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UNIVALENT FUNCTIONS WITH UNIVALENT
GELFOND-LEONTEV DERIVATIVES

0.P. Juneua AND S.M. SHAH

oo
Let {dn}l be a nondecreasing sequence of positive numbers. We

consider Gelfond-Leontev derivative Df(z2) , of a function

o« [++)
flz) = ¥ az', |z| <R, defined by Df(z) = ¥ da o ,
n=0 " nsl T

for univalence and growth properties, and extend some results of

. -1
Shah and Trimble. Set e = (dld2 et dn) ., mz1l, e; =1,
o
p(z) = z: enzn . Let r Dbe the radius of convergence of
n=0

p(2) . We state parts of Theorem 1 and Corollaries. Let f and

all Dkf , k=1,2, ... , be analytic and univalent in the unit
disk U . Then

(1) £ = lagl + (la;ld /2d,){p(2d,|2])-1} » lal < r/2d, ,

(li) ll;(f(z)l -:- | Zk (en—k/en)anzn—k S Ialld1(2d2)k"lp(2d2|z|) s
n=

k=1,

(iii) if p is entire and of growth (p, T) then f must be
entire and of growth not exceeding (p, 2d21j s
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(iv) if D corresponds to the shift operator (dn £ l) , then

lf(z)l =O(l—2|z|)—l as z > % .

Another class of functions is defined by a condition of the form

/ < ’ o« JEPN
Iam_l/an] =b,,/d, ., » vhere {bn}l is a sequence of positive

numbers satisfying an inequality, and it is shown that all
functions in this class along with all their Gelfond-Leontev
successive derivatives are regular and univalent in U . An
extension of the definition of a linear invariant family is given

and results analogous to (i) and (ii) are stated.

1. Introduction

Le]
Let f(z) = Y anzn be an analytic function in the disc |z| < R .
n=0

o
Let {dn}n=1 denote a non-decreasing sequence of positive numbers and D

the operator which transforms the function

(1.1) flz) = Y anzn
n=0
into
(1.2) Dfiz) = ¥ da "t .
=1

For k=1,2, ... , the kth iterate of D 1is given by

- nk o« °nk  nk
(1.3) d<f(z) = 2 d ... dn-k+lanz = Z: a3
n=k n=k n
= - -1 = =
where e, =1 and e, = (dld2 ...dn) s, n=1,2, ... . 1If dn_n .

D corresponds to the ordinary derivative whereas if dn =1, D

corresponds to the shift operator S$* which transforms

into S*f(z) = Y a 2L
n
n=1

(1.4) flz) =

3
i
Q

3
n
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The operator D is called the Gelfond-Leontev derivative [7] of f .
The operators D have been investigated extensively by Kazmin [9],
Buckholtz and Frank [3, 4] and others.

Set
(1.5) plz) = Y enzn .

It is clear that p(0) =1 and Dp(z) =p(z) . Thus p(2) bears the same
relationship to the operator D which the exponential function bears to
the ordinary differentiation. If 2 be the radius of convergence of p(3)
then we have

(1.6) r=1limd = sup d_ .
n- o 10 <> n

-]
Define the p-type of the function f(z) = Z: anzn to be the number
n=0

(1.7) ©(F) = Lim sup la e, [P

n-¥o
If r <® , it is easy to check that

(1.8) Tp(f) = r/R .

If p(z) is entire, p-type is a growth measure introduced by Nachbin [Z,
p. 6] and [71] which can be related to the maximum modulus of f .
Further, for p(z) entire, Tp(f) < ® jmplies that f is entire.

Shah and Trimble have, in a series of papers {see, for example, [17]
to [22]), studied properties of functions f such that f and its
successive ordinary derivatives are univalent in the unit disc U . They
showed that such an f must be an entire function of exponential type. In
the present paper we consider functions f such that f along with its
Gelfond-Leontev derivatives is univalent in U and show that such an f
must be of finite p-type. We shall suppose throughout that the operator
D is defined by (1.2) and that p(z) , given by (1.5), has radius of

convergence r (0 < r < w) .
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2. The class E(D)

Let S denote, as usual, the family of functions A of the form

oo

(2.1) W(z) =2+ ) b Pl
n
n=2

which are analytic and univalent in the unit disc U . It is well known
(see, for example, [13, p. 20]) that
(2.2) |b2| <2
and

2 <
(2.3) ’b3-b2 =1

both the inequalities being sharp.

It is further known [13, p. L4] that if A , defined by (2.1), is
analytic in U angd if
Lo o)
(2.4) > n|an| =1
n=2

then h is univalent in U , that is, h € S . This condition (2.k4), on
the moduli of the coefficients alone, is best possible in the sense that if
{2.4) does not hold then the arguments of the coefficients can be so

altered that the new function defined by
z +Yqz
5 In
is no longer univalent in U (see [81, [10]).
Let E(D) denote the family of functions of the form (2.1) such that

f and all its Gelfond-Leontev derivatives Dkf are analytic and univalent
in U . ©Note that when d =n , D corresponds to the ordinary
n

derivative and E(D) 1is then the class E considered by Shah and Trimble
[171.

THEOREM 1. Let f represented by (1.1) be such that f and all

Dkf are analytic and wnivalent in U ; then
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{2.5) f 1is of finite p-type not exceeding 2d2 R
(2.6) |f(z)]| = Iaol + (lalidl/Zdz)fp(2d2[z|)-l| . |z < r/2d2 »

(2.1 1Feta)] = layld, (2d,) Pp(ed,lal) . k=1,

(2.8) E(D) 1is a normal family in |z} < t < r/2d, for all t

satisfying 0 < t < r/2d, .

Proof. Since, for k=1, 2, ... ,
k - n-k
U flz) = nZi d, .-rd 419,

is univalent in U , it follows that A # 0 . Define Hk in U by

k k d a
#(z) = Z (ZQ“D a(o) =z + _512,_312 2+ ...
27" TR+ k41 2 %%+
It is clear that Hk €S . By (2.2), we have, therefore,
d a
(2.9) -gig . ke <=2, k=1,2,
2 %w

An induction process gives

k-1
(2.10) la, | = e, ()" "dylayl 5 k=152, ...
Thus

a, 1/k
lim sup |—~ < 2d2
koo |

showing that f 1is of finite p-type not exceeding 2d2 .

Using the estimates (2.10) in the relations
- n
7)< T lallz]

n=0

and
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< « ‘n-k n-k
EECIE - CATE]

easily leads to (2.6) and (2.7). The assertion (2.8) is a consequence of
local boundedness of E(D) obtained from (2.6). Hence the theorem.

COROLLARY 1. If p <s entire, then f € E(D) must be entire and
relations (2.6) and (2.7) hold for all =z € € . Assertion (2.8) is valid
on every compact subset of C .

COROLLARY 2. If p <s an entire functiom of growth (p, T) (cf.
(1, p. 8)) then f € E(D) must be an entire function of growth not
exceeding |[p, 2d2T) .

It is known that if f is analytiec in [z| < R (< ®) , its order Py

is defined by (see, for example, [23])

+. o+
. log log M(r)
(2.11 =1 g
) o 12_);}) log (Rr/(R-r))
where M(r) = max |f(z)| . Taking this into consideration, we have
lz|=r
COROLLARY 3. If D corresponds to the shift operator S* defined

by (1.k4), them, by (2.6), |f(z)] = 0(1—2|z|)_l as |zl ~% and f € E(D)
must be of zero order in |z| <% .

REMARK. Theorem 1 could also be modelled in terms of "admissible

property"” as done in Theorem 1 of [19], thereby generalizing that theorem.

3. Functions in the class &S

A function f € S may have f' wunivalent in U but its Gelfond-

Leontev derivative Df may not be univalent in U . To see this, let
o
flz) =2+ Y ai"
n:

be such that a, is negative for n > 3 , a, = 4/(5+8 log 2) ,

Ianl = a2/ [2n-3-n(n—l)) . Using (2.4), it is easy to check that f' is

univalent in U . However, if we take dn to be a non-decreasing sequence
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in which d3 = 3d2 , then Df is seen not to be univalent in U . 1In
fact, it is possible to have such an f with p-type as large as wve

please. This is demonstrated by the following

THEQREM 2. There exists an f € S such that f' 1is wiivalent in
U ; 1its Gelfond-Leontev derivative Df 1is not wunivalent in U and

p-type of f 1is as large as we please.

Proof. Let
o
flz) =z+ Y ai"
n=2 "

N
where we choose a = a2/n(n-1)2 3 for n =3, 4, ... and a, >0 such

[e+]
that ). na, < 1. Then f €S . Further
n=2

f'(z) =1+ Y na PUats
n
n=2

is easily seen to satisfy a condition of the form (2.4) and so f' 1is uni-

valent in U . ©Now choose dl =1 , {dn}+, and for some N = 2 , choose
. N-2
nondecreasing dN+1 = d2(N+2) -2 N dN+k = dN+1 for all k > 1. Then
(3.1) dN+1aN+1 _ _h+2 s 1
) d2a2 N(N+1) ~ N -

Hence, by a theorem of Qin Yuan-Xun [74] there exists a real number

¢ such that

T - dnan n-1
(3.2) 2 + e Zd—az
n=3 22
is not univalent in U . Now let
o« .
n
(3.3) F(z) = 2z + a232 + Y anelwz .
n=3
Since
o0 1: Lo+
Y nlae? = na, 1,
n=2 n=2
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vy (2.4), F €5 . Purther, F' is also seen to be univalent in U .
Now, by (1.2),
ip N

DF(z)=dl+daz+d3aeupz2+...+d + ...

2% 3 1%+1°
In view of (3.2), DF(z) is not univalent in U . Further

1/n
_ G

lim sup _e_;l >

[ n
Thus by choosing dIV+l sufficiently large, we can have p-type of F(z)

as large as we please.

4. Radius of univalence of D'f

oo
Let f(z) = % anzn be analytic in |z| < R and let p, be the
n=0

largest number with the property that an is analytic and univalent in an

open disc about the origin of radius on . We now investigate the relation
between the growth of {pn} and the radius of convergence of f about the
origin. We thus have

THEOREM 3. Let f be defined by (1.1) with radius of convergence R
and let e, be the radius of univalence of an .  Then

1/n

n
(4.1) lim inf d p < lim inf || | p.d. <2d.R,
Y00 nn o i=n 1 2

where N denotes the smallest non-negative integer such that for n =2 N ,

p, >0 . Further, if |an/a is eventually a positive and non-

n+l |
decreasing sequence, then

(k.2) lim sup dnpn < 2d21? 3

n- o
in case f 1is of finite p-type, then we also have

(k.2)! li;zll—wsoup dnpn < d2R\/d3/ld3—d25 .
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Proof. If p, =0 for an infinity of n , (4.1) is trivially true.

it pn >0 for m =N, then it is obvious that an+l

Let

- | 2 "
F%(z) = an(pnz) =z te AaPn® *: N aﬂ+2pfl)z

n n+l

Then the function Kn defined by

F (2)—F (0) e
(%.3) K (z) = ( ) =z +g_2_en+l an+2 pn22
n+l n+f% 1 n+2 n+l

3 n+1 n+3 2 3

1 %43 %1

is in S

Applying (2.2) we have

626n+1lan+2|pn = 2elen+2lan+1l >
(h.b) Py, < 2dpla, /e, |, nz
that is
(4.5) lim inf o, d < 2d,R .

70

Inductive process applied to (4.h4) gives

TT (a1 |
X=N pkdk N+1 n+2

Hence

1/n
(4.6) lim inf |1 | 0,d <2d R .
k=n < K| 2

n-eo

Since left-hand inequality of (L.1) is readily seen to be true,

gives (4.1).

If f is such that |an el

sequence then R = lim lan/a | and (L4.%) gives

n-oo

n+l
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(4.7) lim sup pndn < 2d2R .
-0
If R=, (L.2)' obviously holds. In case R < and f is of
finite p-type then, by (1.7), r <~ and so dn A'dn+l as n > oo .

We now apply (2.3) to the function K~ defined by {4.3) and obtain

2
dpr2 a2 dp43 Gna2 ez 2| _
d. a nl ~ d d, a Pal =15
2 n+l 3 2 n+l
that is,
2 2
n+2 ' n+2 p2 _ |dn+3 dn+2 “ae3||Tnr2| 2 <1
d2 [Fa1| 7 d3 d2 a ol 9| 7
or
llm sup (d 0, ] ’ d d =1,
EF 9% R2
(4.8) lim sup dnpn < dEVd3/ld3-d2§R

n-ro
(4.8) gives (L4.2)". Hence the theorem.

COROLLARY. If 1lim dnpn =  then f 1is a transcendental entire

700
function.

If we take f(2) = z2/{(1-2) , then R =1 and taking dn = n , we have
P, = sin(ﬂ/(n+l)) . Thus (k.1) gives

" 1/n

. . kU
< 1im inf [ 2 sin oy =) .
n-o =1

5. Entire functions of finite order

We now obtain relations between the radii of univalence of the

Gelfond-Leontev derivatives of an entire function and its growth constants

namely, order, lower order, and so on. Let f Z: a zn be an entire
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function of order « and the lower order B . It is known [15] that

o s log|an/an+l| <1 1 ... lOglan/arnll
(5.1) lim inf ———————— = = < &= < 1im sup
I logn a B . logn

and that equality holds at both ends of (5.1) if |an/a forms a non-

n+lI
decreasing function of n for n >N . For O <qa < , let f(z) be of

type T and lower type ¢ ; then ([1, p. 1131, [16]),

(5.2) eal = lim sup n|a |a/n R
N "
R a/n
(5.3) eot = lim inf nlan| ,

710

where equality holds in (5.3) if |an/a forms a nondecreasing function

n+1I

of n for n >N . We now have

THEOREM 4. Let f, defined by f(z) = 3 anzn , be a trans-
n=0

cendental entire function of order o (0 < a < ), lower order B , type
T and lower type t . Let D denote the Gelfond-Leontev operator
defined by (1.2) and P, the radius of univalence of an . If

0 = 1im inf log dn/log n , one has

n-reo

logp

(5.4) lim inf nel g R
T pam logn o
a/n . a

P4 n_py_od f2d,)]

(5.5) lim int 2322 < lin inr TTkz—ik s—2—,
noe  n nwo k=8 k¢

where N denotes the non-negative integer such that for n=2 N, p_ >0 .

n
Further i1f |an/an+1| is eventually a positive and nondecreasing sequence,
then
(5.6) 11 i I
. :*iup Togn = 8- 0,
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n P d G/n |2d .la
. k-2"k 2
(5.7) lim sup —1/a T

n-o k=N k
Proof. By (L4.L4) we have

logla | + 1og(2d2) > log (pndn)

n+l n+2

This, coupled with extreme left inequality of (5.1), gives

1 o log(pnd ) o logpn
= 2 1lim inf ————— = 1lim inf + 0
o yoe0 logn 00 logn
which results in (5.L4).
Now, by (5.2),
eaT = lim sup nla Ia/n
n-o n
a/n
= 1lim sup n | | Ia ja ﬂ
700 k=N+2 k k—l__
n 2d a/n
2
= lim sup n | | 5 d
n-oo k=N+2 Pr-2%
( . — n -a/n
= (2d,)” 1im sup n
2 e k L P2
or
Jo/n AL
Pr—2% (2d,)
lim inf I l 1/ = oT .
n-w k=N k%

The left-hand inequality of (5.5) being obvious, the proof of (5.5) is

complete. If Ian/a

n+l| is eventually a nondecreasing sequence, then, by

(5.1),
1 . 1Oglan/an+ll
= = lim sup T Tomn
B e 2
so that, for € > 0 ,
1
£+E>M n>n. =nle)
B logn ? 0 0
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(4.4) now gives

1 .
% 2 1lim sup —5—— 2 lim sup + 6 .
B oo logn IR %

This easily leads to (5.6). The proof of (5.7) is similar to

except that one has to use the relation

edt = 1lim inf nlan|a/n .
COROLLARY. () If Ian/an+l| is eventually a positive

decreasing sequence and B8 > 1 then lim P, =0 .
7o

(i) If lim inf dnn_l/ ®>0 and linp =w, then T

n—xx0 -0

We take f(z) = (e"°-1)/n and d =7 , then a=8 =1

p =1 . Thus equality holds in (5.4) and (5.6).

6. The class E(D)

In the present section, we obtain a set of conditions on

coefficients of f and on {dn} such that f € E(D) .

34

that of (5.5)

and non-

the

oo
Let {bj}j=l be a sequence of positive numbers such that

o M+l M+k+]1.
(6.1) by =1, y T TT .1 for k=0,1,
M1 Q% Yy geka2

2,

o
Suppose that {an}n=0 is a sequence of complex numbers such that

a b
(6.2) a., =0, a, =1 and a4l < _n+l for n =1, 2,
0 1 a d
n n+l

Let E(D) denote the class of functions f such that

(=]

(6.3) flz) =2+ ¥ az"

n=2 n

satisfies condition (6.2). We now show that E{(D) c E(D)
have the following
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THEQOREM 5. If f € E(D) , then [ <is starlike univalent in U and

Dkf for k=1,2, ... is wivalent in U . Further E(D) <s properly
contained in E(D) .

Proof. From (1.3) we have

© g
Dkf(z) =y n-k a zn-k , k=0,1, 2,
n=k n

e
n

By (2.4), Dkf is univalent in U if

6.1) E d;dz'..dz+k a +k|n . dldg;i'dl+k {ak+l|
n=2 “% % " 1
However (6.2) easily gives
o | = bk+n"'bk+2 |ak o
n+k dkm .o .dk+2 +1
Thus (6.4) will follow if
b, ...b
k+N k+2
L, " 4,4, |2 10 = lag g s
that is,
Mik+1
dd(M+lc)1 TT p.<1 for k=0,1, 2, ... ,
L Y% Y1 =k Y

which is condition (6.1). Thus f ¢ E(D)

To show that E(D) is properly contained in E{(D) , we take dn =n
Then E(D) = E and E(D) = E . The function (enz—l]/ﬂ belongs to E
but is not in E (see [5]). Hence the theorem.
The class E(D) may contain, in general, functions that are not
entire. To see this, let
d =1 for n=1, 2 b, =1 b, =b, = =1- 3= x , say
» s 2y eee 1 . > 3 B R .

Then (6.1) becomes

. (1) = —1—
Mgl (1-x) 2

n
|
[
"
|

v
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that is, (6.1) is satisfied for k =0, 1, 2,

Let
B(z) =z+ Y (bb, ...Db )z =2+ ¥ b4 .
n=o 12 n nep N

Since (6.1) and (6.2) are satisfied, B(z) is in E(D) . However, if R
be the radius of convergence of B(z) , then
b

_n_
*
n+l

= 1lim e o V2

R = 1lim 2 —_—
no “pdl V2-l

Y10

so that B(z) 1is not entire.

Our next theorem gives conditions under which every f € E(D) is

entire.

THEOREM 6. If bn/dn =0(1) and f € E(D) , then §f s entire.

<O
Proof. Suppose f(z) =z + ¥ anzn is in E(D) . Then, by (6.2),
n=2
lan+lﬁzn| = bn+l/dn+l =o(1)
Therefore
]an/an+l| as n >® .,
Thus f 1is entire.
REMARK 1. The condition bn/dn = 0(1) is sharp. We can construct

f € E(D) such that if bn/dn #Z0(1l) then f is not entire.

Suppose 1im sup bn/dn =1#0. Ve may suppose 0 <1 =1 - 1/V2 .

)
Let dn 21, a = bl .. bn where we choose {bn} as follows:
bl =1,
bn =1 if n 1is not a prime, n > 1 ,

1/2 if n is a prime, n > 1 .

If w(n) equals the number of primes less than or equal to n , then
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1/n 1 7
an/ ~ exp{;l- (m(n) 1og >* (n-m(n)) log Z)}
+ 17 as n -+~ since 'n(:) >0 .
Further
- - M 1 1
Y (M+1)b ... b =y M)z ——-1ls—————_-1=1
M=1 k+2 Melsk = (1-2)° [1-1+(1/V3) 12
so that (6.1) is satisfied. Thus f(z) =3z + Y (blb2 bn)zn is in
=2

E(p) and f 1is not entire.

REMARK 2. There exist functions f € E(D) such that f is entire
and b /d +# o(1)
n'n

Let dn=l , a =Db.b "'bn for n = 1 , where we choose {bn}

n 12
(o]
as follows. Let bl =1 . Let {nk}k=l be an increasing sequence of
positive integers such that knk 1 = o(nk) and nl = 1010 , and
b(n) = 1/(nml)! Jif m#En , m=2,3, ...,
b(nk) =L = l/nl , for k=1, 2,
o0
Let f(z) =2 + ) anzn Then f € E(D) , f is entire and
n=2
lim sup b /d =L > 0 . We omit the details of the proof here and also in
-0 n'n
the next

REMARK 3. Even if bn/dn = 0(1) and conditions (6.1) and (6.2) are

o
satisfied, the entire function f(z) =32z + Z anzn can be made to have
n=2
any order p (0 < p = ®) by appropriate choice of {bn} and {dn}
Thus f(z) will be of infinite order if one takes b =1 ,

n
dn = log(nte) , n > 1 , where ¢ is a positive constant such that

log(2+c)>n51010. Let a, =d =1, a _/

1”4 =b, 174

a .
n+l’ n n+l’ n+l

https://doi.org/10.1017/50004972700021584 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700021584

Univalent functions 345

7. Final remarks

Some of the work of Shah and Trimble [17, 18, 19, 22] has been
extended to linear invariant families by Campbell [6]. The concept of
linear invariant family was introduced by Pommerenke [12] who defined a
linear invariant family to be a family of functions of the form
f(z) = 2 + ... which are analytic and locally univalent (f'(z) #0) in
U such that the function

_ Fle(z))-flo(0)) _
A flz) = e () [p0)) ~ 2%

is again a member of the family for every Mobius transformation ¢ of U
onto U. If M is a linear invariant family, then the order of M is

defined as a = sup{|f"(0)/2| : f € M} .

Let Uy denote the union of all linear invariant families of order at

most & . The family u, is itself linear invariant. It is known [12]
that if a < 1 , then ua is empty; ul is precisely the set of all
normalized convex univalent functions. The class S of normalized

univalent functions is contained in u2 3 in fact u2 is much larger than
S since it contains functions of infinite valence also.

The results of the present paper can be extended for the linear

invariant families u, if instead of assuming f and its (normalized)

Gelfond-Leontev derivatives to be in S , one assumes their normalized

forms to be in u . Thus, we say that f{z) has the property of wu(a)
if and only if (f(2)-f(0))/f'(0) is in uy . GCiven the Gelfond-Leontev
operator D , let Ih(D) be the set of all f(z) = 2 + ... which are
analytic in U and for which an(z) has the property u(a) for all

n = 0 . Whatever has been obtained for the class E(D) in this paper can

be easily extended to the wider class Zh(D) ; for example Theorem 1 in
this case would read as follows:

THEOREM 7. Let f ¢ T&(D) . Then

() f 1is of finite p-type not exceeding ad2 ;
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£1]

[z1

£3]

[4]

{53

L6]

(71

£s]

[91

(101

(ii)

(111)

(iv)

0.P. Juneja and S.M. Shah
If(2)| = (dy/ed))plad,ylz]) - 1], lz] < r/od, ;

1F52) | = d) (ed,) Tplod,lzl) , K21

T&(D) is a normal family in |z| <t < r/ad, for all t

satisfying 0 < t < r/ade.

We omit the proof.

A.O.

Yu.A.
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