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UNIVALENT FUNCTIONS WITH UNIVALENT
GELFOND-LEONTEV DERIVATIVES

O.P. JUNEJA AND S.M. SHAH

Let \d } be a nondecreasing sequence of positive numbers. We

consider Gelfond-Leontev derivative Df(z) , of a function
00 00

/U) = Z a
nz

n , \z\ < R , defined by Df(z) = £ ^ Y " " 1 »
w=0 n=X

for univalence and growth properties, and extend some results of

Shah and Trimble. Set e = [dd... d )~ , n > 1 , e = 1 ,

00

p(s) = Y, e z • ^e^ r ^ e ^ e radius of convergence of
n=0 n

p(z) . We state parts of Theorem 1 and Corollaries. Let / and

all uf , k = 1, 2, . . . , be analytic and univalent in the unit

disk U . Then

( i ) | / ( a ) | 5 | a o | + (\a1\d1/2d2){p{2d2\z\)-l} , \z\<r/2d2,-

( i i ) \^f(z)\ = I [e /en)anz
n-k < \a\d [2d^k-\[2dz\z\)

n=k

k > 1 ,

( i i i ) i f p i s en t i re and of growth (p , T) then / must be

en t i r e and of growth not exceeding (p, 2d^T) ,
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(iv) if D corresponds to the shift operator [d E l ) , then

| / U ) | = 0(1-2 M ) " 1 as z + \ .

Another class of functions is defined by a condition of the form
|<3 + 1 /a | - b +-,/d , where \h } is a sequence of positive

numbers satisfying an inequality, and i t is shown that a l l
functions in this class along with al l their Gelfond-Leontev
successive derivatives are regular and univalent in U . An
extension of the definition of a linear invariant family is given
and results analogous to (i) and ( i i ) are stated.

1. Introduction
GO

Let / ( s ) = Y a z be an analytic function in the disc \z\ < R .
n=0 n

Let \d \ denote a non-decreasing sequence of positive numbers and D

the operator which transforms the function

oo

(1.1) /(*) = Z azn

n=0

into

(1.2) Dftz) = Y, daj1-1 .
n=X

For k = 1, 2, . . . , the kth iterate of D is given by

n = k n «-^TX n n=k en n

"I

where e = 1 and e = [d!<J. . . . d j , n = 1, 2, . . . . If d =n

D corresponds to the ordinary derivative whereas i f d = 1 , D

corresponds to the shift operator 5* which transforms
oo oo

(i.u) f(z) = Y <v" i n t o s*f(z) = Y V5""1 •
M = 0 n=X
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The operator D is called the Gelfond-Leontev derivative [7] of / .

The operators D have been investigated extensively by Kazmin [9],

Buckholtz and Frank [3, 4] and others.

Set

oo

(1.5) p(s) = £ e zn .
n=0

It is clear that p(0) = 1 and Dp(z) = p(z) . Thus p(z) bears the same

relationship to the operator D which the exponential function bears to

the ordinary differentiation. If r be the radius of convergence of p(z)

then we have

(1.6) r = lim d = sup d .
I3t<°°

Define the p-type of the function f(z) = £ a z to be the number

(1.7) T (f) = lim sup \an/en\

If r < °° , i t is easy to check that

(1.8) Tp(/) = r/R .

If p(s) is entire, p-type is a growth measure introduced by Nachbin [2,

p. 6] and [H] which can be related to the maximum modulus of / .

Further, for p(z) entire, T (/) < °° implies that / is entire.

Shah and Trimble have, in a series of papers (see, for example, [17]

to [ZZ]), studied properties of functions / such that / and i ts

successive ordinary derivatives are univalent in the unit disc U . They

showed that such an f must be an entire function of exponential type. In

the present paper we consider functions f such that f along with i t s

Gelfond-Leontev derivatives is univalent in U and show that such an /

must be of finite p-type. We shall suppose throughout that the operator

D is defined by (1.2) and that p(z) , given by (1.5), has radius of

convergence r (0 < r S <°) .

https://doi.org/10.1017/S0004972700021584 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700021584


332 O . P . J u n e j a a n d S . M . Shah

2. The class E{D)

Let S denote, as usual, the family of functions h of the form

(2.1) h{z) = 2 + £ b zn

n=2 n

which are analytic and univalent in the unit disc U . I t is well known
(see, for example, [73, p. 20]) that

(2.2)

and

(2.3)

K\ S 2

5 1

both the inequa l i t i e s being sharp.

I t i s further known [73, p . kW] tha t i f h , defined by ( 2 . 1 ) , i s

ana ly t i c in U and i f

(2 . I n\a\ 5
n=2 M

then h is univalent in £/ , that is, h € 5 . This condition (2.U), on

the moduli of the coefficients alone, is best possible in the sense that if

(2.U) does not hold then the arguments of the coefficients can be so

altered that the new function defined by

OD

2 "

is no longer univalent in U (see [S], [10]).

Let E(D) denote the family of functions of the form (2.1) such that

/ and a l l i t s Gelfond-Leontev derivatives are analytic and univalent

in U . Note that when d = n , D corresponds to the ordinary

derivative and E(D) is then the class E considered by Shah and Trimble

[77] .

THEOREM 1. Let f represented by ( l . l ) be such that f and all

D f are analytic and univalent in U ; then
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(2.5) / is of finite p-type not exceeding 2d~ ,

(2.6) \f(z)\ 5 \aQ\ + (\a1\d1/2d2)\P{2d2\2\)-l\ , \z\

(2.7) | ^ / U ) | - \a1\d1(2d2)
k'1p{2d2\z\) , k > 1 ,

(2.8) E(D) is a normal family in \s) < t < r/2d2 for all t

satisfying 0 < t < r /2d .

Proof. Since, for k - 1, 2, . . . ,

Dkf(z) = I n-k
. . . d •. M zn n-k+1 n

is univalent in U , it follows that a, / 0 . Define #, in U by

It is clear that H€ S . By (2.2), we have, therefore,

(2.9)

An induction process gives

d2 ak+l
< 2 , /: = 1 , 2 , . .

\k-l.(2.10) \ak\ < ek[2d2)
K dx\ax\ , fe = 1 , 2,

Thus

lim sup — ^C*o

showing that / is of finite p-type not exceeding

Using the estimates (2.10) in the relations

E
w=0

and
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\ I f Wn\\\
n=k n

e a s i l y l e a d s t o ( 2 . 6 ) and ( 2 . 7 ) - The a s s e r t i o n ( 2 . 8 ) i s a consequence of

l o c a l boundedness o f E(D) o b t a i n e d from ( 2 . 6 ) . Hence t h e theorem.

COROLLARY 1. If p is entire, then f € E{D) must be entire and

relations (2.6) and (2.7) hold for all z € C . Assertion (2.8) is valid

on every compact subset of <C .

COROLLARY 2. If p is an entire function of growth (p , T) (cf.

[ J , p . 8]) then f d E{D) must be an entire function of growth not

exceeding (p, 2dp2") .

I t i s known tha t i f / i s analyt ic in \z\ < R (< °°) , i t s order p

i s defined by ( see , for example, [23])

u r+R

where M{r) = max |/"(2)| . Taking t h i s into consideration, we have
\z\=r

COROLLARY 3. If D corresponds to the shift operator S* defined

by (1 .10, then, by ( 2 .6 ) , | / ( s ) | = 0(\-2\z\)~X as \z\ •* h and f € E(D)

must be of zero order in \z| < \ .

REMARK. Theorem 1 could also be modelled in terms of "admissible

proper ty" as done in Theorem 1 of [79] , thereby generalizing tha t theorem.

3. Functions in the class 5

A function f (. S may have / ' univalent in U but i t s Gelfond-

Leontev derivative Df may not be univalent in U . To see t h i s , let

oo

f(z) = 2 + £ a zn

n=2 n

be such that a is negative for n > 3 , a_ = V(5+8 log 2) ,

\a | = a2 / (2n -n(n-l)) . Using (2.U), i t is easy to check that / ' is

univalent in U . However, i f we take d to be a non-decreasing sequence
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in which d = 3d- , then Df is seen not to be univalent in U . In

fact, i t is possible to have such an / with p-type as large as we

please. This is demonstrated by the following

THEOREM 2. There exists an f € S such that f is univalent in

U ; its Gelfond-Leontev derivative Df is not univalent in U and

p-type of f is as large as we please.

Proof. Let

/(a) = z + Z a zn

n=2 n

where we choose a = a /n (n- l )2 for n = 3, **, . . . and <Zp > 0 such

oo

that Y. na - ! • Then f 6 5 . Further
n=2

f(3) = 1 + I na.
n=2

n-l

i s eas i ly seen to sa t i s fy a condition of the form (2.U) and so / ' i s uni-

valent in V . Now choose d = 1 , {d }+, and for some N t 2 , choose

nondecreasing d^+1 = dg(iV+2) • 2 ~ * d^+fe = d ^ j for a l l k > 1. Then

Hence, by a theorem of Qin Yuan-Xun [74] there ex is t s a rea l number

ip such that

d a
(3.2) « + . * •

n=3 T 2

is not univalent in U . Now let

(3.3) F{z) = 3 + a z2 + X a
»=3

Since

n=2 n w=2
n a n < l ,
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by (2 .U) , F € S . Fur ther , F' i s also seen to be univalent in U .

Now, by ( 1 . 2 ) ,

DF(z) = dx + d2a2z + ^ e V + . . . + d ^ a ^ e ^ * ... .

In view of (3 -2 ) , DF(z) i s not univalent in £/ . Further

a
lim sup

n->°° e

1/n d
7I/+1

Thus by choosing d sufficiently large, we can have p-type of F(z)

as large as we please.

4. Radius of univalence of

oo

Let f{z) = Y. a z b e analytic in j£: | < B and let p be the
n=0 U n

largest number with the property that u f is analytic and univalent in an

open disc about the origin of radius p . We now investigate the relation

between the growth of (p } and the radius of convergence of f about the

origin. We thus have

THEOREM 3. Let f be defined by ( l . l ) with radius of convergence R

and let p be the radius of univalence of uf . Then

(U. l ) lim inf d p 5 lim inf
n n

TT O.d,
^ ^

l / n

where N denotes the smallest non-negative integer such that for n t N ,

p > 0 . Further, if \a la + , | is eventually a positive and non-

decreasing sequence, then

(U.2) lim sup d p 5 2dJi ;
n— n H Z

in case f is of finite p-type, then we also have

( U . 2 ) ' l i m sup dnpn s d2RVd I[d -d2)
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Proof. If p = 0 for an infinity of n , (U.l) is t r ivial ly true.

If p > 0 for n > N , then i t is obvious that a + 1 t 0 for n > N .

Let

V*) =-
a e,

n 1 a p 2
n+Yne« e n + i M + l n e

. . . , s € £/ .

Then the function K defined by

(U.3)
F (z)-F (0)

e e a1 K+3

is in S .

Applying (2.2) we have

that is

p d ^ 5 2d^|a /a
n n+2 2' n + i ' n >

l im in f

Induct ive process appl ied t o (U.U) gives

Hence

(U.6) lim inf
1. _ HT ^ ^

1/n

Since lef t-hand inequal i ty of (U.1) i s readi ly seen to be t r u e , (U.6)

gives ( U . l ) .

I f / i s such tha t l a
n / a

w + i I ^ s a pos i t ive and nondecreasing

sequence then R = lim \a
n/

a
n+-, I a n d C*-*») gives
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(U.7) l i m SUP P d 5 2dpi? .

If i? = °° , (U.2)1 obviously holds. In case R < » and f is of

f ini te p-type then, by (1.7) , r < °° and so d ~ d as n ->• °° .

We now apply (2.3) to the function K defined by (U.3) and obtain

dn+3
1 ;

that is,

n+2 n+2
P -

3 2

n+2

n+l
P.. - 1

lim sup (dnPw)' 1 1 1 ^ 1 ,

lim sup dnQn < d
2 ^ 3 ^ i^3~d2^ R '

(U.8) g ive s ( U . 2 ) 1 . Hence t h e theorem.

COROLLARY. If lim d p = °° , then f is a transcendental entire

fvenation.

If we take f{z) = z/(l-z) , then R = 1 and taking d E n , we have

p = sin(ir/(n+l)) . Thus (U.I) gives

IT 5 lim inf

1/n

5 U .

5. Entire functions of finite order

We now obtain relations between the radii of univalence of the
Gelfond-Leontev derivatives of an entire function and i t s growth constants

namely, order, lower order, and so on. Let f(z) = £ a z be an entire
n=0 "
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function of order a and the lower order 3 . I t is known [75] that

and t h a t e q u a l i t y ho lds a t bo th ends of ( 5 - l ) i f \a /a I forms a non-

d e c r e a s i n g func t ion of n fo r n > N . For 0 < a < °° , l e t f(z) be of

type T and lower type t ; t hen ( [ / , p . 1 1 ] , [ 7 6 ] ) ,

(5 .2 ) eaT = l i m sup n\a \ ,
n-*>° n

(5.3) eat > lim inf n | a j a / n ,

where equality holds in (5.3) if \a /a \ forms a nondecreasing function

of n for n > N . We now have

CO

THEOREM 4. Let f , defined by f{z) = £ a sn , be a trans-

n=0 n

cendental entire function of order a (0 < a < °°)., lower order 3 , type
T and lower type t . Let D denote the Gel fond-Leontev operator

defined by (1.2) and p the radius of univalence of Df . If

6 = lim inf log d /log n , one has

P ,
(5-5) lim inf 7'L" - l i m i n f

n-xx>
TT
k=N k

I/a ~ aT

where N denotes the non-negative integer such that for n > N , p > 0 .

Further if \a /a \ is eventually a positive and nondecreasing sequence,

then

l ° g P M -I
(5.6) ^
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(5-7) lim sup T T

P r o o f . By (U.U) we h a v e

a/n

at

This , coupled with extreme l e f t inequality of (5-1) 5 gives

-, l o S (Pn<O l o g p n
r 5 lim inf ; — > lim inf + 6

w h i c h r e s u l t s i n ( 5 -

Wow, by ( 5 - 2 ) ,

e a r = l i m s u p n\a
r

I a/n

= lim sup n

-i a/n

rr= lim sup n

= (2d2) lim sup n

-a/n

lim inf
n-HO ,1 /a

a /n

The left-hand inequal i ty of (5.5) being obvious, the proof of (5-5) i s

complete. If \a la \ i s eventually a nondecreasing sequence, then, by

( 5 - D ,

— = lim sup n+11

logn

so t h a t , for e > 0 ,

log|<3 la
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(1+. U) now gives

log (p d )

3

This e a s i l y l eads t o ( 5 . 6 ) . The proof of (5-7) i s s i m i l a r t o t h a t of (5-5)

except t h a t one has t o use t h e r e l a t i o n

eat = l im i n f n\a |

COROLLARY, (i) If \a /a \ is eventually a positive and non-

decreasing sequence and 86 > 1 then lim p = 0 .

(ii) If lim inf d n~ > 0 and lim p = °° , then T = 0 .

We t ake f(z) = ( e ^ - l ) /ir and dn = n , then a = 6 = 1 , 6 = 1 ,

p = 1 . Thus e q u a l i t y holds in (5.k) and ( 5 - 6 ) .

6. The class E(D)

In the present section, we obtain a set of conditions on the

coefficients of / and on {d } such that / € E(D) .

Let {b .} . be a sequence of positive numbers such that
0 3~ 1

00 A^T M+k+1

M=l "l"2 - >

. .00

Suppose that [a I _n is a sequence of complex numbers such that

(6 .2 ) a = 0 , a = 1 and
a n b
n+1

for n = 1 , 2 , . . . .
n+1

Let E{D) denote the class of functions / such that

00

(6.3) f(z) = z + £ a zn

n=2

satisfies condition (6.2). We now show that E(D) c £(£>) . in fact we

have the following
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THEOREM 5. If f € E(D) , then f is starlike univalent in U and

uf for k = 1, 2, . . . is univalent in U . Further E(D) is properly

contained in E(D) .

Proof. From (1.3) we have

°° e ,

n=k en n
, k = 0, 1, 2

By (2.U), iff is univalent in tf i f

, , M - dd2...dn+R dxd2...dk

n=2 d l d 2 - - - d n n + k dl

However (6.2) eas i ly gives

Thus (6.U) wi l l follow i f

that is,

M+k+1

d d1 2"'a
ft.<l for fe = 0, 1, 2, . . . ,

which is condition (6.1) . Thus / € E(D) .

To show that E{D) is properly contained in E(D) , we take d = n

Then E(D) = E and E(o) = E . The function (e173-!)/IT belongs to E

but i s not in E (see [5]) . Hence the theorem.

The class E(D) may contain, in general, functions that are not

en t i re . To see t h i s , l e t

dn = 1 f o r n = 1 , 2 , . . . , b± = 1 , 2>2 = ft3=...=l-^-=x, s a y .

Then ( 6 . 1 ) becomes

X (M+l)xM = ~ - 1 = 1 ;
M=l (1-x)
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that is, (6.1) is satisfied for k = 0, 1, 2, . . . .

Let

B(z) = z + I [bb2 ... b^z
n = z * J b*zn .

Since (6.1) and (6.2) are satisfied, B{z) is in E(D) . However, if R

be the radius of convergence of B(z) , then

R = lim
b*
n

b*K+l
= lim

1 V2

\/2-l

so that S(s) is not entire.

Our next theorem gives conditions under which every / € E(0) is

entire.

THEOREM 6. If bn/dn = o ( l ) and / € E(0) , tfeen / is entire.

oo

Proof. Suppose f{z) =z + £ a s is in E(5) . Then, by (6.2),
n=2 "

Therefore

Thus / is entire.

\a /a I ->• oo a s n -*• °° .1 n n+11

REMARK I . The condition b /d = o ( l ) i s sharp. We can construct

/ € E(D) such that i f b Id f o ( l ) then f i s not e n t i r e .

Suppose lim sup b Id = 1 t 0 . We may suppose 0 < 1 S 1 - l/Vif .
n-*» n n

Let d = 1 , a = b ... b where we choose {b } as follows:

fc = I i f n i s not a prime, n > 1 ,

= 1/2 i f n i s a prime, n > 1 .

If TT(W) equals the number of primes l e s s than or equal to n , then
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i (ir(n) log | + (n-ir(n)) log

since ninl + o .
n

Further

(M+i)b ... b < X (m)jtf = —i-^- - i < ^ - ^ - 1 = 1
* W 1 * M=l (l-Z) [

so that (6.1) is satisfied. Thus f (2) = 3 + £ (&,fcp • • • b )s" is in
n=2 -1 ̂  n'

E(p) and f is not entire.

REMARK 2. There exist functions / € E{D) such that / is entire

and b Id f o(l) .
n n

Let d = 1 , a = i> b . . . b for n - 1 , where we choose \b }

as follows. Let b = 1 . Let 1",J, be an increasing sequence of

positive integers such that kn, = o [nA and n = 10 , and

b(n) = l /fn-mji , if n t nR , n = 2, 3, • • . ,

Z?(n,) = L E l /n 1 , for fe = 1, 2, . . . .

CO

Let f(z) = 2 + £ a s n . Then f € E(D) , f is entire and
n=2 M

lim sup bid = L > 0 . We omit the details of the proof here and also in
n ~ n n

the next

REMARK 3. Even if b /d = o(l) and conditions (6.1) and (6.2) are

s a t i s f i e d , the ent ire function / (s ) = 3 + £ <2 3 can be made to have
n=2 "

any order p (0 5 p 5 <*>) by appropriate choice of {b } and \d } .

Thus /(s) will be of infinite order if one takes b = 1 ,

d = log(«+e) , n > 1 , where e is a positive constant such that

log(2+C) > n E 10
10 . Let a± = ̂  = 1 ,
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7. Final remarks

Some of the work of Shah and Trimble [17, 18, 19, 22] has been

extended to linear invariant families by Campbell [6]. The concept of

linear invariant family was introduced by Pommerenke [J2] who defined a

linear invariant family to be a family of functions of the form

f(z) = s + ... which are analytic and locally univalent (f'(z) # Oj in

U such that the function

" « P ' ( O ) / ' ( < P ( O ) ) " z + •••

is again a member of the family for every Mobius transformation cp of U

onto U . If M is a linear invariant family, then the order of M is

defined as a = sup{|/"(0)/2| : / € M} .

Let u denote the union of all linear invariant families of order at

most a . The family u is i tself linear invariant. I t is known [72]

that if a. < 1 , then u is empty; u is precisely the set of al l

normalized convex univalent functions. The class S of normalized

univalent functions is contained in u_ ; in fact u is much larger than

S since i t contains functions of infinite valence also.

The results of the present paper can be extended for the linear

invariant families u if instead of assuming f and i ts (normalized)

Gelfond-Leontev derivatives to be in S , one assumes their normalized

forms to be in u . Thus, we say that f(z) has the property of M(CX)

if and only if [/(s)-/(0))// '(0) is in ua . Given the Gelfond-Leontev

operator D , le t ?„(£>) be the set of al l f(z) = z + . . . which are

analytic in V and for which uf{z) has the property u(a) for all

n > 0 . Whatever has been obtained for the class E{D) in this paper can

be easily extended to the wider class T (D) ; for example Theorem 1 in

this case would read as follows:

THEOREM 7. Let f € T (0) . Then

(i) f is of finite p-type not exceeding ad ;
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(ii)

(ill) 1^/(3)1 5 d1(ad2)
k~1p(ad2|a|) , k > 1 .;

(Iv) T (D) Is a normal family in \z\ < t < r/ad for all t

satisfying 0 < t <

We omit the proof.
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