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Abstract

We consider a stochastic SIR (susceptible → infective → removed) model in which
the infectious periods are modulated by a collection of independent and identically
distributed Feller processes. Each infected individual is associated with one of these
processes, the trajectories of which determine the duration of his infectious period, his
contamination rate, and his type of removal (e.g. death or immunization). We use a mar-
tingale approach to derive the distribution of the final epidemic size and severity for
this model and provide some general examples. Next, we focus on a single infected
individual facing a given number of susceptibles, and we determine the distribution of
his outcome (number of contaminations, severity, type of removal). Using a discrete-
time formulation of the model, we show that this distribution also provides us with an
alternative, more stable method to compute the final epidemic outcome distribution.
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1. Introduction

Compartmental epidemic models are a popular way to describe the spread of an infectious
disease in a population. Among them, one of the most popular is the SIR (susceptible →
infective → removed) model, in which the infected individuals remain contagious for a spe-
cific period of time (the infectious period) before being permanently removed from the set of
potential vectors of the infection. This typical structure is widely used in the literature, for
both deterministic and stochastic models. We refer to the books by Daley and Gani [11] and
Andersson and Britton [1] for a good introduction to the mathematical analysis of epidemic
processes.

In particular, the so-called general epidemic model has received much attention in the lit-
erature. In this classical stochastic SIR process, the state of the population is given by the
vector (S(t), I(t), R(t)) of the number of susceptibles, infected, and removed individuals present
at time t. The individuals behave independently of each other and the infectious periods are
exponentially distributed. Moreover, there can be only one contamination at a time, at a rate
β(S(t), I(t)) = βS(t)I(t) for some β > 0. This model has been studied by means of different
methods including the use of martingale arguments (see e.g. Picard [20, 21] and Picard and
Lefèvre [22]) and probabilistic reasoning (see e.g. Ball [3] and Gani and Purdue [13]). Various
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approximation methods have also been developed, for instance in Ball and Donnelly [5] and
Barbour and Reinert [7].

The general epidemic has been extended to various more flexible and realistic models by
means of different methods. A first possibility of extension is to make the contamination rate
β(s, i) a more general function of the number of individuals present in each class, for instance
in Neuts and Li [18], Clancy [9, 10], and O’Neill [19]. Another possible extension is to relax
the assumption of exponentially distributed infectious periods, by allowing transitions between
different states during the infection. This was done in Black and Ross [8], Picard and Lefèvre
[22], and Simon [24], for example. Some authors also used block-structured Markov chains to
describe the epidemic, in order to allow for random environments and state-dependent contam-
ination rates (see e.g. Artalejo et al. [2] and Lefèvre and Simon [16]). Finally, the homogeneity
assumption can also be relaxed. It was done for instance in Ball et al. [6], where the authors
considered two levels of mixing (local and global) in the population.

In this paper we consider a stochastic SIR model in which the infectious periods are driven
by independent, identically distributed Feller processes. These processes are used to represent
the evolution of the infectivity and removal rates of the individuals throughout their infectious
period. More precisely, one of these processes is activated when an individual gets infected.
His contamination rate varies over the infectious period: it is of the form β(s, x) = βsγ (x),
where βs is an arbitrary function of the number of available susceptibles and x is the state
occupied by his associated Feller process. Moreover, the removal of an individual can take two
different forms (e.g. death or immunization) and the removal rates are also a function of x,
so the duration of the infectious periods and the type of removal depend on the trajectory of
the process. The wide class of Feller processes makes this model quite general and gives great
flexibility to include different characteristics of the disease and of the infection mechanism in
the model, while the general form βs makes it possible to include a large choice of dependences
between the number of susceptibles and the contamination rate of the infected individuals. This
flexibility is illustrated by different general examples at the end of Section 3.

In Section 3 we build a family of martingales involving different statistics related to the final
epidemic outcome: the final number of susceptibles, the total severity, and the final numbers of
removals of both types. We then show how to exploit these martingales to determine the joint
distribution of the statistics and we provide a few examples.

Section 4 is devoted to the presentation of an alternative method for the computation of the
final epidemic outcome distribution. This is motivated by the fact that the numerical procedure
obtained through this martingale approach often becomes unstable when the population size is
too big, which can happen for relatively small populations (see e.g. Demiris and O’Neill [12]
and House et al. [15]). A first step towards this goal is taken in Section 4.1. Here, we focus on
a single, generic infected individual facing a given number of susceptibles and we determine
the distribution of his personal outcome: the distribution of his own number of contamina-
tions, his contribution to the final severity, and his type of removal. This study also provides a
better understanding of the transmission mechanism of the disease and can be useful, e.g. for
parameter estimation purposes.

Next, we establish a link between the total epidemic outcome and the personal outcome
of a generic infected individual. This is done by building a discrete-time epidemic model, the
final state of which is distributed as the final state of the original model. This construction
has already been used in the setting of the general epidemic with linear contamination rates
βs = βs (see e.g. Lefèvre and Utev [17] and Ball [3]). In Section 4.2 we show that such a link
can still be established when the contamination rates βs are arbitrary and when the infectious
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SIR epidemics driven by Feller processes 1295

periods are represented by Feller processes. Finally, we show the practical interest of this link
by using the equivalent discrete-time model to obtain an alternative, more stable procedure
for the computation of the final outcome distribution. We conclude with a small illustration
showing that this procedure is numerically stable for much larger population sizes.

2. Model

Consider a closed population of n + m individuals (n, m ∈N0) and a Feller process X =
{X(u) | u ∈R

+} taking values in a metric space E . Let {�u} denote the semigroup of transition
operators associated with X, such that

�u f (x) =Ex[f (X(u))] ≡E[f (X(u)) | X(0) = x]

for all f in the set B(E) of bounded and measurable functions from E to R. The dynamics of
the process X is characterized by its (extended) generator (L,DL), where

L : DL ⊆ B(E) → B(E)

is given by

Lf = lim
u→0+

1

u
(�u f − f ),

where the limit is in the sense of the supremum norm. The set DL contains all the functions
in B(E) for which this limit exists. Finally, the initial state X(0) is a random variable with
distribution given by the probability measure α(·) on E . Throughout the paper we refer to X as
the ‘infectivity process’.

The SIR epidemics considered in this paper have the following dynamics. We assume that
when an individual (labelled i, say) gets infected, his infectious period is governed by a process
Xi distributed as X. As long as he is not removed, the infected individual can contaminate
the susceptibles one by one. His contamination rate depends on the number s of available
susceptibles and of the state x occupied by Xi. It is of the form βsγ (x), where βs > 0, βs �= βu

for s �= u and γ : E →R
+ is a càdlàg function. Most traditional models assume that βs = βs

for some constant β > 0. The form βs gives more flexibility in the dependence between the
number of susceptibles and the contamination rates. For instance, taking βs = βsλ for some
λ > 0 allows us to incorporate more group effects in the model, as the infection rate no longer
varies linearly with the number of susceptibles.

To assess the severity and the impact of the epidemic, it can be useful to distinguish between
different kinds of elimination, for instance to count separately the individuals who died from
the disease and those who recovered. For that reason, we assume that each infected individual
can become a removed of either type 1 or type 2 at the end of his infectious period. The removal
rate and the type of removal are also functions of his associated infectivity process:

P(τ� ∈]u, u + du[, I1 = 1 | Xi(v), 0 ≤ v ≤ u, τ� > u) = h1(Xi(u)) du + o(du),

P(τ� ∈]u, u + du[, I2 = 1 | Xi(v), 0 ≤ v ≤ u, τ� > u) = h2(Xi(u)) du + o(du),

where τ� is the removal time (when u = 0 corresponds to the beginning of the infectious
period), I1, I2 are the indicators that he becomes a removed of types 1 and 2, respectively,
and h1, h2 are two positive and càdlàg functions. We assume that h1, h2 are chosen so that all
infectious periods have an almost surely finite duration.
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Finally, we assume that the infected individuals behave independently of each other, that is,
the various versions Xi that activate throughout the epidemic are independent of each other.

Let S(t), I(t), R1(t), and R2(t) denote the number of susceptibles, infected individuals, and
removed cases of types 1 and 2 at time t. The epidemic starts at time t = 0 with S(0) = n and
I(0) = m. The number of susceptibles can only decrease over time, so {S(t)} takes its values in
{0, 1, . . . , n}. The processes {I(t)}, {R1(t)}, and {R2(t)} take their values in {0, 1, . . . , n + m}.
As the population is closed, S(t) + I(t) + R1(t) + R2(t) = n + m for all t ≥ 0. The epidemic
terminates at the first time

T = inf{t ≥ 0 | I(t) = 0}
when there are no more infected individuals. Note that T < ∞ almost surely since the
population size is finite and all infectious periods are almost surely finite.

Below, we are interested in the joint distribution of four statistics related to the final epi-
demic outcome for this class of SIR epidemics. The first three statistics are the numbers S(T),
R1(T), and R2(T) of susceptibles and removed individuals at time T . The last statistic is the
final severity A(T), defined as the total cost of the epidemic when an infected individual whose
infectivity process is in state x has an instantaneous cost a(x) for some fixed càdlàg function
a : E →R

+. More precisely, the severity up to time t is given by

A(t) =
∫ t

0

I(u)∑
i=1

a(Yi(u)) du, (2.1)

where Yi(t) denotes the state occupied at time t by the infectivity process associated to the ith
infected individual present at time t: if ξi is the infection time of this individual, then Yi(ξi) =
Xi(0) ∼ α(·) and

Yi(t) = Xi(t − ξi).

Note that only individuals truly contagious at time t are considered in the sum in (2.1). As
an example, if a(x) = 1 for all x ∈ E , then A(T) gives the cumulative duration of all infectious
periods up to the ending time of the epidemic.

3. Final epidemic outcome

To determine the joint distribution of the four statistics above, we build a family of mar-
tingales involving S(t), I(t), R1(t), R2(t), and A(t), and we make use of the optional stopping
theorem. Let (Ft)t≥0 denote the filtration generated by the history of the epidemic process up
to time t. We start with the following result.

Proposition 3.1. Fix θ ≥ 0 and z1, z2 ∈]0, 1]. If f ∈DL and c : {0, 1, . . . , n} →R
+ satisfy

c(s)Lf (x) + [c(s − 1)βsγ (x) − c(s)(θa(x) + βsγ (x) + h1(x) + h2(x))] f (x)

+ c(s)(z1h1(x) + z2h2(x)) = 0 (3.1)

for all x ∈ E and s ∈ {0, 1, . . . , n}, then the process

M(t) = c(S(t))

(∫
E

f (y) dα(y)

)S(t)

e−θA(t) zR1(t)
1 zR2(t)

2

I(t)∏
i=1

f (Yi(t))

is a martingale with respect to (Ft)t≥0.
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Proof. We look for some coefficients b(s) and some bounded and measurable function
f : E → ]0, 1] such that the process

M(t) = b(S(t)) e−θA(t) zR1(t)
1 zR2(t)

2

I(t)∏
i=1

f (Yi(t))

is a martingale with respect to (Ft)t≥0. For that, we fix t0 ≥ 0 and define for all t ≥ t0

m(t) =E
[
M(t) |Ft0

]
.

If b(·) and f (·) are chosen in such a way that the right derivative m′
r(t) of m(t) equals zero for

all t ≥ t0, then M is a martingale. To differentiate m(t), we first use the fact that Ft0 ⊆Ft and
the tower property to write

m(t + dt) =E
[
M(t + dt) |Ft0

]=E
[
E[M(t + dt) |Ft] |Ft0

]
. (3.2)

Next, we examine the possible events on the time interval [t, t + dt[: there may be a contamina-
tion during this interval, or the elimination of an infected individual, or neither of the two. The
events involving the contamination/removal of more than one individual on [t, t + dt[ occur
with probability o(dt), so we obtain

E[M(t + dt) |Ft]

= b(S(t) − 1) zR1(t)
1 zR2(t)

2 E

[
e−θA(t+dt)

I(t)∏
i=1

f (Yi(t + dt))

∣∣∣∣Ft

](∫
E

f (y) dα(y)

)

×
( I(t)∑

i=1

βS(t)γ (Yi(t)) dt + o(dt)

)

+
I(t)∑
i=1

b(S(t)) zR1(t)+1
1 zR2(t)

2 E

⎡
⎢⎣e−θA(t+dt)

I(t)∏
v=1
v �=i

f (Yv(t + dt))

∣∣∣∣∣Ft

⎤
⎥⎦(h1(Yi(t)) dt + o(dt))

+
I(t)∑
i=1

b(S(t)) zR1(t)
1 zR2(t)+1

2 E

⎡
⎢⎣e−θA(t+dt)

I(t)∏
v=1
v �=i

f (Yv(t + dt))

∣∣∣∣∣Ft

⎤
⎥⎦(h2(Yi(t)) dt + o(dt))

+ b(S(t)) zR1(t)
1 zR2(t)

2 E

[
e−θA(t+dt)

I(t)∏
i=1

f (Yv(t + dt))

∣∣∣∣Ft

]

×
(

1 −
I(t)∑
i=1

(βS(t)γ (Yi(t)) + h1(Yi(t)) + h2(Yi(t))) dt + o(dt)

)

+ o(dt).

Taking b(·) of the form b(s) = c(s)λs with λ = ∫E f (y) dα(y) and using the notation

P(t, dt) = e−θA(t+dt)
I(t)∏
i=1

f (Yi(t + dt)),
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this equality becomes

E[M(t + dt) |Ft]

=
I(t)∑
i=1

c(S(t) − 1) λS(t) zR1(t)
1 zR2(t)

2 E[P(t, dt) |Ft]βS(t)γ (Yi(t)) dt

+
I(t)∑
i=1

c(S(t)) λS(t) zR1(t)
1 zR2(t)

2 E[P(t, dt) |Ft]
z1h1(Yi(t)) + z2h2(Yi(t))

f (Yi(t + dt))
dt

−
I(t)∑
i=1

c(S(t)) λS(t) zR1(t)
1 zR2(t)

2 E[P(t, dt) |Ft](βS(t)γ (Yi(t)) + h1(Yi(t)) + h2(Yi(t))) dt

+ c(S(t)) λS(t) zR1(t)
1 zR2(t)

2 E[P(t, dt) |Ft] + o(dt).

Now, subtract m(t) from both sides of (3.2), divide each side by dt, and then take dt → 0. Using
the last equality and the dominated convergence theorem, this yields

m′
r(t) =E

[ I(t)∑
i=1

�(t)

(
c(S(t) − 1) βS(t)γ (Yi(t)) + c(S(t))

z1h1(Yi(t)) + z2h2(Yi(t))

f (Yi(t))

− c(S(t))(βS(t)γ (Yi(t)) + h1(Yi(t)) + h2(Yi(t)))

)

+ c(S(t)) λS(t) zR1(t)
1 zR2(t)

2 lim
dt→0+

1

dt
E[P(t, dt) − P(t) |Ft]

∣∣∣∣Ft0

]
, (3.3)

where

P(t) = e−θA(t)
I(t)∏
i=1

f (Yi(t)), �(t) = λS(t)zR1(t)
1 zR2(t)

2 P(t).

To determine the limit in (3.3), we note from (2.1) that

e−θA(t+dt) = e−θA(t)−θ
∑I(t)

i=1 a(Yi(t)) dt+ω(t,dt)

= e−θA(t)

(
1 − θ

I(t)∑
i=1

a(Yi(t)) dt + ω(t, dt)

)
,

where ω(t, dt) denotes any random variable such that limdt→0 E[ω(t, dt) |Ft]/dt = 0 almost
surely. Thus

lim
dt→0+

1

dt
E[P(t, dt) − P(t) |Ft]

= e−θA(t) lim
dt→0+

1

dt
E

[ I(t)∏
i=1

f (Yi(t + dt)) −
I(t)∏
i=1

f (Yi(t))

∣∣∣∣Ft

]
− P(t)

I(t)∑
i=1

θa(Yi(t)).
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Using the fact that the processes Yi are independent of each other and their generator is L, we
obtain

lim
dt→0+

1

dt
E[P(t, dt) − P(t) |Ft] = P(t)

I(t)∑
i=1

Lf (Yi(t))

f (Yi(t))
− P(t)

I(t)∑
i=1

θa(Yi(t)).

Substituting the last equality in (3.3) yields

m′
r(t) =E

[
�(t)

I(t)∑
i=1

[
c(S(t) − 1) βS(t)γ (Yi(t)) + c(S(t))

z1h1(Yi(t)) + z2h2(Yi(t))

f (Yi(t))

+ c(S(t))

(Lf (Yi(t))

f (Yi(t))
− βS(t)γ (Yi(t)) − θa(Yi(t)) − h1(Yi(t)) − h2(Yi(t))

)] ∣∣∣∣Ft0

]
.

(3.4)

If c(·) and f (·) satisfy (3.1), then each term inside the sum in (3.4) is equal to zero for all
possible values of S(t) and Yi(t). It implies that m′

r(t) = 0 for all t ≥ t0, and therefore that M is
a martingale. �

We now derive different solutions of equation (3.1), which provide us with a family of
martingales. Henceforth and by convention, a product

∏r−k
j=r cj is equal to one if k = 1 and is

equal to zero if k > 1.

Theorem 3.1. For all k ∈ {0, 1, 2, . . . , n}, θ ≥ 0, and z1, z2 ∈]0, 1], the process{( S(t)∏
l=k+1

βl

βl − βk

)
qα(k, θ, z1, z2)S(t) e−θA(t) zR1(t)

1 zR2(t)
2

I(t)∏
i=1

q(k, θ, z1, z2, Yi(t))

}
(3.5)

is a martingale with respect to (Ft)t≥0 when q(k, θ, z1, z2, x) is the solution in DL of the
equation

Lf (x) = (θa(x) + βkγ (x) + h1(x) + h2(x)) f (x) − (z1h1(x) + z2h2(x)), (3.6)

and when

qα(k, θ, z1, z2) =
∫
E

q(k, θ, z1, z2, y) dα(y). (3.7)

Proof. Equation (3.1) can be rewritten as

c(s)[Lf (x) − (θa(x) + βsγ (x) + h1(x) + h2(x)) f (x) + z1h1(x) + z2h2(x)]

= −c(s − 1)βsγ (x)f (x) for all x ∈ E , s ∈ {0, 1, . . . , n}. (3.8)

Fix k ∈ {0, 1, 2, . . . , n} and choose the function f ≡ fk so that the bracket on the left-hand side
of (3.8) is always equal to zero for s = k, that is, fk is a solution of (3.6). With this choice, for
s = k, equation (3.8) becomes

0 = c(k − 1)βkγ (x)fk(x) for all x ∈ E ,
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which implies that c(k − 1) = 0 and therefore c(s) = 0 for all s < k. For s > k, (3.8) can be
rewritten as

c(s)[(Lfk(x) − (θa(x) + βkγ (x) + h1(x) + h2(x)) fk(x) + z1h1(x) + z2h2(x))]

= c(s)(βs − βk)γ (x)fk(x) − c(s − 1)βsγ (x)fk(x) for all x ∈ E , s ∈ {0, 1, . . . , n}.
Since fk satisfies (3.6), the left-hand side of this equality is equal to zero and we obtain

c(s)(βs − βk) = c(s − 1)βs, s > k.

Choosing c(k) = 1, this recurrence is easily solved and yields

c(s) =
s∏

l=k+1

βl/(βl − βk). �

A solution of (3.6) can always be obtained as follows: let τ� be the duration of the infectious
period for an individual with infectivity process X. Then we have the following result.

Proposition 3.2. The function

q(k, θ, z1, z2, x) =Ex

[
zI1

1 zI2
2 e− ∫ τ�

0 (θa(X(u))+βkγ (X(u))) du
]

(3.9)

is a solution of (3.6) for all k ∈ {0, 1, 2, . . . , n}, θ ≥ 0, and z1, z2 ∈]0, 1].

Proof. Start from the expectation in (3.9) (where we assume that the process X starts at time
0 in state x) and condition on whether or not the removal occurs on the time interval [0, t]. For
small t, denoting r(x) = θa(x) + βkγ (x), we have

q(k, θ, z1, z2, x) =Ex

[
z1 e− ∫ τ�

0 r(X(u) du | τ� ≤ t, I1 = 1
]
(h1(x)t + o(t))

+Ex

[
z2 e− ∫ τ�

0 r(X(u) du | τ� ≤ t, I2 = 1
]
(h2(x)t + o(t))

+Ex

[
zI1

1 zI2
2 e− ∫ τ�

0 r(X(u) du | τ� > t
]
(1 − h1(x)t − h2(x)t + o(t))

= (1 − r(x)t + o(t))(z1h1(x)t + z2h2(x)t + o(t))

+Ex

[
zI1

1 zI2
2 e− ∫ τ�

0 r(X(u) du | τ� > t
]
(1 − h1(x)t − h2(x)t + o(t)).

Letting (FX
t )t≥0 denote the filtration generated by the history of X up to time t, and using the

tower property and the Markov property,

Ex

[
zI1

1 zI2
2 e− ∫ τ�

0 r(X(u) du | τ� > t
]
=Ex

[
E

[
zI1

1 zI2
2 e− ∫ τ�

0 r(X(u) du |FX
t , τ� > t

]]
=Ex

[
e− ∫ t

0 r(X(u) du
EX(t)

[
zI1

1 zI2
2 e− ∫ τ�

0 r(X(u) du
]]

=Ex[(1 − r(x)t + o(t)) q(k, θ, z1, z2, X(t))].

Therefore

q(k, θ, z1, z2, x) = (z1h1(x) + z2h2(x))t +Ex[q(k, θ, z1, z2, X(t))]

−Ex[q(k, θ, z1, z2, X(t))](r(x) + h1(x) + h2(x))t + o(t).
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Dividing both sides of the last equality by t, after some rearranging we obtain

1

t
(Ex[q(k, θ, z1, z2, X(t))] − q(k, θ, z1, z2, x))

= (r(x) + h1(x) + h2(x)) Ex[q(k, θ, z1, z2, X(t))] − (z1h1(x) + z2h2(x)) + o(t)

t
.

It then suffices to take the limit t → 0+ to see that q(k, θ, z1, z2, x) satisfies equation (3.6). �

Applying the optional stopping theorem to the martingales (3.5) with T as the stopping time,
we obtain a transform of the joint distribution of the final number of susceptibles S(T), the final
severity A(T), and the final number of removals.

Corollary 3.1. For all k ∈ {0, 1, 2, . . . , n}, θ ≥ 0, and z1, z2 ∈]0, 1],

E

[( S(T)∏
l=k+1

βl

βl − βk

)
qα(k, θ, z1, z2)S(T) e−θA(T) zR1(T)

1 zR2(T)
2

]

= qα(k, θ, z1, z2)n+m
n∏

l=k+1

βl

βl − βk
. (3.10)

From (3.10), we can compute the joint distribution of S(T), A(T), R1(T), and R2(T).

Corollary 3.2. For all θ ≥ 0, the numbers

y(s,r)(θ ) =E
[
e−θA(T) 1S(T)=s,R1(T)=r

]
, 0 ≤ s ≤ n, 0 ≤ r ≤ n + m − s,

constitute the solution of the linear system of equations

n∑
s=k

(
s∏

l=k+1

βl

βl − βk

)
r∑

j=0

(
s
j

)
qα(k, θ, 1, 0)j qα(k, θ, 0, 1)s−j y(s,r−j)(θ )

=
(

n+m
r

) ( n∏
l=k+1

βl

βl − βk

)
qα(k, θ, 1, 0)r qα(k, θ, 0, 1)n+m−r (3.11)

for 0 ≤ k ≤ n, 0 ≤ r ≤ n + m − k.

Proof. Taking z1 ≡ z and z2 = 1, we can rewrite (3.10) as

n∑
s=k

(
s∏

l=k+1

βl

βl − βk

)
qα(k, θ, z, 1)s

E
[
e−θA(T) zR1(T) 1S(T)=s

]

= qα(k, θ, z, 1)n+m
n∏

l=k+1

βl

βl − βk
.
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Differentiating r times with respect to z and taking z → 0+, we obtain (3.11) after having
noticed that

dj

dzj
E
[
e−θA(T) zR1(T) 1S(T)=s

]∣∣
z=0 = j! y(s,j)(θ ),

dj

dzj
qα(k, θ, z, 1)s

∣∣
z=0+ = s!

(s − j)!qα(k, θ, 1, 0)j qα(k, θ, 0, 1)s−j,

the last equality following from (3.6) or (3.9). �

For each value of θ ≥ 0, the equalities in (3.11) constitute a system of

n∑
k=0

(n + m − k + 1) = (n + 1)

(
n

2
+ m + 1

)

linear equations to determine the numbers y(s,r)(θ ). In particular, the probabilities P(S(T) = s,
R1(T) = r) are obtained by solving this system when θ = 0.

Alternatively, we can obtain the final epidemic outcome from Corollary 3.1, through the
transform

us(θ, z1, z2) =E
[
e−θA(T) zR1(T)

1 zR2(T)
2 1S(T)=s

]
.

For that, it suffices to rewrite (3.10) as

n∑
s=k

(
s∏

l=k+1

βl

βl − βk

)
qα(k, θ, z1, z2)s us(θ, z1, z2) = qα(k, θ, z1, z2)n+m

n∏
l=k+1

βl

βl − βk
(3.12)

for all k = 0, 1, . . . , n. For each chosen value of θ , z1, and z2, (3.12) constitutes a triangular
system of n + 1 linear equations that determine us(θ, z1, z2). The probabilities P(S(T) = s) are
obtained by solving this system when θ = 0 and z1 = z2 = 1. The Laplace transform of A(T)
and the probability generating function of (R1(T), R2(T)) are given by

E
[
e−θA(T)]= n∑

s=0

us(θ, 1, 1),

E
[
zR1(T)

1 zR2(T)
2

]= n∑
s=0

us(0, z1, z2).

Finally, differentiating with respect to θ , z1, or z2 in (3.10), we can also obtain various
relations between the moments of A(T), R1(T), R2(T), and those of S(T). In particular, the
expectations of A(T) and R1(T) have the simple expressions

E[A(T)] = (n + m −E[S(T)])
d

dθ
qα(0, θ, 1, 1)

∣∣
θ=0,

E[R1(T)] = (n + m −E[S(T)])
d

dz
qα(0, 0, z, 1)

∣∣
z=1,
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which are intuitive since the derivative (d/dθ )qα(0, θ, 1, 1)|θ=0 gives the mean severity due
to an infected individual whose contamination process starts with initial distribution α(·), and
(d/dz)qα(0, 0, z, 1)|z=1 is the probability that he becomes a removed of type 1 at the end of his
infectious period.

Note that in order to solve the systems (3.11) and (3.12), the coefficients qα(k, θ, z1, z2)
must first be computed. This can be done in several ways, the most convenient option depend-
ing on the nature of the process X: these coefficients can be computed from the representation
(3.9) either by direct calculation or by simulating the process X. Alternatively, they can be
obtained by solving equation (3.6).

Remark 3.1. In the case where the infection rates are linear with the number of suscepti-
bles (βs = βs), another way to determine the final epidemic outcome is to adapt the approach
developed in Ball [4] to the case of Feller infectivity processes.

To close this section, we emphasize the flexibility of the model by presenting a few interest-
ing classes of Feller processes that can be used to represent the infectious periods. We comment
on the possible interpretations and applications of each class, and we show how to derive the
corresponding expressions for the function q(k, θ, z1, z2, x), whose knowledge allows us to
solve the systems (3.11) and (3.12).

Example 3.1. (General epidemic with arbitrary infectious period distribution.) Let us assume
as in Clancy [10] that each infected individual remains contagious for a duration distributed
as a random variable Z > 0 with cumulative distribution function F(·). During this period, he
makes contaminations at rate βS(t), where βs is an arbitrary positive function of s. We consider
here an extension of this model where there are two removal classes and where the type of
removal of each individual depends on the duration of his infectious period. This can add
interesting information in the model, for instance in situations where infected people are more
likely to die when their illness lasts longer.

To describe this model in our setting, we take the infectivity process X as a deterministic pro-
cess on E =R

+ such that X(u) = u. Then X = x simply means that the infectious period started
x units of time ago. The contamination and severity functions are constant: γ (x) = a(x) = 1 for
all x ∈R

+. When X = x, the instantaneous removal rate is the failure rate associated to F(·), i.e.
dF(x)/(1 − F(x)). Of course, each infected individual starts from state 0, so α is the probability
measure on R

+ with all the mass concentrated on x = 0.
Let us assume that if the infectious period of an individual lasts y units of time, the proba-

bility that he becomes a removed of type 1 (resp. type 2) is p(y) (resp. 1 − p(y)). The removal
rate functions h1 and h2 are then given by

h1(x) = p(x)
dF(x)

1 − F(x)
, h2(x) = (1 − p(x))

dF(x)

1 − F(x)
.

From (3.9), we then obtain

q(k, θ, z1, z2, x) =Ex
[
zI1

1 zI2
2 e−(θ+βk)τ�

]
=E

[
zI1

1 zI2
2 e−(θ+βk)(Z−x) | Z > x

]
=E

[
E
[
zI1

1 zI2
2 | Z

]
e−(θ+βk)(Z−x) | Z > x

]
,
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and therefore

q(k, θ, z1, z2, x) =E
[
(z1p(Z) + z2(1 − p(Z))) e−(θ+βk)(Z−x) | Z > x

]
= 1

1 − F(x)

∫ ∞

x
(z1p(y) + z2(1 − p(y))) e−(θ+βk)(y−x) dF(y).

Alternatively, this expression for q(k, θ, z1, z2, x) can be obtained by using the fact that the
generator of X is the differential operator Lf = f ′. So (3.6) gives the differential equation

f ′(x) =
(

θ + βk + dF(x)

1 − F(x)

)
f (x) − (z1p(x) + z2(1 − p(x)))

dF(x)

1 − F(x)
,

which can be easily solved under the condition that f is bounded. Note that we only need
to determine the coefficient qα(k, θ, z1, z2) ≡ q(k, θ, z1, z2, 0) in order to apply the transform
(3.10).

Example 3.2. (SIR models driven by Markov chains.) Now consider the case where the infec-
tivity process X is a Markov chain defined on a finite or discrete state space E . This process is
characterized by the |E | × |E | intensity matrix Q (such that Qjl is the instantaneous transition
rate from state j to state l when l �= j and

∑
l∈E Qjl = 0 for all j) and by the 1 × |E | initial vector

α with components αj = P(X(0) = j). Assume that an individual whose infectivity process is in
state j ∈ E has a cost a(j) per unit of time and makes contaminations at rate βsγ (j) if there are s
available susceptibles. Moreover, when in state j, an individual becomes removed of type 1 at
rate h1(j) and of type 2 at rate h2(j).

Here, the generator of X is the operator L given by

(Lf )(j) =
∑
l∈E

Qjl f (l).

From (3.6), the coefficients q(k, θ, z1, z2, j) satisfy the recursion∑
l∈E

Qjlf (l) = (θa(j) + βkγ (j) + h1(j) + h2(j))f (j) − z1h1(j) − z2h2(j) (3.13)

for all j ∈ E . Below, we take a closer look at two particular cases in this class of models.
(1) In the case where E = {1, 2, . . . , L}, the states of X can be seen as a finite number of

possible degrees of the illness a contaminated individual can go through during his infectious
period, each of them with specific contamination and removal rates. These different degrees can
be used to distinguish, for instance, periods of improvement and deterioration in the patient’s
condition, or the possible reactions following a treatment against the disease. They can also
simply reflect the fact that the parameters are subject to a more general random environment
specific to each individual.

Identifying the functions g : E →R to the column vectors g = (g(1), g(2), . . . , g(L))′ and
writing 
g = diag(g), equation (3.13) can be rewritten in matrix form as

Qf = (θ
a + βk
γ + 
h1 + 
h2 )f − z1h1 − z2h2.

The unique solution of this equation is

q(k, θ, z1, z2) = (θ
a + βk
γ + 
h1 + 
h2 − Q)−1(z1h1 + z2h2),

and the coefficient qα(k, θ, z1, z2) = αq(k, θ, z1, z2) is easily computed.
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(2) Now consider the case where X is an absorbing birth-and-death process on E =
{0, 1, 2, . . .} with birth rates λj and death rates μj, where λj, μj > 0 for j > 0 and λ0 = μ0 = 0.
Here, the generator Q is the infinite matrix of which the only non-zero components are

Qj,j−1 = μj, Qj,j+1 = λj, Qj,j = −λj − μj, j ≥ 1.

This kind of model can be used, for instance, to represent situations where the infection is
caused by a population of diseased cells which reproduce inside the organism of the infected
individual, the birth-and-death process keeping track of the evolution of their number.

Assume that when his infectivity process is in state j > 0, an individual transmits the disease
at rate βsγj (when there are s available susceptibles) and has a cost aj per time unit. He can die
from the illness and become a removed case of type 1 at rate h1(j), but he can also recover and
become a removed case of type 2 if his process reaches the absorbing state 0 before succumbing
to the illness. Then the function q(k, θ, z1, z2, j) is the solution of

μj f (j − 1) − (λj + μj + θa(j) + βkγ (j) + h1(j))f (j) + λjf (j + 1) = −z1h1(j) (3.14)

for j ≥ 1, subject to the conditions that f is bounded and f (0) = z2. In the particular case of a
linear birth-and-death process (λj = λj, μj = μj, aj = aj, γj = j, h1(j) = κj), the recursion (3.14)
is easily solved and yields

q(k, θ, z1, z2, j) = C + (z2 − C)

(
λ + μ + βk + aθ + κ −√(λ + μ + βk + aθ + κ)2 − 4λμ

2λ

)j

,

where C = z1κ/(βk + aθ + κ).

Example 3.3. (SIR models driven by diffusions.) In this last example, X is a diffusion process
taking values in E ⊆R, i.e. X satisfies a stochastic differential equation of the form

dX(u) = λ(X(u)) du + σ (X(u)) dW(u),

where W is a standard Brownian motion and the functions λ : E →R and σ : E →R
+ satisfy

the usual Lipschitz continuity condition. More generally, X could take its values in a subset
of R

n. The corresponding SIR models can be regarded as Brownian perturbations of more
classical models (like the one in the first example), where the Brownian component represents
a noise resulting from errors in the parameter estimation, for example. As in the last example,
the diffusion can also represent the density of infected cells inside the organism, which are
responsible for the (transmission of the) disease.

Here, the generator of X is of the form

Lf (x) = a(x)f ′(x) + 1

2
b(x)2f ′′(x),

and a necessary condition for f to be part of DL is that f is bounded and twice differentiable.
One of the simplest examples of diffusion is Brownian motion with zero drift, i.e. the diffu-
sion with λ(x) = 0 and σ (x) = σ > 0. For illustration, let us consider this example when the
Brownian motion is reflected at level zero (so that E =R

+) and the infection rate γ (x) = x is
linear with the level of X. Let us also fix a(x) = 1 so that the severity is the duration of the infec-
tious periods. An infected individual recovers and becomes a removed of type 1 after a period
of time Exp(μ1) and thus h1(x) = μ1. He can also die from the illness at a rate h2(x) = μ2x,
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which increases with the level of the infectivity process. Then he becomes a removed of type 2.
From (3.6), the function q(k, θ, z1, z2, x) satisfies the equation

1

2
σ 2f ′′(x) = [θ + μ1 + (βk + μ2)x] f (x) − z1μ1 − z2μ2x, (3.15)

with the constraint f ′(0) = 0 to account for the reflection of X at level zero. Defining the
function g such that

f (x) = (βk + μ2)−1π (ωz1μ1 − ηz2μ2)g(ωx + η) + (βk + μ2)−1z2μ2,

with ω = 21/3(βk + μ2)σ−2/3(βk + μ2)−2/3 and η = 21/3(θ + μ1)σ−2/3(βk + μ2)−2/3, (3.15)
turns into the standard inhomogeneous Airy equation

g′′(y) − yg(y) + 1

π
= 0, (3.16)

the solutions of which are well known (see e.g. Gil et al. [14]). Solving (3.16) with the
constraints that f is bounded and that f ′(0) = 0, we obtain

q(k, θ, z1, z2, x) = z2μ2

βk + μ2
+ ωz1μ1 − ηz2μ2

(βk + μ2)Ai′(ω)
(Ai′(ω)Gi(η + ωx) − Gi′(ω)Ai(η + ωx)),

where the Airy function Ai(x) and the Scorer function Gi(x) are given by

Ai(x) = 1

π

∫ ∞

0
cos

(
y3

3
+ xy

)
dy, Gi(x) = 1

π

∫ ∞

0
sin

(
y3

3
+ xy

)
dy.

4. Contaminations per infected and final epidemic outcome computation

In Section 4.1 we analyse the severity, removal type, and number of contaminations made
by a unique infected individual facing a given number of susceptibles. In Section 4.2 we show
that this analysis provides an alternative procedure to compute the final epidemic outcome
distributions obtained in Section 3.

4.1. Outcome per infected individual

To assess the risk of an epidemic spreading in a population, an interesting measure is the
effect of a single infected individual on a fixed group of s susceptibles. This measure is simpler
to obtain than the final epidemic outcome distribution and provides many useful estimators of
the threat caused by the disease (such as the mean number of contacts per individual, the cost
per individual, the probability of death).

To measure this effect, we are going to consider a simpler epidemic model in which only
one infected individual is present and faces a fixed number of susceptibles who are unable to
spread the disease (even if they are contaminated). This model can be seen as a generalization
of the carrier-borne epidemic of Weiss [25]. More precisely, we consider a (unique) generic
infected individual whose infectivity process is {X(t) | t ≥ 0} with X(0) given by the probability
measure α(·). Here, t = 0 corresponds to the time when the infection period starts and t = τ� is
the time when it ends. The individual is facing an arbitrary but fixed number s of susceptibles,
and we assume that those of them who are contaminated are directly removed (i.e. they play no
role in the contamination of the remaining susceptibles). We are going to determine the joint
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distribution of several statistics. The first one is the total number Ns of contaminations made
by the individual among the s susceptibles. The second one is the total severity D(τ�) due to
the individual, with

D(t) =
∫ t

0
a(X(u)) du.

Finally, I1 (resp. I2) are the indicators that he becomes a removed of type 1 (resp. type 2) at
the end of his infectious period. We start with the following preliminary result, which will be
used both here and in Section 4.2.

Lemma 4.1. For each k ∈ {0, 1, 2, . . . , n}, θ ≥ 0, and z1, z2 ∈]0, 1],

E

[( s−Ns∏
l=k+1

βl

βl − βk

)
e−θD(τ�) zI1

1 zI2
2

]
=
(

s∏
l=k+1

βl

βl − βk

)
qα(k, θ, z1, z2), (4.1)

where qα(k, θ, z1, z2) is given in (3.7).

Proof. Let Ns(t) be the number of contaminations made by the infected individual after t
units of time and let Ij(t) be the indicator of the event [t ≥ τ�, Ij = 1] (for j = 1, 2). To show
(4.1), the reasoning is the same as that used to obtain (3.10). We look for a function b(·) and a
bounded and measurable f : E ∪ {�} → ]0, 1] such that the process

M(t) = b(Ns(t)) e−θD(t) zI1(t)
1 zI2(t)

2 f (X(t))

is a martingale with respect to the filtration G = (Gt)t≥0 containing the history of X(t), D(t), and
Ns(t) up to time t. Here, {�} denotes an artificial, absorbing state in which the process X is sent
as soon as the infected individual is removed. We proceed as in the proof of Proposition 3.1: we
fix t0 > 0 and look for some b(·) and f (·) such that the right derivative m′

r(t) of m(t) =E[M(t) |
Gt0 ] equals zero for all t ≥ t0. The tower property allows us to write

m(t + dt) =E[M(t + dt) | Gt0 ] =E
[
E[M(t + dt) | Gt] | Gt0

]
. (4.2)

By examining the possible events on the time interval [t, t + dt[, we find that the following
equality holds up to o(dt):

E[M(t + dt) | Gt]

= b(Ns(t) + 1) E
[
e−θD(t+dt)f (X(t + dt)) | Gt

]
(βs−Ns(t)γ (X(t)) dt + o(dt))

+ b(Ns(t)) E
[
e−θD(t+dt) | Gt

]
f (�)(z1h1(X(t)) dt + z2h2(X(t)) dt + o(dt))

+ b(Ns(t)) E
[
e−θD(t+dt)f (X(t + dt)) | Gt

]
× (1 − (βs−Ns(t)γ (X(t)) + h1(X(t)) + h2(X(t))) dt + o(dt)).

Subtracting m(t) from both sides of (4.2), dividing each side by dt, and taking dt → 0, we
obtain as in the proof of Proposition 3.1 that a sufficient condition for m′

r(t) to be equal to zero
is that b(·) and f (·) satisfy

b(l)[Lf (x) − (βs−lγ (x) + θa(x) + h1(x) + h2(x)) f (x) + (z1h1(x) + z2h2(x))f (�)]

= −βs−l b(l + 1) γ (x) f (x) for all x ∈ E , l ∈ {0, 1, . . . , s}. (4.3)
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Next, we proceed as in the proof of Theorem 3.1: for each fixed k ∈ {0, 1, 2, . . . , n}, a solution
of (4.3) is obtained by choosing f ≡ fk such that fk(�) = 1 and fk(x) = q(k, θ, z1, z2, x) for x ∈ E .
In that way, fk satisfies (3.6), and (4.3) reduces to the equation

b(l) = 0 for l > s − k,

βs−l−kb(l) = βsb(l + 1) for l ≤ s − k,

which is easily solved and yields b(l) =∏s−l
l=k+1 (βl/(βl − βk)). As a consequence, the process

{(s−Ns(t)∏
l=k+1

βl

βl − βk

)
e−θD(t) zI1(t)

1 zI2(t)
2 q(k, θ, z1, z2, X(t))1t<τ�

}

is a martingale with respect to Gt, and (4.1) follows by applying the optional stopping theorem
with τ� as the stopping time. �

Henceforth, we use the product notation

L∏
j=l
j �=v

cj ≡
(

v−1∏
j=l

cj

)(
L∏

j=v+1

cj

)
, (4.4)

with the usual convention that
∏r−k

j=r cj is equal to one if k = 1 and equal to zero if k > 1. Note
that with this convention, (4.4) is equal to zero if v /∈ {l, l + 1, . . . , L}.

From Lemma 4.1, we can obtain an explicit expression (in terms of the coefficients
qα(k, θ, z1, z2)) for the joint distribution of Ns, D(τ�), I1, and I2.

Proposition 4.1. For all θ ≥ 0 and x, z1, z2 ∈]0, 1],

E
[
xs−Ns e−θD(τ�) zI1

1 zI2
2

]= s∑
l=0

(
s∑

v=l

Qs(l, v) qα(v, θ, z1, z2)

)
xl, (4.5)

where

Qs(l, v) =
(

s∏
j=l+1

βj

)⎛⎜⎝ s∏
j=l
j �=v

1

βj − βv

⎞
⎟⎠.

Proof. Let us first show that for 0 ≤ l, L ≤ s,

(
L∏

j=l+1

βj

)
s∑

v=l

⎛
⎜⎝ L∏

j=l
j �=v

1

βj − βv

⎞
⎟⎠= δl,L, (4.6)

where δ is the Kronecker delta. Note that the left-hand side of (4.6) can be rewritten as

H(l, L) =
(

L∏
j=l+1

βj

)
L∑

v=l

⎛
⎜⎝ L∏

j=l
j �=v

1

βj − βv

⎞
⎟⎠. (4.7)
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We clearly have H(L, L) = 1. For l > L, the first product appearing in (4.7) equals zero so that
H(l, L) = 0. For 0 < l < L, we show that H(l, L) = 0 by writing the polynomial P(x) = x in the
Lagrange basis {p0(x), p1(x), . . . , pL−l(x)}, where

pv(x) =
L−l∏
j=0
j �=v

βl+j − x

βl+j − βl+v
.

This yields

x =
L−l∑
v=0

βv+l pv(x),

and this equality with x = 0 is equivalent to H(l, L) = 0. Finally, we show that H(0, L) = 0 if
L > 0 in a similar way, writing

H(0, L) = 1 −
L∑

v=1

⎛
⎜⎝ L∏

j=1
j �=v

βj

βj − βv

⎞
⎟⎠,

and using the fact that the sum in the last equality is the constant polynomial P(x) = 1 written
in the Lagrange basis {p1(x), p1(x), . . . , pL(x)}.

Now, from (4.6), where L is replaced by the random variable s −Ns, we obtain

E

[
xs−Ns e−θD(τ�) zI1

1 zI2
2

]

=E

⎡
⎢⎣ s∑

l=0

(s−Ns∏
j=l+1

βj

)
s∑

v=l

⎛
⎜⎝ s−Ns∏

j=l
j �=v

1

βj − βv

⎞
⎟⎠xl e−θD(τ�) zI1

1 zI2
2

⎤
⎥⎦

=
s∑

v=0

v∑
l=0

E

[( s−Ns∏
j=v+1

βj

βj − βv

)
e−θD(τ�) zI1

1 zI2
2

](
v∏

j=l+1

βj

)(
v−1∏
j=l

1

βj − βv

)
xl.

Using Lemma 4.1, we then have

E
[
xs−Ns e−θD(τ�) zI1

1 zI2
2

]

=
s∑

v=0

v∑
l=0

(
s∏

j=v+1

βj

βj − βv

)
qα(v, θ, z1, z2)

(
v∏

j=l+1

βj

)(
v−1∏
j=l

1

βj − βv

)
xl

=
s∑

l=0

s∑
v=l

(
s∏

j=l+1

βj

)⎛⎜⎝ s∏
j=l
j �=v

1

βj − βv

⎞
⎟⎠qα(v, θ, z1, z2) xl,

hence the stated expression. �
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From Proposition 4.1, we can easily determine the distribution of various quantities of inter-
est related to the behaviour of a typical infected individual. By differentiating both sides of
(4.5) s − r times with respect to x and taking x = 0, we obtain that for all θ ≥ 0, z1, z2 ∈]0, 1],
and r ∈ {0, 1, . . . , s},

E
[
e−θD(τ�) zI1

1 zI2
2 1Ns=r

]= s∑
v=s−r

Qs(s − r, v) qα(v, θ, z1, z2). (4.8)

In particular, the distribution of Ns together with the type of elimination is given by

P(Ns = s − r, I1 = 0) =
s∑

v=r

Qs(r, v) qα(v, 0, 0, 1), (4.9)

and P(Ns = s − r) is given by the same expression except that qα(k, 0, 0, 1) is replaced by
qα(k, 0, 1, 1). The factorial moments of s −Ns are obtained by differentiating both sides of
(4.5) k times and then taking θ = 0 and x = z1 = z2 = 1:

E[(s −Ns)[k]] =
s∑

l=k

l!
(l − k)!

(
s∑

v=l

Qs(l, v) qα(v, 0, 1, 1)

)
.

Special case. When βl = l for all l, the above expressions become much simpler. We have

Qs(l, v) = (−1)v−l s!
l! (v − l)! (s − v)! ,

and using the binomial theorem, (4.5) can be rewritten as

E
[
xs−Ns e−θD(τ�) zI1

1 zI2
2

]= s∑
v=0

(
s

v

)
qα(v, θ, z1, z2)

v∑
l=0

(
v

l

)
(−1)v−lxl

=
s∑

v=0

(
s

v

)
qα(v, θ, z1, z2) (x − 1)v.

In particular, the probability that an infected individual facing s susceptibles makes k
contaminations and then becomes a removed of type 1 is

P(Ns = k, I1 = 0) =
(

s

k

) k∑
l=0

(
k

l

)
(−1)k−l qα(s − l, 0, 0, 1), (4.10)

and the factorial moments of s −Ns are given by the simple formula

E
[
(s −Ns)[k]

]= s!
(s − k)! qα(k, 0, 1, 1).

Note that from its definition (3.7) (with βl = l), the coefficients qα(k, 0, z1, z2) can be written
here as qα(k, 0, z1, z2) =Eα[zI1

1 zI2
2 Wk], with

V =
∫ τ�

0
γ (X(u)) du, W = e−V .
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Using this representation in (4.10), we have

P(Ns = k) =Eα

[(
s

k

)
(−1)k Ws−k

k∑
l=0

(
k

l

)
(−1)l Wk−l

]
=Eα

[(
s

k

)
Ws−k (1 − W)k

]
.

So, in this special case, the variable Ns follows a mixed binomial distribution with parameters
s and the (random) probability 1 − W. Note that this result is intuitive: given that we know the
cumulative infection rate generated by the infective over his entire infectious period (i.e. the
random variable V), each of the s susceptibles has probability 1 − e−V of escaping infection.
The result then follows from the fact that the susceptibles behave independently of each other.

In the general case where the rates βs are arbitrary, this intuition no longer holds. The prob-
abilities P(Ns = k) must then be computed using (4.9). Alternatively, they can be computed by
simulating the random variable V , noting that from (4.9) we have the representation

P(Ns ≤ k) =Eα[P(Tk > V)]

for k < s, where Tk is independent of V and follows a hypoexponential distribution with
parameters βs, βs−1, . . . , βs−k.

4.2. Artificial time and final outcome computation

In Section 3 we showed that the final epidemic outcome distribution can be computed by
solving the linear system (3.11) or (3.12). However, these systems are often very unstable in
practice, even for small values of n and m (see e.g. Demiris and O’Neill [12], House et al. [15],
and the numerical illustration below). In this section we link our epidemic process to another,
discrete-time process with the same outcome distribution. Such discrete-time equivalent mod-
els have already been used to obtain a system like (3.12) in the setting of the general epidemic
(see e.g. Lefèvre and Utev [17] and Ball [3]), and to facilitate the study of various discrete-
time epidemics (see e.g. Scalia-Tomba [23]). Here, we extend the approach to our setting and
we take the opposite direction: we use the discrete-time model to provide an alternative, more
stable method to compute the final epidemic outcome of the original model.

The idea is to make an artificial time change to follow the infections caused by every indi-
vidual taken one after another. Informally stated, the dynamics of the original epidemic process
is modified in the following way. At the beginning of the epidemic, all the initial infected indi-
viduals are sent to a queue outside the system. Then they are activated one after another. When
an individual (labelled i, say) is activated, his infectious period starts and is governed by an
independent copy {Xi(u)} of {X(u)}. When s susceptibles are present, he makes contaminations
at rate βsγ (Xi(u)) and he is removed in one of the two removal classes at rates h1(Xi(u)) and
h2(Xi(u)). When a susceptible is contaminated, he is sent to the queue outside the system. At
the end of his infectious period, the infective is removed in one of the two types of elimination,
and the next individual in the queue is activated.

In this modified system, there is only one infective in the population at a time. It leads to
a discrete-time representation {(Sτ , Iτ ,R(1)

τ ,R(2)
τ ,Aτ ) | τ = 0, 1, 2, . . .}, where Sτ , Iτ , R(1)

τ ,
and R(2)

τ , respectively, are the number of remaining susceptibles, infected individuals, and
removed cases after the first τ removals. The variable Aτ is the severity due to the τ first
activated infectives. The initial state of the process is similar to that of the continuous-time
model, i.e. S0 = n, I0 = m, and A0 =R(1)

0 =R(2)
0 = 0. The epidemic terminates at the first time
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T when IT = 0, i.e. when the active infective is removed and there are no more individuals
waiting in the queue. It can be expressed as

T = inf{τ ≥ 0 | τ + Sτ = n + m}. (4.11)

Considering this discrete-time model instead of the original one, we lose all information
about the transient behaviour of the epidemic. However, Lemma 4.1 can be used to show that
the final epidemic outcome is the same in distribution for both models.

Proposition 4.2. For all θ ≥ 0 and x, z1, z2 ∈]0, 1],

E
[
xS(T) e−θA(T) zR1(T)

1 zR2(T)
2

]=E

[
xST e−θAT z

R(1)
T

1 z
R(2)

T
2

]
.

Proof. We work with the discrete-time model introduced in this section. Let Dτ =d D be the
total severity due to the τ th activated infected individual, NSτ

his number of contaminations
and I1,τ =d I1, I2,τ =d I2 the indicators of the events that he becomes a removed of type 1 or 2.
The following equalities hold:

Sτ+1 = Sτ −NSτ
,

Aτ+1 =Aτ + Dτ+1,

R(r)
τ+1 =R(r)

τ + Ir,τ+1, r = 1, 2.

Let (Hτ )τ≥0 be the filtration σ {Ss,As,R(1)
s ,R(2)

s | s ≤ τ } and fix k ∈ {0, 1, . . . , n}. Using the
three relations above, we can write

E

[( Sτ+1∏
l=k+1

βl

βl − βk

)
e−θAτ+1 z1

R(1)
τ+1 z2

R(2)
τ+1

∣∣∣∣Hτ

]

= e−θAτ z1
R(1)

τ z2
R(2)

τ E

[(Sτ −NSτ∏
l=k+1

βl

βl − βk

)
e−θDτ+1 z1

I1,τ+1 z2
I2,τ+1

∣∣∣∣ Sτ

]

= e−θAτ z1
R(1)

τ z2
R(2)

τ

( Sτ∏
l=k+1

βl

βl − βk

)
qα(k, θ, z1, z2),

where the last equality follows directly from (4.1). Dividing both sides of the last equality by
qα(k, θ, z1, z2)τ+1, we see that the process{( Sτ∏

l=k+1

βl

βl − βk

)
e−θAτ z1

R(1)
τ z2

R(2)
τ qα(k, θ, z1, z2)−τ

}

is a martingale with respect to (Hτ )τ≥0. We can therefore apply the optional stopping theorem
with T as the stopping time, and obtain

E

[( ST∏
l=k+1

βl

βl − βk

)
e−θAT z1

R(1)
T z2

R(2)
T qα(k, θ, z1, z2)−T

]
=

n∏
l=k+1

βl

βl − βk
.
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From (4.11), we have the relation T = n + m − ST and thus

E

[( ST∏
l=k+1

βl

βl − βk

)
qα(k, θ, z1, z2)ST e−θAT z1

R(1)
T z2

R(2)
T

]

= qα(k, θ, z1, z2)n+m
n∏

l=k+1

βl

βl − βk
. (4.12)

The result follows by comparing (4.12) and (3.10), since their left-hand sides take the same
value for all k ∈ {0, 1, . . . , n}, θ ≥ 0, and z1, z2 ∈]0, 1]. �

Using Proposition 4.2, we easily obtain a recursive procedure to compute the final outcome
of the original continuous-time epidemic model of Section 2.

Proposition 4.3. For all θ ≥ 0, z1, z2 ∈]0, 1], and g : {0, 1, . . . , n} →R,

E
[
g(S(T)) e−θA(T) zR1(T)

1 zR2(T)
2 | S(0) = s, I(0) = i

]= Gs,i(θ, z1, z2),

where the Gs,i(θ, z1, z2) satisfy the recursion

Gs,i(θ, z1, z2) =
s∑

r=0

L(s, r) Gs−r,i+r−1(θ, z1, z2), i > 0,

Gs,0(θ, z1, z2) = g(s),

(4.13)

where L(s, r) denotes the expectation (4.8).

Proof. It is obvious that Gs,0(θ, z1, z2) = g(s). When i > 0, we use Proposition 4.2 to write

Gs,i(θ, z1, z2) =E
[
g(S(T)) e−θA(T) zR1(T)

1 zR2(T)
2 | S(0) = s, I(0) = i

]
=E

[
g(ST ) e−θAT z

R(1)
T

1 z
R(2)

T
2 | S(0) = s, I(0) = i

]
.

Working in the artificial discrete-time version, we rewrite the last equality by conditioning
on the effect of the first infected individual who is activated. Letting D denote his severity,
Ns his number of contaminations, and I1, I2 the indicators of his removal type, it suffices to
use the tower property, the strong Markov property, and the independence between infected
individuals to obtain

Gs,i(θ, z1, z2) =E

[
E

[
g(ST ) e−θAT z

R(1)
T

1 z
R(2)

T
2 | D, I1, I2

]
| S(0) = s, I(0) = i

]

=
s∑

r=0

E
[
e−θD zI1

1 zI2
2 1Ns=r

]
Gs−r,i+r−1(θ, z1, z2),

which is (4.13). �

We conclude with a small numerical illustration. In Figures 1, 2, and 3, we consider the dis-
tribution of S(T) for the ‘general epidemic model with arbitrary infectious periods’ described
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FIGURE 1. Distribution of S(T) in Example 3.1, obtained from the system (3.12) (a) or from the recursion
(4.13) (b). The parameters are n = 47, m = 3, βs = 2s/n, and Z ∼ Beta(2, 3).
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FIGURE 2. Distribution of S(T) in Example 3.1, obtained from the system (3.12) (a) or from the recursion
(4.13) (b). The parameters are n = 95, m = 5, βs = 2s/n, and Z ∼ Beta(2, 3).
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FIGURE 3. Distribution of S(T) in Example 3.1, obtained from the recursion (4.13) when n = 490, m = 10
(a) or n = 980, m = 20 (b). The other parameters are βs = 2s/n and Z ∼ Beta(2, 3).
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in the first example of Section 3, when the duration of the infectious periods is distributed as
Z ∼ Beta(2, 3) and the contamination rate per infected individual is βs = 2s/n. We compare
the results obtained by solving the system (3.12) with those obtained by applying the recur-
sion (4.13), and illustrate the fact that the latter are more stable than the former even for the
most classical SIR models. In Figure 1 the population size is small (n = 47, m = 3), and we
see that both methods deliver the same result. In Figure 2 the population size is higher (n = 95,
m = 5). We see that the system (3.12) has become unstable and yields an aberrant distribution,
while the recursion (4.13) delivers a sensible result. Finally, in Figure 3 we show that the recur-
sion (4.13) keeps working sensibly for bigger population sizes (n = 490, m = 10 and n = 980,
m = 20).
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