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Abstract

The basic local independence model (BLIM) is a probabilistic model developed in

knowledge space theory (KST). Recently, Stefanutti, de Chiusole, Anselmi, and Spoto

(2020) proposed the polytomous local independence model (PoLIM), which is an ex-tension of

the BLIM to items with more than two response alternatives (polytomous items). In a

Commentary to this paper,Chiu, Köhn, and Ma (2023) claimed that (i)

the BLIM is just a deterministic input noisy AND-gate (DINA) model where every item

has a single skill and, as a consequence of this, (ii) the “PoLIM is simply a paraphrase

of a DINA model in cognitive diagnosis (CD) for polytomous items” (p. 656). This rejoinder

shows that such statements are invalid and totally misleading. Its aim is to clarify the nature of

the relationship between the BLIM and the DINA, as well as that between the PoLIM and the

Polytomous DINA. It builds upon formal results by Heller, Stefanutti, Anselmi, and Robusto (2015)

on the intimate relation between KST and CD notions, and shows that the BLIM/PoLIM may be

conceived as marginal models for whole classes of CD models.

Keywords: Knowledge space theory; cognitive diagnosis models; basic local indepen-dence

model; deterministic input noisy AND-gate model; polytomous local independence model;

polytomous items

1 Introduction

The basic local independence model (BLIM) is a probabilistic model developed in knowledge

space theory (KST) by Falmagne and Doignon (1988). It is a restricted latent class model
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aimed at modeling the responses of individuals to dichotomous (correct/incorrect; true/false)

items. In KST, the latent classes are called knowledge states. Each knowledge state is a subset

K of a given set P of items, and represents all the items in P that an individual masters.

The collection K of all the knowledge states is the knowledge structure. In any practical

application of KST, due to assumed dependencies among the items, not every subset of P is

a knowledge state, and K turns out to be a strict subset of the whole power set 2P on P .

The observable response pattern of an individual to the items in P is represented by the

subset R of P of all those items that received a correct response. The knowledge state K and

the response pattern R of the same individual need not be identical, due to random error.

Some items can be in R but not in K (as false positives) and some other items can be in K

but not in R (as false negatives). In the BLIM, the probability ηq of a false positive for a

given item q ∈ P is interpreted as lucky guess, whereas the probability βq of a false negative

for P is interpreted as a careless error. The most important assumption of the BLIM is that

the responses of an individual to the items are locally independent, given her or his knowledge

state.

Recently, Stefanutti, de Chiusole, et al. (2020) extended the BLIM to items with more

than two response alternatives (polytomous items). Such an extension, called polytomous

local independence model (PoLIM), can be regarded as a rather natural consequence of recent

generalizations of KST to polytomous items (see, e.g., Stefanutti, Anselmi, de Chiusole, &

Spoto, 2020; Heller, 2021). Models for polytomous items exist also in the area of cognitive

diagnosis (CD), but none of those published previous to the Stefanutti, de Chiusole, et al.

(2020) paper corresponds to the PoLIM.

In a Commentary to Stefanutti, de Chiusole, et al. (2020), Chiu et al. (2023) claimed that

the “PoLIM is simply a paraphrase of a DINA model in cognitive diagnosis for polytomous

items” (p. 656). The DINA (Deterministic Input Noisy AND-gate; Haertel, 1984, 1989,

1990) model is one of the most prominent and well-known probabilistic CD models. Besides

this, the authors of the Commentary argue that the (dichotomous) BLIM is equivalent to a

DINA model if the items are regarded as binary single-attribute items, each with a distinct

attribute. Among other things, this rejoinder, by drawing upon Heller, Stefanutti, Anselmi,

and Robusto (2015, 2016), provides the formal arguments showing that the BLIM is not

equivalent to a DINA model, and that the PoLIM is not a paraphrase of any DINA model
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for polytomous items. The best perspective under which such models should be considered is

that of “marginal models” in the sense specified by Gu and Xu (2020).

2 Main concepts in knowledge structure theory

In knowledge structure theory (KST, Doignon & Falmagne, 1999, 2012), the knowledge struc-

ture is a pair (P,K) where P is a set named the domain of knowledge, and K is a family of

subsets of P that contains, at least, the empty set ∅ and the domain P . Each subset K ∈ K

is named a knowledge state. In concrete applications of the theory, the set P is regarded to

be the collection of all the problems, questions, quizzes that can be formulated in a given

area of knowledge (e.g., geometry). Then, the knowledge state of an individual is the subset

K ∈ K of problems in P that the individual masters. It can be regarded as the possibly

multidimensional “ability” of the individual.

It should be observed that, in general, the knowledge structure K does not contain all

possible subsets of P . That is, in concrete applications, K is a strict subset of the entire

power set on the set P . The method and criteria that are used for deciding whether the

subset X ⊆ P is a knowledge state or not can be either theoretical or data-driven, depending

on the purpose of the application. The most elementary theoretical method consists in the

specification of the so-called ‘surmise relation’, a quasi-order (reflexive and transitive) relation

≾ of the set P of problems whose interpretation is as follows: given any two problems p, q ∈ P ,

p ≾ q if (excluding random error) failing p entails failing P .

should we mention that this is exactly the example taken from the commentary?

Example 2.1. The following example is identical to that provided by Chiu et al. (2023). For

Q = {a, b, c, d, e}, consider the surmise relation ≾ defined as follows:

a ≾ c, b ≾ c, a ≾ d, b ≾ d, c ≾ e.

Notice that relations like a ≾ a and a ≾ e, that can be inferred by transitivity and or

reflexivity are omitted. Not all subsets of P are “consistent” with this relation. A subset

K ⊆ P is consistent with ≾ if for every problem q ∈ K, all the predecessors of P are also in

K, namely, the following implication must hold true for all pairs p, q ∈ P of problems:

if p ≾ q and q ∈ K then p ∈ K.
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Of the 25 = 32 subsets of P , the only ones that are consistent with ≾ are the following nine:

K = {∅, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}, {a, b, c, d}, {a, b, c, e}, P}

that form the knowledge structure (P,K) derived from ≾ (see Figure 1 for an illustration).

This knowledge structure has two fundamental properties: the intersection of whatever subset

F ⊆ K of knowledge states is itself a knowledge state (closure under intersection). Similarly,

the union of F is itself a knowledge state (closure under union). Knowledge structures of this

type are named quasi-ordinal knowledge spaces. The relationship between the surmise rela-

tions of P and the quasi-ordinal knowledge spaces on P is one-to-one (Doignon & Falmagne,

1999; Birkhoff, 1937).

3 How KST and CD models are interlocked

There is a close connection between KST and CD models, which has been spelled out and

developed formally by Heller et al. (2015) for the case of two particular probabilistic models

in the two theories: The so-called CBLIM (a competence-based extension of the BLIM) for

KST, and the multiple strategy DINA model (de la Torre & Douglas, 2008) for CD models.

It was shown that the two models at hand are formally equivalent. They are essentially

the very same model, expressed by using different notations and different terminologies. In

all probability, prior difficulties in recognizing such equivalence just laid in the substantially

different formal and notational approaches followed by the two theories.

The present section summarizes the main theoretical results of Heller et al. (2015). The

fundamental concept upon which a connection between the two theories has been built is

rather simple. KST is mostly a set-theoretical theory. Its deterministic skeleton is based

on assumptions, definitions and results that largely draw upon set, order, and lattice theory.

There is a reason for this: KST originated in an area of mathematical psychology that grew out

of measurement theory as it was conceived, for instance, in the Foundations of Measurement

(Krantz, Luce, Suppes, & Tversky, 1971). In that particular area, the focus was especially on

qualitative structures and on how to measure them through numbers. The whole machinery

was set theoretically oriented.

On the other side, CD models were mostly developed under the item response theory (IRT)

framework, which is inherently probabilistic and numerical. Numerical structures like vectors
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and matrices are the most common tools of the various models and methods developed within

item response theory. The most relevant numerical structures that are of some interest here

are the binary vectors and the binary matrices, not only because they populate a wide range

of CD models that are around, but also because they are easily related to deterministic KST

concepts.

Thus, at the ground of the connection between the two approaches there is the elementary

observation that binary vectors of a given length n can be put in a bijective correspondence

with subsets of a set A = {a1, a2, . . . , an}. The bijection can be easily obtained by con-

structing, for each subset X ⊆ A, its indicator vector, that is a binary vector ι(X) with one

component for each element in A, where this component is 1 if the corresponding element

of A is in X, and 0 if it is not. This simple observation makes it easy to switch from the

primitive concepts of one theory to those of the other theory. This exercise was already

carried out by Heller et al. (2015), who established some fundamental correspondences. Let

P = {q1, q2, . . . , qm} be a set of items, and S = {s1, s2, . . . , sn} be a set of skills.

� The observed response pattern is a binary vector x = (x1, x2, . . . , xn) in CD models, and

it is a subset R ⊆ P in KST. In both cases, it represents the (dichotomous true/false)

responses of an individual to a set P of m items. In particular, x and R represent

the same response pattern if x = ι(R). Considering Example 2.1 on the domain P =

{a, b, c, d, e} of five items, the observed response pattern of an individual providing a

correct answer for items a, c, and d is represented by the vector x = (1, 0, 1, 1, 0) in CD

models, and by the set R = {a, c, d} in KST.

� In CDmodels, the notion of an ideal response pattern refers to the vector ξ = (ξ1, ξ2, . . . , ξm)

of dichomomous responses to the items that are expected if no error (e.g., in the form

of guessing or slipping) occurs. In KST, this is called the knowledge state and it is

represented as a subset K ⊆ P of all the items that a person is capable of solving. In

Example 2.1, the knowledge state K = {a, b, c} of an individual corresponds to the ideal

response pattern ξ = (1, 1, 1, 0, 0).

� The attribute profile is, in CD models, a binary vector α = (α1, α2, . . . , αn) having

length equal to the cardinality of the set S of skills. It represents the skills possessed by

an individual. Let C ⊆ S be the collection of all the skills possessed by an individual.
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Then in KST, C is called the competence state, and ι(C) is the attribute profile. In

Example 2.1, suppose that mastering all skills in the set S = {s1, s2, s3, s4, s5} is required

for solving the five items in P . Then, a plausible attribute profile of an individual is

α = (0, 0, 1, 1, 1) in CD models and it is C = {s3, s4, s5} by KST.

It is worth noticing that, what in KST is called knowledge structure K corresponds, in

CD models, to the collection of all the ideal response patterns. In CD models, this collection

is represented by a binary matrix, where each row represents an ideal response pattern. In

Example 2.1, the collection of all the ideal response patterns corresponding to knowledge

structure K, is the binary matrix (rows are ordered like the elements in K):

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 0 1 0

1 1 1 1 0

1 1 1 0 1

1 1 1 1 1



.

It is convenient to keep clearly distinct the level of the ideal response patterns from that

of the attribute profiles. In KST, the former is referred to as the performance level, whereas

the latter is referred to as the competence level. Notice that both levels represent latent

constructs, which are distinguished from the observed response patterns.

In the beginning, KST was exclusively focused on the performance level of the knowledge

states (ideal response patterns). From the perspective of cognitive diagnosis, ignoring the

competence level of the skills may be seen as a disadvantage. If individual ability is represented

by a subset of items, this representation provides no direct explanation or interpretation in

terms of the psychological mechanisms underlying the response behavior. All in all, knowledge

states are features of persons and as such, they should depend on skills/attributes. Since in

KST the knowledge state is operationalized as a subset of items, it is item-dependent. Instead,

in CD models, the notions of Q-matrix and attribute profile allow to separate individual skills

from items.
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Once the skill map (the Q-matrix) has been established, and its interpretation (e.g., con-

junctive, rather than disjunctive) has been stated, each attribute profile delineates exactly

one ideal response pattern (knowledge state). If the correspondence between attribute profiles

and ideal response patterns is one-to-one, then there can be unique skill assessment (Heller

et al., 2015). In this case, the attribute profile and the ideal response pattern represent ex-

actly the very same thing, namely a multidimensional individual ability. In CD models, the

multidimensional ability is further decomposed into discrete skills.

However, if the relationship is not one-to-one, then the same ideal response pattern may

be associated with more than one attribute profile. In this case there cannot be unique

skill assessment. It means that there is no unique way of decomposing the multidimensional

individual ability into discrete skills.

To summarize, if the performance and competence levels are in a one–to–one correspon-

dence then skill assessment is unique. Thus, the knowledge state (ideal response pattern)

depends on items in as much the same way as the competence state (attribute profile) de-

pends on items. The only situation where the performance level of the ideal response pattern

and the competence level of the attribute profile do not correspond with one another is when

skill assessment is not unique. Here however the problem is located at the competence level,

where we have more than a single interpretation (attribute profile) for the same ideal response

pattern. At the performance level, the representation remains unique.

4 The BLIM and the DINA model

Chiu et al. (2023) claim that the BLIM is equivalent to a DINA model, to which certain

modifications and restrictions apply. More precisely, their main statement is that the

“BLIM is [. . . ] equivalent to the DINA model when the BLIM-items are conceived

as binary single-attribute items, each with a distinct attribute” (p. 656).

However, regarding the BLIM as DINA model with single-attribute items is misleading, be-

cause the BLIM makes no assumptions about underlying attributes whatsoever. The very

same issue arises when considering the PoLIM as a “single-attribute” version of some pre-

existing polytomous DINA model. Both the BLIM and the PoLIM are totally agnostic to
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any psychological mechanism that might give rise to the knowledge structure they are based

on. Singling out a particular link between items and attributes invites invalid conclusions.

The intimate relation between KST and CD notions in case of dichotomous items is fully

characterized already by Heller et al. (2015), who prove various theorems on the existing cor-

respondences. The BLIM is extended by introducing skills (attributes in CD terms), which are

linked to the items via a so-called skill function (corresponding to a collection of Q-matrices

in CD). Moreover, this approach is able to capture dependencies between skills through as-

suming an arbitrary competence structure, which amounts to considering an arbitrary subset

of permissible attribute profiles in CD. The resulting model is called the competence-based

BLIM (or, CBLIM).

As one of the main results of Heller et al. (2015) the CBLIM is shown to be equivalent to

the multiple strategy DINA model (MS-DINA; De La Torre & Douglas, 2004). As the DINA

model is a special case of the MS-DINA, it is to be conceived as a special case of the CBLIM

which assumes a conjunctive rule operating on the skills/attributes. This shows that KST

offers a framework for formulating models equivalent to the DINA model and special cases

thereof, but these KST models cannot be identified with the BLIM.

Chiu et al. (2023) claim that “estimating BLIM using DINA requires that all BLIM-items

are single-attribute items because only then α = ξ is true” (p. 658). Confining consideration

to this very particular case may be fine if the aim of the paper was limited to exemplify that

parameter estimation algorithms developed for the DINA model can be used for estimating the

parameters of the BLIM, although the latter is equipped with its own algorithms (Stefanutti

& Robusto, 2009; Heller & Wickelmaier, 2013) and publicly available routines (the R package

pks; Heller & Wickelmaier, 2013). However, the cited statement as such is wrong.

Beyond the fact that the equation α = ξ is problematic in itself (see below), the kind of

constraint it implies is not necessary for aligning the predictions of a DINA model with those

of a BLIM. For clarifying this issue we refer to the example of Chiu et al. (2023), which in

turn was taken from Doignon and Falmagne (1999, Example 7.1). Consider the knowledge

structure

K = {∅, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}, {a, b, c, d}, {a, b, c, e}, P}

on the domain P = {a, b, c, d, e}. On the left-hand side of Figure 1 the Hasse diagram of

K is shown, with paths of ascending line segments representing set inclusion. In this and
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subsequent plots we use the shorthand notation abd to denote the set {a, b, d}, for example.

K

∅

abcde

a

ab

abc

abcd abce

abd

b

C

∅

stuvw

s

st

stu

stuv stuw

stv

t

Figure 1: Knowledge structure K on the set of items P = {a, b, c, d, e} and isomorphic com-

petence structure C on the set of skills/attributes S = {s, t, u, v, w}.

Notice that the knowledge structure K is in one-to-one correspondence to the partial order

on the domain of items illustrated by the Hasse diagram on the left-hand side in Figure 2,

and thus is said to be an ordinal knowledge space (see, e.g., Doignon & Falmagne, 1999).

P

a b

c d

e
S

s t

u v

w

Figure 2: Partial orders on the set of items P = {a, b, c, d, e} and the set of skills/attributes

S = {s, t, u, v, w} corresponding to knowledge structure K and competence structure C, both

illustrated in Figure 1.

The construction of Chiu et al. (2023) then proceeds by introducing a set of skills/attributes
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S = {s, t, u, v, w} and the identity matrix



s t u v w

a 1 0 0 0 0

b 0 1 0 0 0

c 0 0 1 0 0

d 0 0 0 1 0

e 0 0 0 0 1


as the Q-matrix. This amounts to defining a bijection f : P → S such that f(a) = s, f(b) =

t, . . ., f(e) = w. From a structural perspective the bijection f establishes an isomorphism

between the knowledge structure K and a competence structure C defined by the equivalence

C ∈ C if and only if f−1(C) ∈ K

for all C ⊆ S, where f−1(C) denotes the preimage of C under f . The isomorphism may be

conceived as a mapping p from C onto K, which in KST is known as a problem function (e.g.,

Doignon & Falmagne, 1999). Comparing the Hasse diagram of the competence structure C on

S to that of the knowledge structure K on P makes the isomorphism self-evident (see Figure

1). Using the notation α = ξ, equating attribute profiles α (corresponding to the competence

states C ∈ C) and ideal response patterns ξ (corresponding to the knowledge states K ∈ K),

obscures the fact that there is no identity, but only an isomorphism. Choosing a competence

structure C (i.e., the permissible attribute patterns) isomorphic to K amounts to inducing

a hierarchical structure on the skills/attributes, which is isomorphic to the partial order on

the items corresponding to K (see the Hasse diagram at the right-hand side of Figure 2).

This goes unmentioned in Chiu et al. (2023), and ignoring this fact leads to a fundamental

misunderstanding when they are dealing with identifiability issues (see Section 5).

Instead of imposing the above outlined constraints by inducing a hierarchical structure

on the skills/attributes with the Q-matrix being the identity matrix, let all possible attribute
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profiles on the skills/attributes in S be permissible. Using the Q-matrix



s t u v w

a 1 0 0 0 0

b 0 1 0 0 0

c 1 1 1 0 0

d 1 1 0 1 0

e 1 1 1 0 1


(1)

the induced ideal response patterns are the vector representations of exactly the knowledge

states in K (Heller, 2022, Corollary 2). Notice that this Q-matrix is a densified version of the

identity matrix in the sense of Gu and Xu (2020), and plays a prominent role in the so-called

restricted Q-matrix design in the context of attribute hierarchy models (Leighton, Gierl, &

Hunka, 2004). This example makes clear that the very same knowledge structure can arise

from substantially different assumptions on the underlying skills/attributes: while Chiu et al.

(2023) assume single-attribute items, the Q-matrix of Equation (1) assumes multiple-attribute

items. The equivalence of the two DINA models with respect to the ideal response patterns

is due to the fact that the knowledge structure K is closed under intersection, a property

which results as a necessary consequence of applying a conjunctive rule to an unstructured

set of skills/attributes (Gediga & Düntsch, 2002; Ünlü et al., 2013). Notice that in this case

the problem function p from 2S to K mapping competence states to knowledge states (i.e.,

attribute profiles to ideal response patterns) is not one-to-one, but many-to-one as illustrated

in Figure 3. Gray circles are in one-to-one correspondence to the knowledge states in K shown

in Figure 1, and all the competence states plotted in each of them form an equivalence class,

as all of them are mapped to the respective knowledge state. For example, all the competence

states included in {u, v, w} are mapped to the empty knowledge state ∅ (i.e., p(C) = ∅ for

all C ⊆ {u, v, w}). This means that the hierarchical structure of the skills/attributes can

be represented in either the set of permissible attribute profiles (as in Figure 1), or in the

Q-matrix (as in the densified version), or in both. In fact, given the Q-matrix of Equation (1),

there are many more competence structures that induce the very same knowledge structure

K. Take for example all the competence structures on S that include the structure C of Figure

1. Notice that the latter results from selecting the minimal competence states of each of the

equivalence classes in Figure 3 (i.e., from each of the gray circles). All the instantiations of
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the DINA model built on these competence structures may be considered equivalent: not

only because they induce the same knowledge structure, but also concerning the probabilistic

framework defined on top of it. This is illustrated in the sequel.

∅

u v w

uv uw vw

uvw
t

tu tv tw

tuv
tuw

tvw

tuvw

s

su sv sw

suv
suw

svw

suvw

st

stw

stv

stvw
stu

stuv stuw

stuvw

Figure 3: Line diagram illustrating the many-to-one relationship between competence and

knowledge states (i.e., attribute profiles and ideal response patterns) for an unstructured set

of skills/attributes and the Q-matrix of Equation (1).

Let πC denote the probability distribution over the competence states in C, πK the prob-

ability distribution over the knowledge states in K, and πR the probability distribution over

the response patterns in 2P . With β and η the vectors of careless error and lucky guess

probabilities (collecting all the βq and ηq, q ∈ P ), the CBLIM is characterized by the param-

eters (πC, β, η), and the BLIM induced by the CBLIM (via K = p(C)) is characterized by the

parameters (πK, β, η). In general the relation between these two parameter spaces is given by
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the equation

πK(K) =
∑

C∈C, p(C)=K

πC(C). (2)

That is, we have the composition of the mappings

CBLIM︷ ︸︸ ︷
(πC, β, η) 7→ (πK, β, η) 7→ πR︸ ︷︷ ︸

BLIM

(3)

In the situation illustrated in Figures 1 and 3 this means that the probability of the knowledge

state K = {a, b}, for example, is given by πK({a, b}) = πC({s, t}) + πC({s, t, w}).

While in any case the BLIM careless error and lucky guess parameters are identical to the

DINA slipping and guessing parameters, the BLIM probability of knowledge state K in K is

obtained by summing over the DINA probabilities of all attribute profiles α that are mapped

to the ideal response pattern ξ corresponding to the knowledge state K (Heller et al., 2015;

Heller, 2022). This allows for fully recovering the BLIM parameter estimates, also in cases

where the very same BLIM model is induced by distinct DINA models, which may be based

on substantially different assumptions as outlined above.

Table 1: Item parameter estimates of the BLIM and the DINA model, with the Q-matrix of

Equation (1) and all attribute profiles being permissible.

BLIM DINA model

β η s g

a 0.1649 0.1787 0.1648 0.1787

b 0.1631 0.1688 0.1631 0.1688

c 0.1888 0.0000 0.1888 0.0001

d 0.0704 0.0000 0.0704 0.0001

e 0.0881 0.0199 0.0881 0.0199

Tables 1 and 2 show estimates of item parameters and probabilities of knowledge states and

ideal response patterns, respectively, when replicating estimation for the example assuming

a uniform initial distribution on all possible attribute profiles in the DINA model and the

densified Q-matrix of Equation (1). The corresponding initial distribution on the knowledge

states in the BLIM is derived using Equation (2). Otherwise, the same setup as described in

Chiu et al. (2023) is used. Results again show that all the estimates of the BLIM and DINA
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parameters are essentially identical, although distinct from those listed in Chiu et al. (2023).

The reason for the latter finding is discussed in Section 5.

Table 2: Results of estimating probabilities of the knowledge states via the BLIM and of

the ideal response patterns via the DINA model, with the Q-matrix of Equation (1) and all

attribute profiles being permissible.

BLIM DINA model

K πK(K) ξ P (ξ)

∅ 0.0761 00000 0.0761

{a} 0.1004 10000 0.1004

{b} 0.0947 01000 0.0948

{a, b} 0.048 11000 0.048

{a, b, c} 0.1352 11100 0.1352

{a, b, d} 0.1137 11010 0.1137

{a, b, c, d} 0.1336 11110 0.1335

{a, b, c, e} 0.1432 11101 0.1432

{a, b, c, d, e} 0.1551 11111 0.1551

The coinciding parameter estimates demonstrate that the claim of Chiu et al. (2023),

that for mimicking the BLIM with the DINA model, all items need to be conceived as single-

attribute items, is wrong. In fact, we have shown above that there may be a variety of distinct

DINA models that can mimic a given BLIM. The general mechanism for setting them up is

to mirror the information captured by the BLIM’s knowledge structure at the skill/attribute

level by coding it by either the set of permissible attribute patterns, or the Q-matrix, or even

both. Doubling up the given behavioral information, however, cannot generate new insights.

So, any interpretation of the Q-matrix (such as being composed of single- or multi-attribute

items, for example) may be meaningless.

The BLIM does not need to come with the specification of any theoretical cognitive as-

sumptions. As a marginal model, which is in line with a vast variety of cognitive theories, it

is characterized by a high degree of flexibility. This allows for closely mirroring the structure

underlying the observed responses. A knowledge state identifies the items that are mastered

or not mastered by an individual, and a knowledge structure tells you whether the mastery of
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certain items implies the mastery of others. The knowledge structure underlying a BLIM may

be established in a completely data-driven way, without the need of resorting to theoretical as-

sumptions on the cognitive processing (e.g., Falmagne, Albert, Doble, Eppstein, & Hu, 2013,

Section 9.3). This results in knowledge structures of high empirical validity and provides a

basis for efficient and precise knowledge assessment as well as for personalized learning. This

is demonstrated by highly successful large-scale applications (Falmagne & Doignon, 2011;

Falmagne et al., 2013), like the ALEKS1 system.

Of course, in a second step one may be interested in studying the cognitive mechanisms

that bring about the knowledge structure, but this may introduce uncertainties. For example,

if considering a DINA model with all attribute profiles being permissible and the Q-matrix

of Equation (1) then, in case that more than one attribute profile is mapped to the same

ideal response pattern (collections in each of the gray circles in Figure 3), the respective

probabilities are not identifiable. In parameter estimation of a DINA model the probabilities

of the attribute profiles in these collections usually turn out to be equal, but this is nothing

more than an artifact of assuming a uniform initial distribution as the default. What in

principle may be identifiable are the knowledge state probabilities of the BLIM, but see

Section 5 for a discussion of the current example.

In conclusion, tying the BLIM to a very special case of the DINA model as in Chiu et al.

(2023) creates a misleading perspective. The BLIM is to be conceived as a marginal model

for a whole class of models that involve cognitive assumptions. There is previous theoretical

work that elaborates on this point but found no mention in Chiu et al. (2023). The relation

of the BLIM to its competence-based extension CBLIM as well as their correspondence to

CD models was characterized in full generality by Heller et al. (2015, 2016). See also Gu

and Xu (2020), who introduced a conception equivalent to the BLIM in the CD context by

considering what they called grouped population proportion parameters. On the basis of this

concept they analyze the identifiability properties of the class of two-parameter Q-restricted

latent class models (see Section 5 for further details).

1Acronym for Assessment and LEarning in Knowledge Spaces, www.aleks.com.
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5 Identifiability

Chiu et al. (2023) are right in observing that the BLIM is not identifiable for many types

of knowledge structures. There is a broad KST literature which studies the kinds of non-

identifiability that arise, and characterizes the conditions under which identifiability holds, or

can be restored (see, e.g., Doignon, Heller, & Stefanutti, 2018; Heller, 2017; Spoto, Stefanutti,

& Vidotto, 2012, 2013; Stefanutti, Heller, Anselmi, & Robusto, 2012; Stefanutti, Spoto, &

Vidotto, 2018). The authors refer to a similar characterization in CD by stating that “Gu

and Xu (2019) showed that the DINA model is only identifiable if each attribute is used by

at least three items (Condition 1 (ii); p. 471). By definition, this condition cannot be fulfilled

by the DINA model with single-attribute items, as its Q-matrix is a J×J identity matrix —

hence, due to the equivalence of the two models, identifiability cannot hold for BLIM either”

(p. 665). A few remarks are in order here.

First, there is no basis for making inferences on the identifiability of the BLIM given that

a single-attribute DINA is not identifiable. It was shown above that the two models cannot be

conceived as being equivalent in any formal sense, but the BLIM may be seen as a marginal

model for a whole class of CD models.

Second, the cited conclusion of Gu and Xu (2019) only holds for the case where all the-

oretically conceivable attribute profiles are permissible (see, e.g., Gu & Xu, 2020, p. 2089).

It has been made clear above that this is not the situation considered in Chiu et al. (2023),

where a hierarchical structure on the skills/attributes is imposed by partially ordering them as

illustrated in Figure 2, and thus the argument is vacuous. Moreover, the presented rationale

would lead to the conclusion that any BLIM is not identifiable irrespective of the underlying

knowledge structure, which is obviously false.

Third, as already mentioned, there are theoretical results for hierarchies of attributes in

the CD context. Gu and Xu (2020) investigate identifiability of a class of CD models (the

two-parameter Q-restricted latent class models quoted above) including the DINA model for

general attribute structures (i.e., arbitrary subsets of attribute profiles are permissible). They

define and characterize the concept of partial identifiability, which corresponds to identifia-

bility of the BLIM induced by a CBLIM (Heller, 2022). Considering the CBLIM (which

includes the DINA model as a special case), it follows that the CBLIM is (locally) identifiable

if and only if the composition of the mappings in Equation (3) is injective (Heller et al., 2015,
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Corollary 1). It was shown that this holds if and only if the induced BLIM is identifiable and

the problem function p is injective. Since p as an isomorphism is injective by the construction

employed by Chiu et al. (2023), the CBLIM is (locally) identifiable if and only if the induced

BLIM is (locally) identifiable. Recasting this in CD terms, the question actually is whether

the DINA model is partially identifiable, or not.

The KST literature provides results showing that the BLIM defined on the considered

knowledge structure K of Example 2.1 is not identifiable, both locally and globally (Spoto et

al., 2012; Heller, 2017). The following notions are central to characterizing this case of non-

identifiability. A knowledge structure K is said to be backward-graded in an item q ∈ P if for

each state K ∈ K the subset K \{q} is also a state in K, and it is said to be forward-graded in

an item P if for each state K ∈ K the subset K ∪{q} is also a state in K (Spoto et al., 2012).

The items in which K is backward- or forward-graded are easily identified by inspecting the

corresponding partial order on P illustrated in Figure 2. Heller (2017, Corollary 1) shows that

the ordinal knowledge space K is backward-graded in the maximal elements (i.e., in items

d and e), and it is forward-graded in the minimal elements (i.e., in items a and b) of the

corresponding partial order. Thus, the BLIM in the empirical demonstration of Chiu et al.

(2023) indeed is not identifiable, and thus different initial parameter values in the estimation

procedure of both the BLIM and the DINA model may lead to different final estimates. In

particular, theoretical results of Spoto et al. (2012) and Heller (2017) predict that the affected

item parameters are those of the items in which the knowledge structure K is backward- or

forward-graded. Comparing Table 1 with the respective table in Chiu et al. (2023, p. 659)

confirms this prediction. Discrepancies occur for the careless error and slipping probabilities

(columns β and s) of the maximal items d and e (previously 0.0798 and 0.0886), and for

the guessing probabilities (columns η and g) of the minimal items a and b (previously 0.1031

and 0.0951). These discrepancies are due to the differences in the initial knowledge state

probabilities induced on the BLIM by the different instantiations of the DINA model. While

in Chiu et al. (2023) the initial distribution is uniform, it results from Equation (2) via the

assumption of a uniform distribution on all possible competence states (i.e., all permissible

attribute profiles) in the above considered alternative model. For example, for the empty

knowledge state ∅ the initial probability equals 1/9 in the first case, and 8 · 1/25 = 1/4 in

the second case. The obvious discrepancies of the estimated knowledge state probabilities
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in Table 2 from those listed in Chiu et al. (2023, p. 659) are explained by the parameter

trade-offs theoretically characterized by Spoto et al. (2012, Theorems 1 and 3) and Heller

(2017, Propositions 1 and 3) for global and local non-identifiability, respectively.

Pointing to a wealth of results available in both the KST and the CD literature, the dis-

cussion in the present section lets the concluding remark of Chiu et al. (2023) that “which

models are equivalent when attributes have a hierarchy, and which Q-matrices lead to iden-

tical results is currently uncharted territory” (p. 665) appear rather strange. In fact, their

application of the DINA model assumes an attribute hierarchy as illustrated in Figure 2, and

theoretical results for this and even more general cases are readily available (Heller et al.,

2015; Heller, 2022; Gu & Xu, 2020).

6 PoLIM and the Polytomous DINA model

An extension of the BLIM to items with more than two response alternatives was proposed

by Stefanutti, de Chiusole, et al. (2020). The provided model, named the PoLIM (politomous

local independence model), is derived from assumptions that are minimally sufficient for

extending the BLIM to polytomous items. The PoLIM can be applied to a very large variety

of response formats. For instance, the item responses can be totally ordered, partially ordered

or not ordered at all. Different items may have different numbers of response alternatives.

There could be a mixture of dichotomous and polytomous items. No skills are assumed and

no Q-matrices need be specified, although the model can be extended to either dichotomous

or polytomous skills.

In this connection, a polytomous version of the DINA model was proposed by Chiu et al.

(2023) in a commentary to Stefanutti, de Chiusole, et al. (2020). Moreover, there exist many

varieties of CD models for accommodating polytomous items, that were developed before the

PoLIM (see, e.g., Chen & Zhou, 2017; Chen & de la Torre, 2018; von Davier, 2008).

Chiu et al. (2023) try to generalize their base argument that the BLIM is a DINA model

with single-attribute items to the polytomous case (i.e., to the PoLIM). In constructing a

counterexample to their argument, like in the dichotomous case we delineate the same poly-

tomous structure obtained by Chiu et al. (2023) with a different Q-matrix and a different set

of attribute profiles. The aim of the example is to show that there are at least two different
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Q-matrices (the one in the example below and the one by Chiu et al., 2023) that delineate

exactly the same polytomous structure (set of polytomous ideal response patterns) at the per-

formance level. There is no “standard” way of defining a Q-matrix, when the item responses

are polytomous. The approach followed here relies upon recent developments described in

Stefanutti, Spoto, Anselmi, and de Chiusole (2023), but differs to some extent from the one

described in the Commentary.

Chiu et al. (2023) considered a set P = {q1, q2, q3, q4, q5} of five items and a set V =

{v0, v1, v2} of linearly ordered response values. The first four items in the example were di-

chotomous, whereas the last one was trichotomous. Here, we consider the Q-matrix displayed

in Table 3, which assigns a subset of S = {s1, s2, s3, s4, s5, s6} to each of the admissible item-

response pairs for P and V listed in the first column. It is worth noticing that, in the example

Table 3: Q-matrix delineating the same set of ideal response patterns as in the example by

Chiu et al. 2023

Item-response pair s1 s2 s3 s4 s5 s6

(q1, v0) 0 0 0 0 0 0

(q1, v1) 1 0 0 0 0 0

(q2, v0) 0 0 0 0 0 0

(q2, v1) 0 1 0 0 0 0

(q3, v0) 0 0 0 0 0 0

(q3, v1) 1 1 1 0 0 0

(q4, v0) 0 0 0 0 0 0

(q4, v1) 1 1 0 1 0 0

(q5, v0) 0 0 0 0 0 0

(q5, v1) 1 1 1 0 1 0

(q5, v2) 1 1 1 0 1 1

by Chiu et al. (2023) , the number of skills was five whereas in this example it is six. More-

over, in the example by Chiu et al. (2023), the Q-matrix can take on any value in V , whereas

in the present counterexample it is dichotomous. Nonetheless, it produces polytomous ideal

response patterns.

The full power set on the six skills is considered as the set of permissible attribute profiles,
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containing a total of 26 = 64 attribute profiles. This choice is clearly different from the one

in the example by Chiu and colleagues, which contains 11 attribute profiles in the whole. In

the sequel, the notation Qq,v,s refers to the value of the Q-matrix for item q, response v, and

attribute s. Thus, for instance, Qq1,v1,s1 = 1, Qq1,v1,s2 = 0, Qq2,v1,s1 = 0, etc. Define then the

function τ such that, for any item P , any response value v ∈ V , and any attribute s ∈ S,

it holds that s ∈ τ(q, v) if and only if Qq,v,s = 1. Then, we first need to determine what

the “ideal response” to item P will be when the attribute profile is α, given that the set V

contains more than two alternative answers. Such an ideal response is here defined as

pq(C) = max{v ∈ V : τ(q, v) ⊆ C},

where max is the usual “maximum” function, and C ⊆ S is the set representation of the binary

vector α (i.e., α = ι(C)). Thus, pq(C) provides P with the maximum response value among

all those response values that could be provided by an individual whose attribute profile is

α. The set representation (knowledge state) of the ideal response pattern “delineated” by α

is then obtained as

p(C) = {(q, pq(C)) : q ∈ P}.

One should be careful with these definitions because, in general, pq(C) need not exist. The

existence is only guaranteed if there is a maximum in the set {v ∈ V : τ(q, v) ⊆ C}. In

our running example, however, this always holds true because the three response values in

V are linearly ordered, and the minimum value is such that τ(q, v0) = ∅ for all items P

(more general cases are considered in Stefanutti et al., 2023). To show how all of this applies

concretely, suppose that the attribute profile is α = (1, 1, 1, 0, 0, 1). Its set representation is

C = {s1, s2, s3, s6}. Then we have pq1(C) = pq2(C) = pq3(C) = 1, pq4(C) = pq5(C) = 0. This

yields p(C) = {(1, 1), (2, 1), (3, 1), (4, 0), (5, 0)}, whose corresponding vector representation is

(1, 1, 1, 0, 0). In the whole, by applying this method to each of the 26 = 64 attribute profiles

considered in this example, the obtained polytomous structure turns out to be identical to

the one in the example provided by Chiu et al., that is:

K = {00000, 01000, 10000, 11000, 11010, 11100, 11110, 11101, 11111, 11102, 11112},

whose elements a re shorthand vector representations of the polytomous states. Like in

the dichotomous example, there is an alternative skill interpretation of the PoLIM. In such
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interpretation there are items requiring more than a single skill, showing that the PoLIM is

not a polytomous DINA model where each item requires a single skill.

As stated above, depending on how the elements in V are ordered, the mapping pq may

be undefined for some attribute profiles. Suppose in fact that V is unordered (like with

categorical or nominal responses). Then, for sure, pq(C) will be undefined because the set

{v ∈ V : τ(q, v) ⊆ C} has not a maximum element. This fact does not affect the PoLIM,

which remains applicable also with unordered and, more generally, with partially ordered

response categories. Unfortunately, the same conclusion cannot be drawn with respect to

the polytomous DINA model presented by Chiu and colleagues in the Appendix of their

Commentary.

In Section 4.2., Chiu et al. (2023) claim that “. . . here, the general case is concerned that

also includes non-ordered response categories; hence, the indices l = 0, 1, . . . , Lj should be

merely interpreted as category labels”. However, if such an interpretation is applied, then the

polytomous DINA model may provide meaningless ideal response patterns. The reason is in

the way ideal response patterns are obtained from the attribute profiles. The equation that

formally relates the former to the latter can be found in the Appendix of the cited article and

it is repeated here for convenience (with the same notation used in the commentary):

ξij = max
l∈{0,1,...,Lj}

l

Aj∏
a=1

I[α∗
ia ≥ q∗ja]

 , (4)

where ξij is the j-th entry in the ideal response pattern of individual i, Lj is the highest level

of the polytomous ideal response, Aj is the total number of attributes for item j, α∗
ia and q∗ja

are, respectively, the rearranged attribute profile for individual i, and attribute a, and the

rearranged polytomous Q-matrix entry for item j and attribute a.

As an example, suppose that in a study on preference, each item in a questionnaire asks

the respondent to choose one element out of a set of 3. There is no a-priori order on the

3 response alternatives, because it may vary from one individual to another according to

preference. Clearly, in such a situation, the numbers in the set {0, 1, . . . , Lj} that appears as

the subscript of the maximum in Equation (4) can only have nominal value (e.g., although 1

is less than 2, the response alternative associated with the number 1 and that associated with

the number 2 cannot be ordered in a unique way). In other words, with unordered response

alternatives, although a maximum always exists in the finite set {0, 1, . . . , Lj}, it does not
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exist among the unordered response categories that are represented by those numbers.

Suppose then that V = {v1, v2, v3, v4} is a set of four response categories (notice that V

is a non-numerical set), and denote by f : V → N = {0, 1, 2, 3} the mapping that assigns a

number to each of the categories in V . Given the unordered nature of the elements in V , the

mapping f can be any bijection. The numbers only serve as labels. Therefore, if t : N → N is

a bijection, then the function composition t ◦ f is still a bijection between V and N , meaning

that f and t ◦ f are equally good in representing V . If, like in our example, the choice of

the numbers representing the elements in V is restricted to the set N , then 4! = 24 distinct

bijections are possible. It is questioned whether the response category represented by ξij

is invariant under bijective transformations t : N → N . We show that, unfortunately, the

answer is negative.

Suppose that the questionnaire contains 4 polytomous items a, b, c, d, each of which presents

the participant with 3 of the 4 options in the set V (e.g., one of the items could present the

participant with the options v1, v2 and v4). The response of the participant consists of choos-

ing one of the three options. Suppose furthermore that three polytomous attributes s1, s2, s3

of individuals are associated with the responses to the four items. Each of the three attributes

can take on a value in the set {0, 1, 2}. A polytomous Q-matrix that associates attributes to

item-response pairs is displayed in Table 4. So, for instance, the Q-matrix predicts that, for

responding v1 to item a, an individual’s attribute profile must score at least 2 in attribute s1.

For responding v4 to item b the individual’s profile must score at least 1 in both attributes s1

and s3, and so on.

With 3 trichotomous attributes, the total number of attribute profiles turns out to be

33 = 27. Equation (4) can now be applied to each of the 27 attribute profiles for obtaining

an ideal response pattern, by applying the Q-matrix specified in Table 4. This, however can

only be done after having chosen one of the 24 alternative bijective correspondences between

the options in V and the numbers in N . Assume that the mapping f such that

f(v1) = 0, f(v2) = 1, f(v3) = 2, f(v4) = 3

is applied. In this case, the attribute profile α = (2, 1, 1) delineates the ideal response pattern

ξ = (1, 3, 3, 3). The details of the derivation are only described for item a. We have qa =

(2, 0, 0), and hence I(α∗
s ≥ q

∗(l)
a ) equals 1 for l ∈ La = {0, 1} and it equals 0 for l = 2. By

taking the maximum (between 0 and 1), one obtains ξa = 1. For the remaining three items a
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Table 4: A polytomous Q-matrix for a set of 4 items and 3 polytomous skills. There are 3

response categories for each item, taken from the unordered set V = {v1, v2, v3, v4}
Item Response s1 s2 s3

a v1 2 0 0

a v2 0 1 0

a v3 0 0 2

b v1 2 0 0

b v2 0 1 0

b v4 1 0 1

c v1 2 0 0

c v3 0 0 2

c v4 1 0 1

d v2 0 1 0

d v3 0 0 2

d v4 1 0 1

similar procedure is applied. At this point we can map the ideal response pattern ξ back to

the original options in V through the inverse bijection f−1. We obtain f−1(ξ) = (v2, v4, v4, v4).

The conclusion is: Ideally, an individual with attribute profile (2, 1, 1) will choose v2 in item

1, and v4 in all other items.

Suppose now that the mapping g such that

g(v1) = 3, g(v2) = 2, g(v3) = 1, g(v4) = 0

is applied, rather than f . Of course between the two there exists a bijection. In this alternative

case, by keeping every other aspect identical, the attribute profile α = (2, 1, 1) delineates the

ideal response pattern ξ′ = (3, 3, 3, 2) ̸= ξ. This different ideal response pattern is mapped

back to g−1(ξ′) = (v1, v1, v1, v2). A totally different set of choices, compared to f−1(ξ).

However, the only difference between the two cases is in the choice of the bijective mapping

from options in V to numbers in N . For the sake of completeness, Table 5 lists the complete

sets of ideal response patterns that are obtained with bijections f (columns 1 to 4) and g

(columns 5 to 8). As it can be seen, totally different ideal response patterns are obtained. The

two sets do not even match in size. Concluding, contrary to what Chiu et al. (2023) claim,
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Table 5: List of all the ideal response patterns ξi, in terms of the non-numerical values in set

V , that are obtainable through the application of the mappings f (columns 1 to 4). and g

(columns 5 to 8). The two mappings generate totally different sets of ideal response patterns.

f g

a b c d a b c d

v1 v1 v3 v3 v4 v4 v3 v3

v2 v4 v3 v3 v2 v4 v3 v3

v3 v1 v3 v3 v3 v4 v3 v3

v3 v2 v3 v3 v3 v2 v3 v3

v3 v4 v3 v3 v3 v4 v3 v4

v3 v4 v3 v4 v3 v2 v4 v3

v3 v2 v4 v3 v3 v4 v4 v3

v3 v4 v4 v3 v3 v4 v4 v4

v3 v4 v4 v4

the PoLIM is not a paraphrase of a DINA model in cognitive diagnosis for polytomous items.

The former cannot be obtained from the latter, in general. This fact becomes particularly

evident when the response categories do not form a totally ordered set. To conclude, like in

the BLIM case, the PoLIM is better understood as a marginal model for an entire class of

CD models.

7 Conclusions

Chiu et al. (2023) comment on the relationship between probabilistic KST models, such as the

BLIM and the PoLIM, and CD models. Their commentary, however, ignores well-established

facts and invites misunderstandings. Moreover, it fails to cite relevant literature, including

Heller et al. (2015, 2016), who formally established the equivalence between a competence-

based extension of the BLIM (CBLIM) and the multi-strategy DINA (MS-DINA) model.

This rejoinder has focused on three critical aspects covered by the Commentary: (1) the

relationship between the BLIM and the DINA model; (2) the identifiability of the BLIM;

(3) the relationship between the PoLIM and the polytomous DINA model proposed in the
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Commentary.

Concerning (1), the fact that the BLIM is agnostic with respect to skills already shows

that conceiving the BLIM as a DINA model with single-attribute items is misleading at

least. Putting aside problematic statements and interpretations, the contribution of Chiu et

al. (2023) merely demonstrates how to set up the DINA to mimic the BLIM. However, the

suggested setup need not even be unique. Section 4 showed that there may be a variety of

DINA models that allow for estimating the BLIM parameters (see also Heller, 2022). Actually,

there is an even larger class of CD models that share this property, because the BLIM may be

conceived a marginal model for the so-called two-parameter Q-restricted latent class models

(Gu & Xu, 2020).

As for (2), Chiu et al. (2023) conclude that in general identifiability cannot hold for

the BLIM. Again, previous literature on the BLIM’s identifiability, but also on that of the

DINA model in case of attribute hierarchies, was ignored here. It is well-established that the

identifiability of the BLIM strictly depends on the underlying knowledge structure, including

many cases where it is indeed identifiable. Section 5 explains in detail why the corresponding

line of reasoning in Chiu et al. (2023) is flawed.

Finally let us turn to the relationship between the PoLIM and the polytomous DINA

model in the sense of Chiu et al. (2023). Contrary to what was claimed, the latter seems to

be a new model that was created ad-hoc by these authors. This means that this DINA model

for polytomous items did not exist at the time when the PoLIM was introduced by Stefanutti,

Anselmi, et al. (2020). So, rather than considering the PoLIM as “simply a paraphrase of

a DINA model in cognitive diagnosis for polytomous items” (Chiu et al., 2023, p. 656), the

question actually is whether it is the other way round. However, the polytomous DINA model

suggested by Chiu et al. (2023) is only applicable if response categories are totally ordered,

a restriction that does not apply to the PoLIM. Thus there are empirical situations (e.g., in

case of nominal response categories) where the PoLIM is applicable, while the polytomous

DINA model of Chiu et al. (2023) is not, and neither model is a “paraphrase” of the other.

Moreover, in the same way as the BLIM is a marginal model for a whole class of CD models,

the PoLIM may be conceived as a marginal model for certain polytomous CD models.

To conclude, the above discussion shows that intensifying the communication between the

two camps can be useful for unifying and generalizing the approaches of both KST and CD.
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