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Abstract In this paper, we prove some convexity results associated to orbit projection of noncompact
real reductive Lie groups.
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1. Introduction

This paper is concerned with convexity properties associated to orbit projection.
Let us consider two Lie groups G ⊂ G̃ with Lie algebras g ⊂ g̃ and corresponding

projection πg,g̃ : g̃
∗ → g∗. A longstanding problem has been to understand how a coadjoint

orbit Õ ⊂ g̃∗ decomposes under the projection πg,g̃. For this purpose, we may define

ΔG(Õ) = {O ∈ g∗/G ; O ⊂ πg,g̃(Õ)}.
When the Lie group G is compact and connected, the set g∗/G admits a natural

identification with a Weyl chamber t∗≥0. In this context, we have the well-known convexity

theorem [12, 1, 10, 16, 13, 35, 22].

Theorem 1.1. Suppose that G is compact connected and that the projection πg,g̃ is proper
when restricted to Õ. Then ΔG(Õ) = {ξ ∈ t∗≥0 ; Gξ ⊂ πg,g̃(Õ)} is a closed convex locally

polyhedral subset of t∗.

When the Lie group G̃ is also compact and connected, we may consider

Δ(G̃,G) :=
{
(ξ̃,ξ) ∈ t̃∗≥0× t∗≥0; Gξ ⊂ πg,g̃

(
G̃ξ̃

)}
. (1)

Here is another convexity theorem [14, 17, 4, 2, 3, 25, 19, 20, 36].

Theorem 1.2. Suppose that G⊂ G̃ are compact connected Lie groups. Then Δ(G̃,G) is
a closed convex polyhedral cone and we can parametrize its facets by cohomological means

(i.e., Schubert calculus).

In this article, we obtain an extension of Theorems 1.1 and 1.2 in a case where G and
G̃ are both noncompact real reductive Lie groups.

Let us explain what framework we are considering. Let K̃ be a maximal compact

subgroup of G̃. We suppose that G̃/K̃ is a Hermitian symmetric space of a noncompact
type. Among the elliptic coadjoint orbits of G̃, some of them are naturally Kähler K̃-

manifolds. These orbits are called the holomorphic coadjoint orbits of G̃. They are the

strongly elliptic coadjoint orbits closely related to the holomorphic discrete series of

Harish–Chandra. These orbits intersect the Weyl chamber t̃∗≥0 of K̃ into a subchamber

C̃hol called the holomorphic chamber. The basic fact here is that the union

C0
G̃/K̃

:=
⋃

ã∈C̃hol

G̃ã

is an open invariant convex cone of g̃∗. See §2.1 for more details.
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In this article, we work in the context where G̃/K̃ admits a sub-Hermitian symmetric

space of a noncompact type G/K. For the convenience of the reader, we list below some
examples of the pairs (G̃,G):

G̃ G

U(p,q)s,s≥ 2 U(p,q)
Sp(n,R) Sp(p,R)×Sp(n−p,R)
Sp(n,R) U(p,n−p)
SO(2,2n) U(1,n)
SO(2,n) SO(2,p)×SO(n−p)
SO∗(2n) U(p,n−p)
SO∗(2n) SO∗(2p)×SO∗(2n−2p)
U(n,n) Sp(n,R)
U(n,n) SO∗(2n)
U(p,q) U(i,j)×U(p−i,q−j).

As the projection πg,g̃ : g̃∗ → g∗ sends the convex cone C0
G̃/K̃

inside the convex cone

C0
G/K , it is natural to study the following object reminiscent of equation (1):

Δhol(G̃,G) :=
{
(ξ̃,ξ) ∈ C̃hol×Chol; Gξ ⊂ πg,g̃

(
G̃ξ̃

)}
. (2)

Let μ̃ ∈ C̃hol. We will also give a particular attention to the intersection of Δhol(G̃,G)

with the linear subspace ξ̃ = μ̃, that is to say

ΔG(G̃μ̃) :=
{
ξ ∈ Chol; Gξ ⊂ πg,g̃

(
G̃μ̃

)}
. (3)

Consider the case where G is embedded diagonally in G̃ := Gs for s ≥ 2. The

corresponding set Δhol(G
s,G) is called the holomorphic Horn cone, and it is defined

as follows:

Hornshol(G) :=
{
(ξ1, · · · ,ξs+1) ∈ Cs+1

hol ; Gξs+1 ⊂
s∑
j=1

Gξj

}
.

The first result of this article is the following theorem.

Theorem A.

• Δhol(G̃,G) is a closed convex cone of C̃hol×Chol.
• Hornshol(G) is a closed convex cone of Cs+1

hol for any s≥ 2.

We obtain the following corollary which corresponds to a result of A. Weinstein [38].

Corollary. For any μ̃ ∈ C̃hol, ΔG(G̃μ̃) is a closed and convex subset of Chol.
A first description of the closed convex cone Δhol(G̃,G) goes as follows. The quotient

q of the tangent spaces TeG/K and TeG̃/K̃ has a natural structure of a Hermitian
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K -vector space. The symmetric algebra Sym(q) of q defines an admissible K -module.

The irreducible representations of K (resp. K̃) are parametrized by a semi-group ∧∗
+

(resp. ∧̃∗
+). For any λ ∈ ∧∗

+ (resp. λ̃ ∈ ∧̃∗
+), we denote by V Kλ (resp. V K̃

λ̃
) the irreducible

representation of K (resp. K̃) with highest weight λ (resp. λ̃). If E is a representation of

K, we denote by
[
V Kλ : E

]
the multiplicity of V Kλ in E.

Definition 1.3.

1. ΠZ
q(K̃,K) is the semigroup of ∧̃∗

+×∧∗
+ defined by the conditions:

(λ̃,λ) ∈ΠZ
q(K̃,K) ⇐⇒

[
V Kλ : V K̃

λ̃
⊗Sym(q)

]

= 0.

2. Πq(K̃,K) is the convex cone defined as the closure of Q>0 ·ΠZ
q(K̃,K).

The second result of this article is the following theorem.

Theorem B. We have the equality

Δhol(G̃,G) = Πq(K̃,K)
⋂

C̃hol×Chol. (4)

A natural question is the description of the facets of the convex cone Δhol(G̃,G). In
order to do that, we consider the group K̃ endowed with the following K̃ ×K-action:

(k̃,k) · ã = k̃ãk−1. The cotangent space T∗K̃ is then a symplectic manifold equipped

with a Hamiltonian action of K̃×K. We consider now the Hamiltonian K̃×K-manifold
T∗K̃×q, and we denote by Δ(T∗K̃×q) the corresponding Kirwan polyhedron.

Let W =N(T )/T be the Weyl group of (K,T ), and let w0 be the longest Weyl group

element. Define an involution ∗ : t∗ → t∗ by ξ∗ = −w0ξ. A standard result permits to

affirm that (ξ̃,ξ) ∈Πq(K̃,K) if and only if (ξ̃,ξ∗) ∈Δ(T∗K̃×q) (see §4.2).
We obtain then another version of Theorem B.

Theorem B, second version. An element (ξ̃,ξ) belongs to Δhol(G̃,G) if and only if

(ξ̃,ξ) ∈ C̃hol×Chol and (ξ̃,ξ∗) ∈Δ(T∗K̃×q).

Thanks to the second version of Theorem B, a natural way to describe the facets of the

cone Δhol(G̃,G) is to exhibit those of the Kirwan polyhedron Δ(T∗K̃× q). In this later

case, it can be done using Ressayre’s data (see §5).
The second version of Theorem B permits also the following description of the convex

subsets ΔG(G̃μ̃), μ̃ ∈ C̃hol. Let ΔK(K̃μ̃×q) be the Kirwan polyhedron associated to the

Hamiltonian action of K on K̃μ̃× q, where q denotes the K -module q with opposite
complex structure.

Theorem C. For any μ̃ ∈ C̃hol, we have ΔG(G̃μ̃) = ΔK(K̃μ̃×q).

Let us detail Theorem C in the case where G is embedded in G̃=G×G diagonally. We
denote by p the K -Hermitian space TeG/K. Let κ be the Killing form of the Lie algebra

g. The vector space p is equipped with the symplectic 2-form Ωp̄(X,Y ) = −κ(z,[X,Y ])

and the compatible complex structure −ad(z).
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Let us denote by ΔK(Kμ1×Kμ2×p) and by ΔK(p) the Kirwan polyhedrons relative

to the Hamiltonian actions of K on Kμ1 ×Kμ2 × p and on p. Theorem C says that,

for any μ1,μ2 ∈ Chol, the convex set ΔG(Gμ1×Gμ2) is equal to the Kirwan polyhedron
ΔK(Kμ1×Kμ2×p).

To any nonempty subset C of a real vector space E, we may associate its asymptotic

cone As(C) ⊂ E which is the set formed by the limits y = limk→∞ tkyk, where (tk) is a
sequence of nonnegative reals converging to 0 and yk ∈ C.
We finally get the following description of the asymptotic cone of ΔG(Gμ1×Gμ2).

Corollary D. For any μ1,μ2 ∈ Chol, the asymptotic cone of ΔG(Gμ1×Gμ2) is equal to

ΔK(p).

In [29] §5, we explained how to describe the cone ΔK(p) in terms of strongly orthogonal

roots.
Let us finish this introduction with few remarks on related works:

– When G is compact, equal to the maximal compact subgroup K̃ of G̃, the results of

Theorems B and C were already obtained by G. Deltour in his thesis [6, 7]. He proved

the equality ΔK̃(G̃μ̃) = ΔK̃(K̃μ̃× p̃) by showing that the coadjoint orbit G̃μ̃ admits

a K̃-equivariant symplectomorphism with K̃μ̃× p̃, thus generalizing an earlier result

of D. McDuff [26]. We explain in §7 a conjectural symplectomorphism that would

lead to the relation ΔG(G̃μ̃) = ΔK(K̃μ̃×q).

– In [9], A. Eshmatov and P. Foth proposed a description of the set ΔG(Gμ1×Gμ2).

But their computations do not give the same result as ours. From their main

result (Theorem 3.2), it follows that the asymptotic cone of ΔG(Gμ1×Gμ2) is equal
to the intersection of the Kirwan polyhedron ΔT (p) with the Weyl chamber t∗≥0. But

since ΔK(p) 
=ΔT (p)∩ t∗≥0 in general, it is in contradiction with Corollary D.

Notations

In this paper, we take the convention of A. Knapp [18]: A connected real reductive Lie

group G means that we have a Cartan involution Θ on G such that the fixed point set
K :=GΘ is a connected maximal compact subgroup. We have Cartan decompositions at

the level of Lie algebras g= k⊕p and at the level of the group G�K×exp(p). We denote

by b a G-invariant nondegenerate bilinear form on g that is equal to the Killing form on

[g,g], and that defines a K -invariant scalar product (X,Y ) := −b(X,Θ(Y )). We will use
the K -equivariant identification ξ �→ ξ̃, g∗ � g defined by (ξ̃,X) := 〈ξ,X〉 for ξ ∈ g∗ and

X ∈ g.

When a Lie group H acts on a manifold N, the stabilizer subgroup of n ∈N is denoted
by Hn = {g ∈G,gn= n} and its Lie algebra by hn. Let us define

dimH(X ) = min
n∈X

dim(hn) (5)

for any subset X ⊂N .
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2. The cone Δhol(G̃,G): first properties

We assume here that G/K is a Hermitian symmetric space of a noncompact type, that is

to say, there exists a G-invariant complex structure on the manifold G/K or, equivalently,
there exists a K -invariant element z ∈ k such that ad(z)|p defines a complex structure on

p: (ad(z)|p)2 =−Idp. This condition imposes that the ranks of G and K are equal.

We are interested in the following closed invariant convex cone of g∗:

CG/K = {ξ ∈ g∗,〈ξ,gz〉 ≥ 0, ∀g ∈G} .

2.1. The holomorphic chamber

Let T be a maximal torus of K, with Lie algebra t. Its dual t∗ can be seen as the subspace
of g∗ fixed by T. Let us denote by g∗e the set formed by the elliptic elements: In other

words, g∗e := Ad∗(G) · t∗.
Following [38], we consider the invariant open subset g∗se = {ξ ∈ g∗ |Gξ is compact} of

strongly elliptic elements. It is nonempty since the groups G and K have the same rank.
We start with the following basic facts.

Lemma 2.1.

• g∗se is contained in g∗e.
• The interior C0

G/K of the cone CG/K is contained in g∗se.

Proof. The first point is due to the fact that every compact subgroup of G is conjugate

to a subgroup of K.

Let ξ ∈ C0
G/K . There exists ε > 0 so that

〈ξ+η,gz〉 ≥ 0, ∀g ∈G, ∀‖η‖ ≤ ε.

It implies that |〈η,gz〉| ≤ 〈ξ,z〉, ∀g ∈ Gξ and ∀‖η‖ ≤ ε. In other words, the adjoint orbit

Gξ ·z ⊂ g is bounded. For any g = eXk, with (X,k) ∈ p×K, a direct computation shows
that ‖gz‖= ‖eXz‖ ≥ ‖[z,X]‖= ‖X‖. Then, there exists ρ > 0 such that ‖X‖ ≤ ρ if eXk ∈
Gξ for some k ∈K. It follows that the stabilizer subgroup Gξ is compact.

Let ∧∗ ⊂ t∗ be the weight lattice: By definition, α∈∧∗ if and only if iα is the differential
of a character of T. Let R⊂∧∗ be the set of roots for the action of T on g⊗C. We have

R=Rc∪Rn, where Rc and Rn are, respectively, the set of roots for the action of T on

k⊗C and p⊗C. We fix a system of positive roots R+
c in Rc, and we denote by t∗≥0 the

corresponding Weyl chamber.

We have p⊗C= p+⊕p−, where the K -module p± is equal to ker(ad(z)∓ i). Let R±,z
n

be the set of roots for the action of T on p±. The union

R+ =R+
c ∪R+,z

n (6)

defines then a system of positive roots in R. We notice that R+,z
n is the set of roots β ∈R

satisfying 〈β,z〉 = 1. Hence, R+,z
n is invariant relatively to the action of the Weyl group

W =N(T )/T .

https://doi.org/10.1017/S1474748022000214 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000214


Horn Problem for Quasi-Hermitian Lie Groups 2811

Let us recall the following classical fact concerning the parametrization of the G-orbits
in C0

G/K via the holomorphic chamber

Chol := {ξ ∈ t∗≥0,(ξ,β)> 0, ∀β ∈R+,z
n }.

The elliptic coadjoint orbits of G, i.e., those contained in g∗e, are parameterized by

the Weyl chamber t∗≥0. Thus, we have a projection p : g∗e → t∗≥0, defined by the relations

Gξ∩ t∗≥0 = {p(ξ)}, and that induces a bijection g∗e/G� t∗≥0.

Proposition 2.2. The set p(C0
G/K) is equal to Chol. In other words, the map p induces

a bijective map between the set of G-orbits in C0
G/K and the holomorphic chamber Chol.

Proof. Let us first prove that p(C0
G/K) = t∗≥0 ∩C0

G/K is contained in Chol. Let ξ ∈ t∗≥0 ∩
C0
G/K : We have to check that (ξ,β)> 0 for any β ∈R+,z

n . Let Xβ,Yβ ∈ p such that Xβ+

iYβ ∈ (p⊗C)β . We choose the following normalization: The vector hβ := [Xβ,Yβ ] satisfies

〈β,hβ〉 = 1. We see then that (ξ,β) = 1
‖hβ‖2 〈ξ,hβ〉 for any ξ ∈ g∗. Standard computation

[28] gives: etad(Xβ)z = z+(cosh(t)−1)hβ+sinh(t)Yβ, ∀t∈R. By definition, we must have

〈ξ+η,etad(Xβ)z〉 ≥ 0,∀t ∈R, for any η ∈ t∗ small enough. It imposes that 〈ξ,hβ〉> 0. The
first point is settled.

The other inclusion Chol ⊂ t∗≥0∩C0
G/K is a consequence of the next lemma.

Lemma 2.3. For any compact subset K of Chol, there exists cK > 0 such that 〈ξ,gz〉 ≥
cK‖gz‖, ∀g ∈G, ∀ξ ∈ K.

Proof. Let us choose some maximal strongly orthogonal system Σ⊂R+,z
n . The real span

a of the Xβ,β ∈ Σ is a maximal abelian subspace of p. Hence, any element g ∈G can be
written g = keX(t)k′ with X(t) =

∑
β∈Σ tβXβ and k,k′ ∈K. We get

gz = k

⎛⎝z+∑
β∈Σ

(cosh(tβ)−1)hβ+
∑
β∈Σ

sinh(tβ)Yβ

⎞⎠ (7)

and

〈ξ,gz〉= 〈k−1ξ,z〉+
∑
β∈Σ

(cosh(tβ)−1)〈k−1ξ,hβ〉.

For any ξ ∈ Chol, we define cξ := minβ∈R+,z
n

〈ξ,hβ〉> 0. Let π : k∗ → t∗ be the projection.

We have 〈k−1ξ,z〉 = 〈π(k−1ξ),z〉 and 〈k−1ξ,hβ〉 = 〈π(k−1ξ),hβ〉. The convexity theorem

of Kostant tell us that π(k−1ξ) belongs to the convex hull of {wξ,w ∈W}. It follows
that 〈k−1ξ,z〉 ≥ 〈ξ,z〉> 0 and 〈k−1ξ,hβ〉 ≥ cξ > 0 for any k ∈K. We obtain then that

〈ξ,gz〉 ≥ 1
2 min(〈ξ,z〉,cξ)e‖X(t)‖ for any ξ ∈ Chol, where ‖X(t)‖= supβ |tβ |. From equation

(7), it is not difficult to see that there exists C > 0 such that ‖gz‖ ≤ Ce‖X(t)‖ for any

g = keX(t)k′ ∈G.
Let K be a compact subset of Chol. Take cK = 1

2C min(minξ∈K〈ξ,z〉,minξ∈K cξ)> 0. The

previous computations show that 〈ξ,gz〉 ≥ cK‖gz‖, ∀g ∈G, ∀ξ ∈ K.
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The following result is needed in §4.1.

Lemma 2.4. The map p : C0
G/K →Chol is continuous.

Proof. Let (ξn) be a sequence of C0
G/K converging to ξ∞ ∈ C0

G/K . Let ξ′n = p(ξn) and
ξ′∞ =p(ξ∞): We have to prove that the sequence (ξ′n) converges to ξ

′
∞. We choose elements

gn,g∞ ∈G such that ξn = gnξ
′
n,∀n and ξ∞ = g∞ξ′∞.

First, we notice that −b(ξn,ξn) = ‖ξ′n‖2; hence, the sequence (ξ′n) is bounded. We will
now prove that the sequence (gn) is bounded. Let ε > 0 such that 〈ξ∞+η,gz〉 ≥ 0, ∀g ∈G,
∀‖η‖ ≤ ε. If ‖ξ− ξ∞‖ ≤ ε/2, we write ξ = 1

2 (ξ∞+2(ξ− ξ∞))+ 1
2ξ∞, and then

〈ξ,gz〉= 1

2
〈ξ∞+2(ξ− ξ∞),gz〉+ 1

2
〈ξ∞,gz〉 ≥ 1

2
〈ξ∞,gz〉, ∀g ∈G.

Now we have 〈ξ′n,z〉 = 〈ξn,gnz〉 ≥ 1
2 〈ξ∞,gnz〉 if n is large enough. This shows that the

sequence 〈ξ∞,gnz〉 is bounded. If we use Lemma 2.3, we can conclude that the sequence

(gn) is bounded.
Let (ξ′φ(n)) be a subsequence converging to � ∈ t∗≥0. Since (gφ(n)) is bounded, there

exists a subsequence (gφ◦ψ(n)) converging to h ∈ G. From the relations ξφ◦ψ(n) =

gφ◦ψ(n)ξ′φ◦ψ(n),∀n∈N, we obtain ξ∞ = h�. Then �=p(ξ∞) = ξ′∞. Since every subsequence

of (ξ′n) has a subsequential limit to ξ′∞, then the sequence (ξ′n) converges to ξ
′
∞.

2.2. The cone Δhol(G̃,G) is closed

We suppose that G/K is a complex submanifold of a Hermitian symmetric space G̃/K̃.

In other words, G̃ is a reductive real Lie group such that G ⊂ G̃ is a closed connected
subgroup preserved by the Cartan involution, and K̃ is a maximal compact subgroup of

G̃ containing K. We denote by g̃ and k̃ the Lie algebras of G̃ and K̃, respectively. We

suppose that there exists a K̃-invariant element z ∈ k such that ad(z)|p̃ defines a complex

structure on p̃: (ad(z)|p̃)2 =−Idp̃.
Let CG̃/K̃ ⊂ g̃∗ be the closed invariant cone associated to the Hermitian symmetric space

G̃/K̃. We start with the following key fact.

Lemma 2.5. The projection πg,g̃ : g̃
∗ → g∗ sends C0

G̃/K̃
into C0

G/K .

Proof. Let ξ̃ ∈ C0
G̃/K̃

and ξ= πg,g̃(ξ̃). Then 〈ξ̃+ η̃,g̃z〉 ≥ 0, ∀g̃ ∈ G̃ if η̃ ∈ g̃∗ is small enough.

It follows that 〈ξ+πg,g̃(η̃),gz〉= 〈ξ̃+ η̃,gz〉 ≥ 0, ∀g ∈G if η̃ is small enough. Since πg,g̃ is

an open map, we can conclude that ξ ∈ C0
G/K .

Let T̃ be a maximal torus of K̃, with Lie algebra t̃. The G̃-orbits in the interior of CG̃/K̃
are parametrized by the holomorphic chamber C̃hol ⊂ t̃∗. The previous lemma says that

the projection πg,g̃(Õ) of any G̃-orbit Õ ⊂ C0
G̃/K̃

is the union of G-orbits O ⊂ C0
G/K . So

it is natural to study the following object:

Δhol(G̃,G) :=
{
(ξ̃,ξ) ∈ C̃hol×Chol; Gξ ⊂ πg,g̃

(
G̃ξ̃

)}
. (8)

Here is a first result.
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Proposition 2.6. Δhol(G̃,G) is a closed cone of C̃hol×Chol.
Proof. Suppose that a sequence (ξ̃n,ξn) ∈Δhol(G̃,G) converges to (ξ̃∞,ξ∞) ∈ C̃hol×Chol.
By definition, there exists a sequence (g̃n,gn) ∈ G̃×G such that gnξn = πg,g̃(g̃nξ̃n). Let

h̃n := g−1
n g̃n so that ξn = πg,g̃(h̃nξ̃n) and 〈h̃nξ̃n,z〉= 〈ξn,z〉. We use now that the sequence

〈ξn,z〉 is bounded and that the sequence ξ̃n belongs to a compact subset of C̃hol. Thanks
to Lemma 2.3, these facts imply that ‖h̃−1

n z‖ is a bounded sequence. Hence, h̃n admits

a subsequence converging to h̃∞. So we get ξ∞ = πg,g̃(h̃∞ξ̃∞), and that proves that
(ξ̃∞,ξ∞) ∈Δhol(G̃,G).

2.3. Rational and weakly regular points

Let (M,Ω) be a symplectic manifold. We suppose that there exists a line bundle L with

connection ∇ that prequantizes the 2-form Ω: In other words, ∇2 = −iΩ. Let K be a
compact connected Lie group acting on L →M , and leaving the connection invariant.

Let ΦK :M → k∗ be the moment map defined by Kostant’s relations

LX −∇X = i〈ΦK,X〉, ∀X ∈ k. (9)

Here LX is the Lie derivative acting on the sections of L→M .
Remark that relations (9) imply, via the equivariant Bianchi formula, the relations

ι(XM )Ω =−d〈ΦK,X〉, ∀X ∈ k, (10)

where XM (m) := d
dt |t=0e

−tXm is the vector field on M generated by X ∈ k.

Definition 2.7. Let dimK(M) :=minm∈M dimkm. An element ξ ∈ k∗ is a weakly regular

value of ΦK if for all m ∈ Φ−1
K (ξ) we have dimkm = dimK(M).

When ξ ∈ k∗ is a weakly regular value of ΦK , the constant rank theorem tells us that

Φ−1
K (ξ) is a submanifold of M stable under the action of the stabilizer subgroup Kξ. We

see then that the reduced space

Mξ := Φ−1
K (ξ)/Kξ (11)

is a symplectic orbifold.

Let T ⊂ K be a maximal torus with Lie algebra t. We consider the lattice ∧ :=
1
2π ker(exp : t → T ) and the dual lattice ∧∗ ⊂ t∗ defined by ∧∗ = hom(∧,Z). We remark

that iη is a differential of a character of T if and only if η ∈ ∧∗. The Q-vector space
generated by the lattice ∧∗ is denoted by t∗Q: The vectors belonging to t∗Q are designed

as rational. An affine subspace V ⊂ t∗ is called rational if it is affinely generated by its

rational points.
We also fix a closed positive Weyl chamber t∗≥0. For each relatively open face σ ⊂ t∗≥0,

the stabilizer Kξ of points ξ ∈ σ under the coadjoint action does not depend on ξ and

will be denoted by Kσ. The Lie algebra kσ decomposes into its semisimple and central
parts kσ = [kσ,kσ]⊕ zσ. The subspace z∗σ is defined to be the annihilator of [kσ,kσ] or,

equivalently, the fixed point set of the coadjoint Kσ action. Notice that z∗σ is a rational

subspace of t∗ and that the face σ is an open cone of z∗σ,
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We suppose that the moment map ΦK is proper. The convexity theorem [1, 10, 16, 35,

22] tells us that ΔK(M) := Image(ΦK)
⋂

t∗≥0 is a closed, convex, locally polyhedral set.

Definition 2.8. We denote by ΔK(M)0 the subset of ΔK(M) formed by the weakly

regular values of the moment map ΦK contained in ΔK(M).

We will use the following remark in the next sections.

Lemma 2.9. The subset ΔK(M)0∩ t∗Q is dense in ΔK(M).

Proof. Let us first explain why ΔK(M)0 is a dense open subset of ΔK(M). There exists

a unique open face τ of the Weyl chamber t∗≥0 such as ΔK(M)∩ τ is dense in ΔK(M):

τ is called the principal face in [22]. The principal-cross-section theorem [22] tells us
that Yτ := Φ−1(τ) is a symplectic Kτ -manifold, with a trivial action of [Kτ ,Kτ ]. The line

bundle Lτ := L|Yτ
prequantizes the symplectic structure on Yτ , and relations (10) show

that [Kτ ,Kτ ] acts trivially on Lτ . Moreover, the restriction of ΦK on Yτ is the moment
map Φτ : Yτ → z∗τ associated to the action of the torus Zτ = exp(zτ ) on Lτ .
Let I ⊂ z∗τ be the smallest affine subspace containing ΔK(M). Let zI ⊂ zτ be the

annihilator of the subspace parallel to I : Relations (10) show that zI is the generic
infinitesimal stabilizer of the zτ -action on Yτ . Hence, zI is the Lie algebra of the torus

ZI := exp(zI).

We see then that any regular value of Φτ : Yτ → I, viewed as a map with codomain I,

is a weakly regular value of the moment map ΦK . It explains why ΔK(M)0 is a dense
open subset of ΔK(M).

As the convex set ΔK(M)∩τ is equal to ΔZτ
(Yτ ) := Image(Φτ ), it is sufficient to check

that ΔZτ
(Yτ )

0∩ t∗Q is dense in ΔZτ
(Yτ ). The subtorus ZI ⊂Zτ acts trivially on Yτ , and it

acts on the line bundle Lτ through a character χ. Let η ∈∧∗∩ t∗τ such that dχ= iη|zI . The
affine subspace I which is equal to η+(zI)

⊥ is rational. Since the open subset ΔZτ
(Yτ )

0

generates the rational affine subspace I, we can conclude that ΔZτ
(Yτ )

0∩ t∗Q is dense in
ΔZτ

(Yτ ).

2.4. Weinstein’s theorem

Let ã ∈ C̃hol. Consider the Hamiltonian action of the group G on the coadjoint orbit G̃ã.

The moment map ΦãG : G̃ã→ g∗ corresponds to the restriction of the projection πg,g̃ to

G̃ã. In this setting, the following conditions holds:

1. The action of G on G̃ã is proper.

2. The moment map ΦãG is a proper map since the map 〈ΦãG,z〉 is proper (see

Lemma 2.3).

Conditions 1 and 2 impose that the image of ΦãG is contained in the open subset g∗se
of strongly elliptic elements [31]. Thus, the G-orbits contained in the image of ΦãG are

parametrized by the following subset of the holomorphic chamber Chol:
ΔG(G̃ã) := Image(ΦãG)

⋂
t∗≥0.

We notice that Δhol(G̃,G) =
⋃
ã∈C̃hol

{ã}×ΔG(G̃ã).
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Like in Definition 2.7, an element ξ ∈ g∗ is a weakly regular value of ΦãG if for all

m ∈ (ΦãG)
−1(ξ) we have dimgm = minx∈G̃ãdim(gx). We denote by ΔG(G̃ã)

0 the set of

elements ξ ∈ΔG(G̃ã) that are weakly regular for ΦãG.

Theorem 2.10 (Weinstein). For any ã ∈ C̃hol, ΔG(G̃ã) is a closed convex subset
contained in Chol.
Proof.We recall briefly the arguments of the proof (see [38] or [31][§2]). Under Conditions

1 and 2, one checks easily that Yã := (ΦãG)
−1(k∗) is a smooth K -invariant symplectic

submanifold of G̃ã such that

G̃ã�G×K Yã. (12)

The moment map ΦãK : Yã→ k∗, which corresponds to the restriction of the map ΦãG to Yã,

is a proper map. Hence, the convexity theorem tells us that ΔK(Yã) := Image(ΦãK)
⋂
t∗≥0

is a closed, convex, locally polyhedral set. Thanks to the isomorphism (12), we see that
ΔG(G̃ã) coincides with the closed convex subset ΔK(Yã). The proof is completed.

The next lemma is used in §4.1.

Lemma 2.11. Let ã∈ C̃hol be a rational element. Then ΔG(G̃ã)
0∩t∗Q is dense in ΔG(G̃ã).

Proof. Thanks to equation (12), we know that ΔG(G̃ã) = ΔK(Yã). Relation (12) shows

also that ΔG(G̃ã)
0 = ΔK(Yã)

0. Let N ≥ 1 such that μ̃ = Nã ∈ ∧∗ ∩Chol. The stabilizer
subgroup G̃μ̃ is compact, equal to K̃μ̃. Let us denote by Cμ̃ the one-dimensional

representation of K̃μ̃ associated to μ̃. The convex set ΔG(G̃ã) is equal to
1
NΔG(G̃μ̃), so

it is sufficient to check that ΔG(G̃μ̃)
0∩ t∗Q =ΔK(Yμ̃)

0∩ t∗Q is dense in ΔG(G̃μ̃) =ΔK(Yμ̃).

The coadjoint orbit G̃μ̃ is prequantized by the line bundle G̃×Kμ̃
Cμ̃, and the symplectic

slice Yμ̃ is prequantized by the line bundle Lμ̃ := G̃×Kμ̃
Cμ̃|Yμ̃

. Thanks to Lemma 2.9, we

know that ΔK(Yμ̃)
0∩ t∗Q is dense in ΔK(Yμ̃): The proof is complete.

3. Holomorphic discrete series

3.1. Definition

We return to the framework of §2.1. We recall the notion of holomorphic discrete series

representations associated to a Hermitian symmetric spaces G/K. Let us introduce

Cρhol :=
{
ξ ∈ t∗≥0| (ξ,β)≥ (2ρn,β), ∀β ∈R+,z

n

}
,

where 2ρn =
∑
β∈R+,z

n
β is W -invariant.

Lemma 3.1.

1. We have Cρhol ⊂ Chol.
2. For any ξ ∈ Chol, there exists N ≥ 1 such that Nξ ∈ Cρhol.

Proof. The first point is due to the fact that (β0,β1)≥ 0 for any β0,β1 ∈R+,z
n . The second

point is obvious.
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We will be interested in the following subset of dominant weights:

Ĝhol := ∧∗
+

⋂
Cρhol.

Let Sym(p) be the symmetric algebra of the complex K -module (p,ad(z)).

Theorem 3.2 (Harish–Chandra). For any λ ∈ Ĝhol, there exists an irreducible unitary
representation of G, denoted by V Gλ , such that the vector space of K-finite vectors is

V Gλ |K := V Kλ ⊗Sym(p).

The set V Gλ ,λ ∈ Ĝhol corresponds to the holomorphic discrete series representations
associated to the complex structure ad(z).

3.2. Restriction

We come back to the framework of §2.2. We consider two compatible Hermitian symmetric

spaces G/K ⊂ G̃/K̃, and we look after the restriction of holomorphic discrete series

representations of G̃ to the subgroup G.

Let λ̃∈ ̂̃Ghol. Since the representation V
G̃
λ̃

is discretely admissible relatively to the circle
group exp(Rz), it is also discretely admissible relatively to G. We can be more precise

[15, 24, 21]:

Proposition 3.3. We have an Hilbertian direct sum

V G̃
λ̃
|G =

⊕
λ∈ ̂Ghol

mλ
λ̃
V Gλ ,

where the multiplicity mλ
λ̃
:= [V Gλ : V G̃

λ̃
] is finite for any λ.

The Hermitian K̃-vector space p̃, when restricted to the K -action, admits an orthogonal

decomposition p̃= p⊕q. Notice that the symmetric algebra Sym(q) is an admissible K -
module.

In [15], H. P. Jakobsen and M. Vergne obtained the following nice characterization of

the multiplicities [V Gλ : V G̃
λ̃
]. Another proof is given in [31], §4.4.

Theorem 3.4 (Jakobsen–Vergne). Let (λ̃,λ) ∈ ̂̃Ghol× Ĝhol. The multiplicity [V Gλ : V G̃
λ̃
] is

equal to the multiplicity of the representation V Kλ in Sym(q)⊗V K̃
λ̃
|K .

3.3. Discrete analogues of Δhol(G̃,G)

We define the following discrete analogues of the cone Δhol(G̃,G):

ΠZ
hol(G̃,G) :=

{
(λ̃,λ) ∈ ̂̃Ghol× Ĝhol [V Gλ : V G̃

λ̃
] 
= 0

}
, (13)

and

ΠQ
hol(G̃,G) :=

{
(ξ̃,ξ) ∈ C̃hol×Chol ∃N ≥ 1, (Nξ,Nξ̃) ∈ΠZ

hol(G̃,G)
}
. (14)

We have the following key fact.
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Proposition 3.5.

• ΠZ
hol(G̃,G) is a subset of ∧̃∗×∧∗ stable under the addition.

• ΠQ
hol(G̃,G) is a Q-convex cone of the Q-vector space t̃∗Q× t∗Q.

Proof. Suppose that a1 := (λ̃1,λ1) and a2 := (λ̃2,λ2) belongs to ΠZ
hol(G̃,G). Thanks to

Theorem 3.4, we know that the K -modules Sym(q)⊗ (V Kλj
)∗⊗V K̃

λ̃j
|K possess a nonzero

invariant vector φj , for j = 1,2.
Let X := K/T × K̃/T̃ be the product of flag manifolds. The complex structure is

normalized so that T([e],[ẽ])X� n−⊕ ñ+, where n− =
∑
α<0(kC)α and ñ+ =

∑
α̃>0(k̃C)α̃.

We associate to each data aj , the holomorphic line bundle Lj :=K×T C−λj
�K̃×T̃ C−λ̃j

on X. Let H0(X,Lj) be the space of holomorphic sections of the line bundle Lj . The
Borel–Weil theorem tells us that H0(X,Lj)� (V Kλj

)∗⊗V K̃
λ̃j
|K , ∀j ∈ {1,2}.

We have φj ∈
[
Sym(q)⊗H0(X,Lj)

]K
, ∀j, and then φ1φ2 ∈ Sym(q)⊗H0(X,L1 ⊗L2)

is a nonzero invariant vector. Hence, [Sym(q)⊗ (V Kλ1+λ2
)∗⊗V K̃

λ̃1+λ̃2
|K ]K 
= 0. Thanks to

Theorem 3.4, we can conclude that a1+a2 = (λ̃1+ λ̃2,λ1+λ2) belongs to ΠZ
hol(G̃,G). The

first point is proved. From the first point, one checks easily that

- ΠQ
hol(G̃,G) is stable under addition,

- ΠQ
hol(G̃,G) is stable by expansion by a nonnegative rational number.

The second point is settled.

3.4. Riemann–Roch numbers

We come back to the framework of §2.3.
We associate to a dominant weight μ ∈ ∧∗

+ the (possibly singular) symplectic reduced

space Mμ := Φ−1
K (μ)/Kμ and the (possibly singular) line bundle over Mμ:

Lμ :=
(
L|Φ−1

K (μ)⊗C−μ
)
/Kμ.

Suppose first that μ is a weakly regular value of ΦK . Then Mμ is an orbifold equipped
with a symplectic structure Ωμ, and Lμ is a line orbi-bundle overMμ that prequantizes the

symplectic structure. By choosing an almost complex structure on Mμ compatible with

Ωμ, we get a decomposition ∧ T∗Mμ⊗C = ⊕i,j ∧i,j T∗Mμ of the bundle of differential
forms. Using Hermitian structures in the tangent bundle TMμ of Mμ and in the fibers

of Lμ, we define a Dolbeaut–Dirac operator

D+
μ :A0,+(Mμ,Lμ)−→A0,−(Mμ,Lμ),

where Ai,j(Mμ,Lμ) = Γ(Mμ, ∧i,j T∗Mμ⊗Lμ).
Definition 3.6. Let μ ∈ ∧∗

+ be a weakly regular value of the moment map ΦK . The

Riemann–Roch number RR(Mμ,Lμ) ∈ Z is defined as the index of the elliptic operator

D+
μ : RR(Mμ,Lμ) = dim(ker(D+

μ ))−dim(coker(D+
μ )).

Suppose that μ /∈ΔK(M). Then Mμ = ∅, and we take RR(Mμ,Lμ) = 0.
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Suppose now that μ ∈ΔK(M) is not (necessarily) a weakly regular value of ΦK . Take

a small element ε∈ t∗ such that μ+ε is a weakly regular value of ΦK belonging to ΔK(M).

We consider the symplectic orbifold Mμ+ε: If ε is small enough,

Lμ,ε :=
(
L|Φ−1

K (μ+ε)⊗C−μ
)
/Kμ+ε.

is a line orbi-bundle over Mμ+ε .

We have the following important result (see §3.4.3 in [34]).

Proposition 3.7. Let μ ∈ΔK(M)∩∧∗. The Riemann–Roch number RR(Mμ+ε,Lμ,ε) do
not depend on the choice of ε small enough so that μ+ ε ∈ ΔK(M) is a weakly regular

value of ΦK .

We can now introduce the following definition.

Definition 3.8. Let μ ∈ ∧∗
+. We define

Q(Mμ,Ωμ) =

{
0 if μ /∈ΔK(M),

RR(Mμ+ε,Lμ,ε) if μ ∈ΔK(M).

Above, ε is chosen small enough so that μ+ ε ∈ΔK(M) is a weakly regular value of ΦK .

Let n≥ 1. The manifold M, equipped with the symplectic structure nΩ, is prequantized

by the line bundle L⊗n: The corresponding moment map is nΦK . For any dominant weight

μ∈∧∗
+, the symplectic reduction of (M,nΩ) relatively to the weight nμ is (Mμ,nΩμ). Like

in Definition 3.8, we consider the following Riemann–Roch numbers

Q(Mμ,nΩμ) =

{
0 if μ /∈ΔK(M),

RR(Mμ+ε,(Lμ,ε)⊗n) if μ ∈ΔK(M) and ‖ε‖<< 1.

The Kawasaki–Riemann–Roch formula shows that n ≥ 1 �→ Q(Mμ,nΩμ) is a quasi-
polynomial map [37, 23]. When μ is a weakly regular value of ΦK , we denote by vol(Mμ) :=
1
dμ

∫
Mμ

(
Ωμ

2π )
dimMμ

2 the symplectic volume of the symplectic orbifold (Mμ,Ωμ). Here, dμ is

the generic value of the map m ∈ Φ−1
K (μ) �→ cardinal(Km/K

0
m).

The following proposition is a direct consequence of the Kawasaki–Riemann–Roch

formula (see [23] or §1.3.4 in [30]).

Proposition 3.9. Let μ ∈ΔK(M)∩∧∗
+ be a weakly regular value of ΦK . Then we have

Q(Mμ,nΩμ) ∼ vol(Mμ)n
dimMμ

2 when n→∞. In particular, the map n≥ 1 �→Q(Mμ,nΩμ)

is nonzero.

3.5. Quantization commutes with reduction

Let us explain the “quantization commutes with reduction” theorem proved in [31].

We fix λ̃ ∈ ̂̃Ghol. The coadjoint orbit G̃λ̃ is prequantized by the line bundle G̃×Kλ̃
Cλ̃,

and the moment map Φλ̃G : G̃λ̃→ g∗ corresponding to the G-action on G̃×Kλ̃
Cλ̃ is equal

to the restriction of the map πg,g̃ to G̃λ̃.
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The symplectic slice Yλ̃ = (Φλ̃G)
−1(k∗) is prequantized by the line bundle Lλ̃ := G̃×Kλ̃

Cλ̃|Yλ̃
. The moment map Φλ̃K : Yλ̃ → k∗ corresponding to the K -action is equal to the

restriction of Φλ̃G to Yλ̃.

For any λ ∈ Ĝhol, we consider the (possibly singular) symplectic reduced space

Xλ̃,λ := (Φλ̃K)−1(λ)/Kλ,

equipped with the reduced symplectic form Ωλ̃,λ, and the (possibly singular) line bundle

Lλ̃,λ :=
(
Lλ̃|(Φλ̃

K)−1(λ)
⊗C−λ

)
/Kλ.

Thanks to Definition 3.8, the geometric quantizationQ(Xλ̃,λ,Ωλ̃,λ)∈Z of those compact

symplectic spaces (Xλ̃,λ,Ωλ̃,λ) are well-defined even if they are singular. In particular,

Q(Xλ̃,λ,Ωλ̃,λ) = 0 when Xλ̃,λ = ∅.
The following theorem is proved in [31].

Theorem 3.10. Let λ̃ ∈ ̂̃Ghol. We have an Hilbertian direct sum

V G̃
λ̃
|G =

⊕
λ∈ ̂Ghol

Q(Xλ̃,λ,Ωλ̃,λ) V
G
λ .

It means that, for any λ∈ Ĝhol, the multiplicity of the representation V Gλ in the restriction

V G̃
λ̃
|G is equal to the geometric quantization Q(Xλ̃,λ,Ωλ̃,λ) of the (compact) reduced space

Xλ̃,λ.

Remark 3.11. Let (λ̃,λ) ∈ ̂̃Ghol× Ĝhol. Theorem 3.10. shows that[
V Gnλ : V

G̃
nλ̃

]
=Q(Xλ̃,λ,nΩλ̃,λ)

for any n≥ 1.

4. Proofs of the main results

We come back to the setting of §2.2: G/K is a complex submanifold of a Hermitian

symmetric space G̃/K̃. It means that there exits a K̃-invariant element z ∈ k such that

ad(z) defines complex structures on p̃ and p. We consider the orthogonal decomposition
p̃ = p⊕ q, and we denote by Sym(q) the symmetric algebra of the complex K -module

(q,ad(z)).

4.1. Proof of Theorem A

The set Δhol(G̃,G) is equal to
⋃
ã∈C̃hol

{ã}×ΔG(G̃ã). We define

Δhol(G̃,G)
0 :=

⋃
ã∈C̃hol

{ã}×ΔG(G̃ã)
0.

We start with the following result.
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Lemma 4.1. The set Δhol(G̃,G)
0
⋂
t̃∗Q× t∗Q is dense in Δhol(G̃,G).

Proof. Let (ξ̃,ξ) ∈Δhol(G̃,G): take g̃ ∈ G̃ such that ξ = πg,g̃(g̃ξ̃). We consider a sequence
ξ̃n ∈ C̃hol ∩ t̃∗Q converging to ξ̃. Then ξn := πg,g̃(g̃ξ̃n) is a sequence of C0

G/K converging

to ξ ∈ Chol. Since the map p : C0
G/K → Chol is continuous (see Lemma 2.4), the sequence

ηn := p(ξn) converges to p(ξ) = ξ. By definition, we have ηn ∈ΔG(G̃ ξ̃n) for any n ∈ N.

Since ξ̃n are rational, each subset ΔG(G̃ξ̃n)
0∩ t∗Q is dense in ΔG(G̃ξ̃n) (see Lemma 2.11).

Hence, ∀n ∈ N, there exists ζn ∈ ΔG(G̃ ξ̃n)
0 ∩ t∗Q such that ‖ζn− ηn‖ ≤ 2−n. Finally, we

see that (ξ̃n,ζn) is a sequence of rational elements of Δhol(G̃,G)
0 converging to (ξ,ξ̃).

The main purpose of this section is the proof of the following theorem.

Theorem 4.2. For any rational element (μ̃,μ) of the holomorphic chamber C̃hol×Chol,
the following statements hold:

• If μ ∈ΔG(G̃μ̃)
0, then (μ̃,μ) ∈ΠQ

hol(G̃,G).

• If (μ̃,μ) ∈ΠQ
hol(G̃,G), then μ ∈ΔG(G̃μ̃).

In other words, we have the following inclusions:

Δhol(G̃,G)
0
⋂

t̃∗Q× t∗Q ⊂
(1)

ΠQ
hol(G̃,G) ⊂

(2)
Δhol(G̃,G).

Lemma 4.1 and Theorem 4.2 gives the important corollary.

Corollary 4.3. ΠQ
hol(G̃,G) is dense in Δhol(G̃,G).

Proof of Theorem 4.2. Let (μ̃,μ)∈ΠQ
hol(G̃,G): There exists N ≥ 1 such that (Nμ̃,Nμ)∈

ΠZ
hol(G̃,G). The multiplicity [V GNμ :V

G̃
Nμ̃] is nonzero, and thanks to Theorem 3.10, it implies

that the reduced space XNμ̃,Nμ is nonempty. In other words, (Nμ̃,Nμ) ∈Δhol(G̃,G). The

inclusion (2) is proven.
Let (μ̃,μ) ∈Δhol(G̃,G)

0
⋂
t∗Q× t̃∗Q. There exists No ≥ 1 such that λ :=Noμ ∈ Ĝhol, λ̃ :=

Noμ̃∈ ̂̃Ghol and λ∈ΔG(G̃λ̃)
0: The element λ is a weakly regular value of the moment map

G̃λ̃→ g∗. Theorem 3.10 tells us that, for any n≥ 1, the multiplicity [V Gnλ : V
G̃
nλ̃

] is equal to
Riemann–Roch number Q(Xλ̃,λ,nΩλ̃,λ). Since the map n �→Q(Xλ̃,λ,nΩλ̃,λ) is nonzero (see

Proposition 3.9), we can conclude that there exists no ≥ 1 such that [V Gnoλ
: V G̃

noλ̃
] 
= 0. In

other words, we obtain noNo(μ̃,μ) ∈ ΠZ
hol(G̃,G) and so (μ̃,μ) ∈ ΠQ

hol(G̃,G). The inclusion

(1) is settled.

Now we can terminate the proof of Theorem A.
Thanks to Proposition 3.5, we know that ΠQ

hol(G̃,G) is a Q-convex cone. Since

Δhol(G̃,G) is a closed subset of C̃hol ×Chol (see Proposition 2.6), we can conclude, by

a density argument, that Δhol(G̃,G) is a closed convex cone of C̃hol×Chol.
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4.2. The affine variety K̃C×q

Let κ̃ be the Killing form on the Lie algebra g̃. We consider the K̃-invariant symplectic

structures Ωp̃ on p̃, defined by the relation

Ωp̃(Ỹ ,Ỹ
′) = κ̃(z,[Ỹ ,Ỹ ′]), ∀Ỹ ,Ỹ ′ ∈ p̃.

We notice that the complex structure ad(z) is adapted to Ωp̃: Ωp̃(Ỹ ,ad(z)Ỹ )> 0 if Ỹ 
= 0.

We denote by Ωq the restriction of Ωp̃ on the symplectic subspace q. The moment

map Φq associated to the K -action on (q,Ωq) is defined by the relations 〈Φq(Y ),X〉 =
−1
2 κ̃([X,Y ],[z,Y ]), ∀(X,Y ) ∈ p× q. In particular, 〈Φq(Y ),z〉 = −1

2 ‖Y ‖2, ∀Y ∈ q, so the

map 〈Φq,z〉 is proper.
The complex reductive group K̃C is equipped with the following action of K̃ ×K:

(k̃,k) · a = k̃ak−1. It has a canonical structure of a smooth affine variety. There is a

diffeomorphism of the cotangent bundle T∗K̃ with K̃C defined as follows. We identify

T∗K̃ with K̃ × k̃∗ by means of left-translation and then with K̃ × k̃ by means of an
invariant inner product on k̃. The map ϕ : K̃ × k̃ → K̃C given by ϕ(a,X) = aeiX is a

diffeomorphism. If we use ϕ to transport the complex structure of K̃C to T∗K̃, then

the resulting complex structure on T∗K̃ is compatible with the symplectic structure on

T∗K̃ so that T∗K̃ becomes a Kähler Hamiltonian K̃×K-manifold (see [11], §3). The
moment map relative to the K̃×K-action is the proper map ΦK̃ ⊕ΦK : T∗K̃ → k̃∗⊕ k∗

defined by ΦK̃(ã,η̃) = −ãη̃ and ΦK(ã,η̃) = πk, k̃(η̃). Here πk, k̃ : k̃
∗ → k∗ is the projection

dual to the inclusion k ↪→ k̃ of Lie algebras.

Finally, we consider the Kähler Hamiltonian K̃ ×K-manifold T∗K̃ × q, where q is
equipped with the symplectic structure Ωq. Let us denote by Φ : T∗K̃×q→ k̃∗⊕ k∗ the

moment map relative to the K̃×K-action:

Φ(ã,η̃,Y ) =
(
−ãη̃,πk, k̃(η̃)+Φq(Y )

)
. (15)

Since Φ is proper map, the convexity theorem tells us that

Δ(T∗K̃×q) := Image(Φ)
⋂

t̃∗≥0× t∗≥0

is a closed convex locally polyhedral set.

We consider now the action of K̃×K on the affine variety K̃C× q. The set of highest

weights of K̃C × q is the semigroup ΠZ(K̃C × q) ⊂ ∧̃∗
+ ×∧∗

+ consisting of all dominant

weights (λ̃,λ) such that the irreducible K̃ ×K-representation V K̃
λ̃

⊗ V Kλ occurs in the

coordinate ring C[K̃C×q]. We denote by ΠQ(K̃C×q) the Q-convex cone generated by the

semigroup ΠZ(K̃C×q): (ξ̃,ξ) ∈ΠQ(K̃C×q) if and only if ∃N ≥ 1, N(ξ̃,ξ) ∈ΠZ(K̃C×q).
The following important fact is classical (see Theorem 4.9 in [35]).

Proposition 4.4. The Kirwan polyhedron Δ(T∗K̃ × q) is equal to the closure of the

Q-convex cone ΠQ(K̃C×q).
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A direct application of the Peter–Weyl theorem gives the following characterization:

(λ̃,λ) ∈ΠZ(K̃C×q)⇐⇒
[
V K̃
λ̃
|K ⊗V Kλ ⊗Sym(q)

]K

= 0 (16)

⇐⇒
[
V Kλ∗ : V K̃

λ̃
|K ⊗Sym(q)

]

= 0

⇐⇒ (λ̃,λ∗) ∈ΠZ
q(K̃,K).

4.3. Proof of Theorem B

Consider the semigroup ΠZ
q(K̃,K) of ∧̃∗

+×∧∗
+ (see Definition 1.3) and the Q-convex cone

ΠQ
q (K̃,K) := {(ξ̃,ξ) ∈ t̃∗≥0× t∗≥0 ∃N ≥ 1,N(ξ̃,ξ) ∈ΠZ

q(K̃,K)}.
The Jakobsen–Vergne theorem says that ΠZ

hol(G̃,G) = ΠZ
q(K̃,K)

⋂ ̂̃Ghol× Ĝhol. Hence,

the convex cone ΠQ
hol(G̃,G) is equal to ΠQ

q (K̃,K)∩ C̃hol×Chol. Thanks to equation (16),

we know that (ξ̃,ξ) ∈ ΠQ
q (K̃,K) if and only if (ξ̃,ξ∗) ∈ ΠQ(K̃C × q). The density results

obtained in Proposition 4.4 and Corollary 4.3 gives finally Theorem B.

4.4. Proof of Theorem C

We denote by q̄ the K -vector space q equipped with the opposite symplectic form −Ωq

and opposite complex structure −ad(z). The moment map relative to the K -action on q̄

is denoted by Φq̄ =−Φq.

Lemma 4.5. Any element (ξ̃,ξ) ∈ t̃∗≥0× t∗≥0 satisfies the equivalence

(ξ̃,ξ∗) ∈Δ(T∗K̃×q)⇐⇒ ξ ∈ΔK(K̃ξ̃×q).

Proof. Thanks to equation (15), we see immediatly that ∃(ã,η̃,Y ) ∈ T∗K̃×q such that

(ξ̃,ξ∗) = Φ(ã,η̃,Y ) if and only if ∃(b̃,Z) ∈ K̃×q such that ξ = πk, k̃(b̃ξ̃)+Φq̄(Z).

At this stage, we know that ΔG(G̃μ̃) = ΔK(K̃μ̃× q)∩ Chol. Hence, Theorem C will

follow from the next result.

Proposition 4.6. For any μ̃ ∈ C̃hol, the Kirwan polyhedron ΔK(K̃μ̃× q) is contained

in Chol.
Proof. By definition Chol = C0

G/K ∩ t∗≥0, so we have to prove that πk, k̃(K̃μ̃)+Image(Φq̄) is

contained in C0
G/K . By definition K̃μ̃⊂ C0

G̃/K̃
, and then πk, k̃(K̃μ̃)⊂ C0

G/K . Since C0
G/K +

CG/K ⊂C0
G/K , it is sufficient to check that Image(Φq̄)⊂CG/K . Let Φp̃ be the moment map

relative to the action of K̃ on (p̃,Ωp̃). As Image(Φq̄) ⊂ πk, k̃
(
Image(−Φp̃)

)
, the following

lemma will terminate the proof of Proposition 4.6.

Lemma 4.7. The image of the moment map −Φp̃ is contained in CG̃/K̃ .

Proof. Let z∗ ∈ t̃∗ such that 〈z∗,X̃〉 = −κ̃(z,X̃), ∀X̃ ∈ g̃. Consider the coadjoint orbit
Õ = G̃z∗ equipped with its canonical symplectic structure ΩÕ: The symplectic vector

space Tz∗Õ is canonically isomorphic to (p̃,−Ωp̃). In [26], McDuff proved that (Õ,ΩÕ)
is diffeomorphic, as a K̃-symplectic manifold, to the symplectic vector space (p̃, −Ωp̃)
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(see [6, 8] for a generalization of this fact). McDuff’s results show in particular that

Image(−Φp̃) = πg̃, k̃(Õ). Our proof is completed if we check that πg̃, k̃(Õ)⊂ CG̃/K̃ : In other

words, if 〈πg̃, k̃(g̃0 z∗),g̃1z〉 ≥ 0, ∀g̃0,g̃1 ∈ G̃. But

2〈πg̃, k̃(g̃0 z∗),g̃1 z〉= 〈g̃0 z∗,g̃1z+Θ(g̃1)z〉
=−κ̃(z,g̃−1

0 g̃1 z)− κ̃(z,g̃−1
0 Θ(g̃1)z).

With equation (7) in hand, it is not difficult to see that −κ̃(z,g̃ z) ≥ 0 for every g̃ ∈ G̃.
We thus verified that πg̃, k̃(Õ)⊂ CG̃/K̃ .

5. Inequalities characterizing the cones Δhol(G̃,G)

We come back to the framework of §4.2. We consider the Kähler Hamiltonian K̃ ×K-

manifold T∗K̃ × q. The moment map, Φ : T∗K̃ × q → k̃∗ ⊕ k∗, relative to the K̃ ×K-
action, is defined by equation (15).

In this section, we adapt to our case the result of §6 of [32] concerning the

parametrization of the facets of Kirwan polyhedrons in terms of Ressayre’s data.

5.1. Admissible elements

We choose maximal tori T̃ ⊂ K̃ and T ⊂K such that T ⊂ T̃ . LetRo andR be, respectively,

the set of roots for the action of T on (g̃/g)⊗C and g⊗C. Let R̃ be the set of roots
for the action of T̃ on g̃⊗C. Let R+ ⊂R and R̃+ ⊂ R̃ be the systems of positive roots

defined in equation (6). Let W,W̃ be the Weyl groups of (T,K) and (T̃ ,K̃). Let wo ∈W
be the longest element.

We start by introducing the notion of admissible elements. The group hom(U(1),T )
admits a natural identification with the lattice ∧ := 1

2π ker(exp : t→ T ). A vector γ ∈ t is

called rational if it belongs to the Q-vector space tQ generated by ∧.
We consider the K̃×K-action on N := T∗K̃×q. We associate to any subset X ⊂N ,

the integer dimK̃×K(X ) (see equation (5)).

Definition 5.1. A nonzero element (γ̃,γ) ∈ t̃× t is called admissible if the elements γ̃

and γ are rational and if dimK̃×K(N (γ̃,γ))−dimK̃×K(N) ∈ {0,1}.

If γ ∈ t, we denote by Ro∩γ⊥ the subsets of weight vanishing against γ. We start with

the following lemma whose proof is left to the reader (see §6.1.1 of [32]).

Lemma 5.2.

1. N (γ̃,γ) 
= ∅ if and only if γ̃ ∈ W̃γ.

2. dimK̃×K(N) = dimT (g̃/g) = dim(t)−dim(Vect(Ro)).

3. For any w̃ ∈ W̃ , dimK̃×K(N (w̃γ,γ)) = dimT (g̃
γ/gγ) = dim(t)−dim(Vect(Ro∩γ⊥)).

The next result is a direct consequence of the previous lemma.

https://doi.org/10.1017/S1474748022000214 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000214


2824 P.-E. Paradan

Lemma 5.3. The admissible elements relative to the K̃ ×K-action on T∗K̃ × q

are of the form (w̃γ,γ), where w̃ ∈ W̃ and γ is a nonzero rational element satisfying
Vect(Ro)∩γ⊥ =Vect(Ro∩γ⊥).

5.2. Ressayre’s data

Definition 5.4.

1. Consider the linear action ρ : G→ GLC(V ) of a compact Lie group on a complex
vector space V. For any (η,a) ∈ g×R, we define the vector subspace V η=a = {v ∈
V ,dρ(η)v= iav}. Thus, for any η ∈ g, we have the decomposition V = V η>0⊕V η=0⊕
V η<0, where V η>0 =

∑
a>0V

η=a, and V η<0 =
∑
a<0V

η=a.

2. The real number Trη(V
η>0) is defined as the sum

∑
a>0 a dim(V η=a).

We consider an admissible element (w̃γ,γ). The submanifold of N � K̃C× q fixed by

(w̃γ,γ) is N (w̃γ,γ) = w̃K̃γ
C × qγ . There is a canonical isomorphism between the manifold

N (w̃γ,γ) equipped with the action of w̃K̃γw̃−1×Kγ with the manifold K̃γ
C×qγ equipped

with the action of K̃γ ×Kγ . The tangent bundle ( TN |N(w̃γ,γ))(w̃γ,γ)>0 is isomorphic to

Nγw × k̃γ>0
C ×qγ>0.

The choice of positive rootsR+ (resp. R̃+) induces a decomposition kC = n⊕tC⊕n (resp.
k̃C = ñ⊕ t̃C⊕ ñ), where n=

∑
α∈R+(k⊗C)α (resp. ñ=

∑
α̃∈R̃+(k̃⊗C)α̃). We consider the

map

ρw̃,γ : K̃γ
C ×qγ −→ hom

(
ñw̃γ>0×nγ>0 , k̃γ>0

C ×qγ>0
)

defined by the relation

ρw̃,γ(x̃,v) : (X̃,X) �−→ ((w̃x̃)−1X̃−X ;X ·v)

for any (x̃,v) ∈ K̃γ
C ×qγ .

Definition 5.5. (γ,w̃) ∈ t×W̃ is a Ressayre’s datum if

1. (w̃γ,γ) is admissible,

2. ∃(x̃,v) such that ρw̃,γ(x̃,v) is bijective.

Remark 5.6. In [32], the Ressayre’s data were called regular infinitesimal B-Ressayre’s

pairs.

Since the linear map ρw̃,γ(x̃,v) commutes with the γ-actions, we obtain the following
necessary conditions.

Lemma 5.7. If (γ,w̃) ∈ t×W̃ is a Ressayre’s datum, then

• Relation (A): dim(ñw̃γ>0)+dim(nγ>0) = dim(k̃γ>0
C )+dim(qγ>0).

• Relation (B): Trw̃γ(ñ
w̃γ>0)+Trγ(n

γ>0) = Trγ(k̃
γ>0
C )+Trγ(q

γ>0).
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Lemma 5.8. Relation (B) is equivalent to∑
α∈R+

〈α,γ〉>0

〈α,γ〉=
∑

α̃∈R̃+

〈α̃,w̃0w̃γ〉>0

〈α̃,w̃0w̃γ〉. (17)

Proof. First, one sees that Trγ(q
γ>0) = Trγ(p̃

γ>0) − Trγ(p
γ>0) =

∑
α̃∈R̃

+
n〈α̃,γ〉>0

〈α̃,γ〉 −∑
α∈R

+
n〈α,γ〉>0

〈α,γ〉, and Trγ(k̃
γ>0
C ) = Trw̃γ(k̃

w̃γ>0
C ) = Trw̃γ(ñ

w̃γ>0) +
∑

α̃∈R̃
+
c〈α̃,w̃0w̃γ〉>0

〈α̃,w̃0w̃γ〉.
Relation (B) is equivalent to

Trγ(n
γ>0)+

∑
α∈R

+
n〈α,γ〉>0

〈α,γ〉=
∑

α̃∈R̃
+
n〈α̃,γ〉>0

〈α̃,γ〉+
∑

α̃∈R̃
+
c〈α̃,w̃0w̃γ〉>0

〈α̃,w̃0w̃γ〉. (18)

Since R̃+
n is invariant under the action of the Weyl group W̃ , the right-hand side of

equation (18) is equal to
∑

α̃∈R̃+

〈α̃,w̃0w̃γ〉>0

〈α̃,w̃0w̃γ〉. Since the left-hand side of equation (18)

is equal to
∑

α∈R+

〈α,γ〉>0

〈α,γ〉, the proof of the lemma is complete.

5.3. Cohomological characterization of Ressayre’s data

Let γ ∈ t be a nonzero rational element. We denote by B ⊂KC and by B̃ ⊂ K̃C the Borel
subgroups with Lie algebra b = tC⊕ n and b̃ = t̃C⊕ ñ. Consider the parabolic subgroup

Pγ ⊂KC defined by

Pγ = {g ∈KC, lim
t→∞exp(−itγ)g exp(itγ) exists}. (19)

Similarly, one defines a parabolic subgroup P̃γ ⊂ K̃C.

We work with the projective varieties Fγ :=KC/Pγ , F̃γ := K̃C/P̃γ and the canonical
embedding ι : Fγ → F̃γ . We associate to any w̃ ∈ W̃ , the Schubert cell

X̃ow̃,γ := B̃[w̃]⊂ F̃γ
and the Schubert variety X̃w̃,γ := X̃ow̃,γ . If W̃

γ denotes the subgroup of W̃ that fixes γ, we

see that the Schubert cell X̃ow̃,γ and the Schubert variety X̃w̃,γ depend only of the class

of w̃ in W̃/W̃ γ .

On the variety Fγ , we consider the Schubert cell Xoγ := B[e] and the Schubert variety

Xγ := Xoγ .

We consider the cohomology1 ring H∗(F̃γ,Z) of F̃γ . If Y is an irreducible closed
subvariety of F̃γ , we denote by [Y ] ∈ H2nY (F̃γ,Z) its cycle class in cohomology: Here

nY = codimC(Y ). Let ι∗ : H∗(F̃γ,Z) → H∗(Fγ,Z) be the pull-back map in cohomology.

Recall that the cohomology class [pt] associated to a singleton Y = {pt} ⊂ Fγ is a basis

of Hmax(Fγ,Z).

1Here, we use singular cohomology with integer coefficients.
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To an oriented real vector bundle E → N of rank r, we can associate its Euler class
Eul(E) ∈H2r(N,Z). When V →N is a complex vector bundle, then Eul(VR) corresponds

to the top Chern class cp(V), where p is the complex rank of V, and VR means V viewed

as a real vector bundle oriented by its complex structure (see [5], §21).
The isomorphism qγ>0 � q/qγ≤0 shows that qγ>0 can be viewed as a Pγ-module. Let

[qγ>0] = KC ×Pγ
qγ>0 be the corresponding complex vector bundle on Fγ . We denote

simply by Eul(qγ>0) the Euler class Eul([qγ>0]R) ∈H∗(Fγ,Z).
The following characterization of Ressayre’s data was obtained in [32], §6. Recall that

Ro denotes the set of weights relative to the T -action on (g̃/g)⊗C.

Proposition 5.9. An element (γ,w̃) ∈ t× W̃ is a Ressayre’s datum if and only if the
following conditions hold:

• γ is nonzero and rational.
• Vect(Ro∩γ⊥) = Vect(Ro)∩γ⊥.
• [Xγ ] · ι∗([X̃w̃,γ ]) ·Eul(qγ>0) = k[pt], k ≥ 1 in H∗(Fγ,Z).
• ∑

α∈R+

〈α,γ〉>0

〈α,γ〉=∑
α̃∈R̃+

〈α̃,w̃0w̃γ〉>0

〈α̃,w̃0w̃γ〉.

5.4. Parametrization of the facets

We can finally describe the Kirwan polyhedron Δ(T∗K̃×q) (see [32], §6).

Theorem 5.10. An element (ξ̃,ξ) ∈ t̃∗≥0× t∗≥0 belongs to Δ(T∗K̃×q) if and only if

〈ξ̃,w̃γ〉+ 〈ξ,γ〉 ≥ 0

for any Ressayre’s datum (γ,w̃) ∈ t×W̃ .

Theorem 5.10 and Theorem B permit us to give the following description of the convex

cone Δhol(G̃,G).

Theorem 5.11. An element (ξ̃,ξ) belongs to Δhol(G̃,G) if and only if (ξ̃,ξ) ∈ C̃hol×Chol
and

〈ξ̃,w̃γ〉 ≥ 〈ξ,w0γ〉
for any (γ,w̃) ∈ t×W̃ satisfying the following conditions:

• γ is nonzero and rational.
• Vect(Ro∩γ⊥) = Vect(Ro)∩γ⊥.
• [Xγ ] · ι∗([X̃w̃,γ ]) ·Eul(qγ>0) = k[pt], k ≥ 1 in H∗(Fγ,Z).
• ∑

α∈R+

〈α,γ〉>0

〈α,γ〉=∑
α̃∈R̃+

〈α̃,w̃0w̃γ〉>0

〈α̃,w̃0w̃γ〉.

6. Example: the holomorphic Horn cone Hornhol(p,q)

Let p≥ q ≥ 1. We consider the pseudo-unitary group G= U(p,q)⊂GLp+q(C) defined by

the relation: g ∈ U(p,q) if and only if gIdp,qg
∗ = Idp,q, where Idp,q is the diagonal matrix

Diag(Idp,− Idq).
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We work with the maximal compact subgroup K = U(p)×U(q) ⊂ G. We have the

Cartan decomposition g= k⊕p, where p is identified with the vector space Mp,q of p× q
matrices through the map

X ∈Mp,q �−→
(

0 X
X∗ 0

)
.

We work with the element zp,q =
i
2 Idp,q which belongs to the center of k. The adjoint

action of zp,q on p corresponds to the standard complex structure on Mp,q.

The trace on glp+q(C) defines an identification g� g∗ =hom(g,R): ToX ∈ g we associate

ξX ∈ g∗ defined by 〈ξX,Y 〉=−Tr(XY ). Thus, the G-invariant cone CG/K defined by zp,q
can be viewed as the following cone of g:

C(p,q) = {
X ∈ g, Im

(
Tr(gXg−1Idp,q)

)≥ 0, ∀g ∈ U(p,q)
}
.

Let T ⊂ U(p)×U(q) be the maximal torus formed by the diagonal matrices. The Lie

algebra t is identified with Rp×Rq through the map d : Rp×Rq → u(p)× u(q): dx =

Diag(ix1, · · · ,ixp,ixp+1, · · · ,ixp+q). The Weyl chamber is

t≥0 = {x ∈ Rp×Rq, x1 ≥ ·· · ≥ xp and xp+1 ≥ ·· · ≥ xp+q} .
Proposition 2.2 tells us that the U(p,q) adjoint orbits in the interior of C(p,q) are

parametrized by the holomorphic chamber

Cp,q = {x ∈ Rp×Rq,x1 ≥ ·· · ≥ xp > xp+1 ≥ ·· · ≥ xp+q} ⊂ t≥0.

Definition 6.1. The holomorphic Horn cone Hornhol(p,q) := Horn2hol(U(p,q)) is defined

by the relations

Hornhol(p,q) =
{
(A,B,C) ∈ (Cp,q)3, U(p,q)dC ⊂ U(p,q)dA+U(p,q)dB

}
.

Let us detail the description given of Hornhol(p,q) by Theorem B. For any n ≥ 1, we

consider the semigroup ∧+
n = {(λ1 ≥ ·· · ≥ λn)} ⊂ Zn. If λ = (λ′,λ′′) ∈ ∧+

p ×∧+
q , then

Vλ := V
U(p)
λ′ ⊗V

U(q)
λ′′ denotes the irreducible representation of U(p)×U(q) with highest

weight λ. We denote by Sym(Mp,q) the symmetric algebra of Mp,q.

Definition 6.2.

1. HornZ(p,q) is the semigroup of (∧+
p ×∧+

q )
3 defined by the conditions:

(λ,μ,ν) ∈HornZ(p,q)⇐⇒ [Vν : Vλ⊗Vμ⊗Sym(Mp,q)] 
= 0.

2. Horn(p,q) is the convex cone of (t≥0)
3 defined as the closure of Q>0 ·HornZ(p,q).

Theorem B asserts that

Hornhol(p,q) = Horn(p,q)
⋂

(Cp,q)3. (20)

In another article [33], we obtained a recursive description of the cones Horn(p,q). This

allows us to give the following description of the holomorphic Horn cone Hornhol(2,2).

https://doi.org/10.1017/S1474748022000214 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000214


2828 P.-E. Paradan

Example 6.3. An element (A,B,C) ∈ (R4)3 belongs to Hornhol(2,2) if and only if the

following conditions hold:

a1 ≥ a2 > a3 ≥ a4
b1 ≥ b2 > b3 ≥ b4
c1 ≥ c2 > c3 ≥ c4

a1+a2+a3+a4+ b1+ b2+ b3+ b4 = c1+ c2+ c3+ c4

a1+a2+ b1+ b2 ≤ c1+ c2

a2+ b2 ≤ c2
a2+ b1 ≤ c1
a1+ b2 ≤ c1

a3+ b3 ≥ c3
a3+ b4 ≥ c4
a4+ b3 ≥ c4

a2+a4+ b2+ b4 ≤ c1+ c4
a2+a4+ b2+ b4 ≤ c2+ c3
a2+a4+ b1+ b4 ≤ c1+ c3
a1+a4+ b2+ b4 ≤ c1+ c3
a2+a4+ b2+ b3 ≤ c1+ c3
a2+a3+ b2+ b4 ≤ c1+ c3

7. A conjectural symplectomorphism

Let μ̃ ∈ C̃hol. In this section, we are interested in the geometry of the coadjoint orbit G̃μ̃

viewed as a Hamiltonian G-manifold with proper moment map Φμ̃G : G̃μ̃→ g∗.
We start with a decomposition that we have already used. The pullback Yμ̃=(Φμ̃G)

−1(k∗)
is a symplectic submanifold of G̃μ̃ which is stable under the K -action: Let Ωμ̃ be the

corresponding two form on Yμ̃. The action of K on (Yμ̃,Ωμ̃) is Hamiltonian, with a proper

moment map Φμ̃K : Yμ̃ → k∗ equal to the restriction of Φμ̃G to Yμ̃.
The map [g,x] �→ gx defines a symplectomorphism

G×K Yμ̃ � G̃μ̃ (21)

so that Φμ̃G([g,x]) = g ·Φμ̃K(x) [31]. This allows us to see that the Kirwan polytope ΔG(G̃μ̃)

relative to the G-action on G̃μ̃ is equal to the Kirwan polytope ΔK(Yμ̃) relative to the

K -action on Yμ̃.
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We consider the orthogonal decomposition p̃= p⊕q. Mostow’s decomposition theorem
[27] says that the map ψ : p× q× K̃ → G̃, (X,Y ,k̃) �→ eXeY k̃ is a diffeomorphism. This

leads to the following result.

Lemma 7.1. We have the following G-equivariant diffeomorphisms:

ψo :G×K
(
q× K̃

)
−→ G̃[

g;Y ,k̃
]
�−→ geY k̃,

ψμ̃ :G×K
(
q× K̃μ̃

)
−→ G̃μ̃

[g;Y ,ξ] �−→ geY ξ.

We obtain the following geometric information on the K -manifold Yμ̃.

Corollary 7.2. There exists a K-equivariant diffeomorphism q× K̃μ̃� Yμ̃.

Proof. Thanks to the diffeomorphisms (21) and ψμ̃, we know that the manifolds G×K
Yμ̃ and G×K (q× K̃μ̃) admit a G-equivariant diffeomorphism. Our result follows from

this.

Let κ̃ be the Killing form on the Lie algebra g̃. We consider the K̃-invariant symplectic

structures Ωp̃ on p̃, defined by the relation Ωp̃(Ỹ ,Ỹ
′) = κ̃(z,[Ỹ ,Ỹ ′]), ∀Ỹ ,Ỹ ′ ∈ p̃. We denote

by Ωq the restriction of Ωp̃ on the symplectic subspace q.

We consider the following symplectic structure −Ωq × ΩK̃μ̃ on q× K̃μ̃. Knowing

that ΔG(G̃μ̃) = ΔK(Yμ̃), the following conjectural result would give another proof of

Theorem C.

Conjecture 7.3. There exists a K -equivariant symplectomorphism between (Yμ̃,Ωμ̃) and

(q× K̃μ̃,−Ωq×ΩK̃μ̃).

This conjecture generalizes some results obtained when G= K̃:

1. In [26], McDuff showed that G̃μ̃� G̃/K̃ admit a K̃-equivariant symplectomorphism
with (p̃,−Ωp̃) when μ̃ is a central element of k̃∗.

2. In [8], Deltour extended the result of McDuff by showing that G̃μ̃ admits a K̃-

equivariant symplectomorphism with (p̃× K̃μ̃,−Ωp̃×ΩK̃μ̃) for any μ̃ ∈ C̃hol.
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