 'Convexity and commuting Hamiltonians', Bull. London Math. Soc. 14(1) (1982), 1–15.
- [2] P. BELKALE, 'Geometric proofs of Horn and saturation conjectures', Journal of Algebraic Geometry 15(1) (2006), 133–173.
- [3] P. BELKALE AND S. KUMAR, 'Eigenvalue problem and a new product in cohomology of flag varieties', *Invent. Math.* 166(1) (2006), 185–228.
- [4] A. BERENSTEIN AND R. SJAMAAR, 'Coadjoint orbits, moment polytopes, and the Hilbert-Mumford criterion', *Journal of the A.M.S.* 13(2) (2000), 433–466.
- [5] R. BOTT AND L. W. TU, Differential Forms in Algebraic Topology, Vol. 82. (New York, Springer, 1982), xiv+-331.
- [6] G. DELTOUR, 'Propriétés symplectiques et hamiltoniennes des orbites coadjointes holomorphes', Ph.D. thesis, University Montpellier 2, 2010, arXiv: 1101.3849.
- [7] G. DELTOUR, 'Kirwan polyhedron of holomorphic coadjoint orbits', Transformation Groups 17(2) (2012), 351–392.
- [8] G. DELTOUR, 'On a generalization of a theorem of McDuff', J. Differ. Geom. 93(3) (2013), 379–400.
- [9] A. ESHMATOV AND P. FOTH, 'On sums of admissible coadjoint orbits', Proceedings of the A.M.S. 142 (2014), 727–735.
- [10] V. GUILLEMIN AND S. STERNBERG, 'Convexity properties of the moment mapping', *Invent. Math.* 67(3) (1982), 491–513.
- B. HALL, 'Phase space bounds for quantum mechanics on a compact Lie group', Commun. Math. Phys. 184(1) (1997), 233–250.
- [12] G. HECKMAN, 'Projection of orbits and asymptotic behavior of multiplicities for compact connected Lie groups', *Invent. Math.* 67(2) (1982), 333–356.
- [13] J. HILGERT, K.-H. NEEB AND W. PLANK, 'Symplectic convexity theorems and coadjoint orbits', Compositio Math. 94(2) (1994), 129–180.
- [14] A. HORN, 'Eigenvalues of sums of Hermitian matrices', Pacific J. Math. 12(1) (1962), 225–241.
- [15] H.P. JAKOBSEN AND M. VERGNE, 'Restrictions and expansions of holomorphic representations', J. Functional Analysis 34(1) (1979), 29–53.
- [16] F.C. KIRWAN, 'Convexity properties of the moment mapping III', Invent. Math. 77(3) (1984), 547–552.
- [17] A. KLYACHKO, 'Stable bundles, representation theory and Hermitian operators', Selecta Mathematica, New Series 4(3) (1998), 419–445.
- [18] A. W. KNAPP, Lie Groups beyond an Introduction, Progress in Math. 140, (Boston, Birkhäuser, Springer, 1996).
- [19] A. KNUTSON AND T. TAO, 'The honeycomb model of $GL_n(\mathbb{C})$ tensor products I: Proof of the saturation conjecture', Journal of the A.M.S. **12**(4) (1999), 1055–1090.
- [20] A. KNUTSON, T. TAO AND C. WOODWARD, 'The honeycomb model of $GL_n(\mathbb{C})$ tensor products II: Puzzles determine facets of the Littlewood–Richardson cone', Journal of the A.M.S. 17(1) (2004), 19–48.
- [21] T. KOBAYASHI, 'Discrete series representations for the orbit spaces arising from two involutions of real reductive lie groups', J. Functional Analysis 152(1) (1998), 100–135.
- [22] E. LERMAN, E. MEINRENKEN, S. TOLMAN AND C. WOODWARD, 'Non-abelian convexity by symplectic cuts', *Topology* 37(2) (1998), 245–259.
- [23] Y. LOIZIDES, 'Quasi-polynomials and the singular [Q, R] = 0 theorem', SIGMA. Symmetry, Integrability and Geometry: Methods and Applications 15 (2019).

- [24] S. MARTENS, 'The characters of the holomorphic discrete series', Proc. Nat. Acad. Sci. USA 72(9) (1975), 3275–3276.
- [25] P.-L. MONTAGARD AND N. RESSAYRE, 'Sur des faces du cône de Littlewood-Richardson généralisé', Bulletin S.M.F. 135(3) (2007), 343–365.
- [26] D. MCDUFF, 'The symplectic structure of Kähler manifolds of nonpositive curvature', J. Differential Geom. 28(3) (1988), 467–475.
- [27] G. D. MOSTOW, 'Some new decomposition theorems for semi-simple groups', Memoirs of the A.M.S. 14 (1955), 31–54.
- [28] S.M. PANEITZ, 'Determination of invariant convex cones in simple Lie algebras', Arkiv för Matematik 21(1) (1983), 217–228.
- [29] P.-E. PARADAN, 'Multiplicities of the discrete series', Preprint, 2008, arXiv: 0812.0059.
- [30] P.-E. PARADAN, 'Wall-crossing formulas in Hamiltonian geometry', In Geometric Aspects of Analysis and Mechanics. (Boston, Birkhäuser, 2011), 295–343.
- [31] P.-E. PARADAN, 'Quantization commutes with reduction in the non-compact setting: the case of holomorphic discrete series', *Journal of the E.M.S.* **17**(4) (2015), 955–990.
- [32] P.-E. PARADAN, 'Ressayre's pairs in the Kähler setting', International Journal of Mathematics 32(12) (2021), 38. doi: 10.1142/S0129167X21400176.
- [33] P.-E. PARADAN, 'Horn (p,q)', Preprint, 2020, arXiv: 2006.08989.
- [34] P.-E. PARADAN AND M. VERGNE, 'Witten non abelian localization for equivariant Ktheory, and the [Q,R]=0 theorem', *Memoirs of the A.M.S.* 261 (2019), 35.
- [35] R. SJAMAAR, 'Convexity properties of the moment mapping re-examined', Advances in Math. 138(1) (1998), 46–91.
- [36] N. RESSAYRE, 'Geometric invariant theory and the generalized eigenvalue problem', *Invent. math.* 180(2) (2010), 389–441.
- [37] M. VERGNE, 'Multiplicity formula for geometric quantization, Part I, Part II, and Part III', Duke Math. J. 82(1) (1996), 143–179, 181–194 and 637–652.
- [38] A. WEINSTEIN, 'Poisson geometry of discrete series orbits and momentum convexity for noncompact group actions', *Lett. Math. Phys.* 56(1) (2001), 17–30.