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Abstract. This paper studies several aspects of symbolic (i.e. subshift) factors of S-adic
subshifts of finite alphabet rank. First, we address a problem raised by Donoso et al
[Interplay between finite topological rank minimal Cantor systems, S-adic subshifts and
their complexity. Trans. Amer. Math. Soc. 374(5) (2021), 3453–3489] about the topological
rank of symbolic factors of S-adic subshifts and prove that this rank is at most the one
of the extension system, improving on the previous results [B. Espinoza. On symbolic
factors of S-adic subshifts of finite alphabet rank. Preprint, 2022, arXiv:2008.13689v2;
N. Golestani and M. Hosseini. On topological rank of factors of Cantor minimal systems.
Ergod. Th. & Dynam. Sys. doi:10.1017/etds.2021.62. Published online 8 June 2021]. As a
consequence of our methods, we prove that finite topological rank systems are coalescent.
Second, we investigate the structure of fibers π−1(y) of factor maps π : (X, T )→ (Y , S)
between minimal S-adic subshifts of finite alphabet rank and show that they have the same
finite cardinality for all y in a residual subset of Y. Finally, we prove that the number
of symbolic factors (up to conjugacy) of a fixed subshift of finite topological rank is
finite, thus extending Durand’s similar theorem on linearly recurrent subshifts [F. Durand.
Linearly recurrent subshifts have a finite number of non-periodic subshift factors. Ergod.
Th. & Dynam. Sys. 20(4) (2000), 1061–1078].
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1. Introduction
An ordered Bratteli diagram is an infinite directed graph B = (V , E, ≤) such that the
vertex set V and the edge set E are partitioned into levels V = V0 ∪ V1 ∪ · · · , E = E0 ∪
· · · so that En are edges from Vn+1 to Vn, V0 is a singleton, each Vn is finite and ≤ is a
partial order on E such that two edges are comparable if and only if they start at the same
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vertex. The order≤ can be extended to the setXB of all infinite paths in B, and the Vershik
action VB on XB is defined when B has unique minimal and maximal infinite paths with
respect to≤. We say that (XB , VB) is a Bratteli–Vershik (BV) representation of the Cantor
system (X, T ) if both are conjugate. Bratteli diagrams are a tool coming from C∗-algebras
that, at the beginning of the 1990’s, Herman et al [HPS92] used to study minimal Cantor
systems. Their success at characterizing the strong and weak orbit equivalence for systems
of this kind marked a milestone in the theory that motivated many posterior works. Some
of these works focused on using Bratteli diagrams to study specific classes of systems and,
as a consequence, many of the classical minimal systems have been characterized as BV
systems with a specific structure. Some examples include odometers as those systems that
have a BV representation with one vertex per level, substitutive subshifts as stationary
BV (all levels are the same) [DHS99], certain Toeplitz sequences as ‘equal row-sum’ BV
[GJ00], and (codings of) interval exchanges as BV where the diagram codifies a path in
a Rauzy graph [GJ02]. Now, almost all of these examples share certain coarse dynamical
behavior: they have finitely many ergodic measures, are not strongly mixing, have zero
entropy, are subshifts, and their BV representations have a bounded number of vertices
per level, among many others. It turns out that just having a BV representation with a
bounded number of vertices per level (or, from now on, having finite topological rank)
implies the previous properties (see, for example, [BKMS13, DM08]). Hence, the finite
topological rank class arises as a possible framework for studying minimal subshifts and
proving general theorems.

This idea has been exploited in many works: Durand et al, in a series of papers (with
[DFM19] being the last one), developed techniques from the well-known substitutive
case and obtained criteria for any BV of finite topological rank to decide if a given
complex number is a continuous or measurable eigenvalue; Bezuglyi et al described in
[BKMS13] the simplex of invariant measures together with natural conditions for being
uniquely ergodic; Giordano et al bounded the rational rank of the dimension group by the
topological rank [HPS92, GHH18], among other works. It is important to remark that
these works were inspired by or first proved in the substitutive case.

Now, since Bratteli–Vershik systems with finite topological rank at least two are
conjugate to a subshift [DM08], it is interesting to try to define them directly as a subshift.
This can be done by codifying the levels of the Bratteli diagram as substitutions and
then iterate them to obtain a sequence of symbols defining a subshift conjugate to the
initial BV system. This procedure also makes sense for arbitrary nested sequences of
substitutions (called directive sequences), independently from the Bratteli diagram and
the various additional properties of its codifying substitutions. Subshifts obtained in this
way are called S-adic (substitution-adic) and may be non-minimal (see, for example,
[BSTY19]).

Although there are some open problems about finite topological rank systems depending
directly on the combinatorics of the underlying Bratteli diagrams, others are more naturally
stated in the S-adic setting (e.g. when dealing with endomorphisms, it is useful to have the
Curtisâ–Hedlundâ–Lyndon theorem) and, hence, there exists an interplay between S-adic
subshifts and finite topological rank systems in which theorems and techniques obtained
for one of these classes can sometimes be transferred to the other. The question about which
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is the exact relation between these classes has been recently addressed in [DDMP21] and,
in particular, the authors proved the following.

THEOREM 1.1. [DDMP21] A minimal subshift (X, T ) has topological rank at most K if
and only if it is generated by a proper, primitive, and recognizable S-adic sequence of
alphabet rank at most K.

In this context, a fundamental question is the following.

Question 1.2. Are subshift factors of finite topological rank systems of finite topological
rank?

Indeed, the topological rank controls various coarse dynamical properties (number of
ergodic measures, rational rank of dimension group, among others) which cannot increase
after a factor map, and we also know that big subclasses of the finite topological rank class
are stable under symbolic factors, such as the linearly recurrent and the non-superlineal
complexity classes [DDMP21], so it is expected that this question has an affirmative
answer. However, when trying to prove this using Theorem 1.1, we realize that the naturally
inherited S-adic structure of finite alphabet rank that a symbolic factor has is never
recognizable. Moreover, this last property is crucial for many of the currently known
techniques to handle finite topological rank systems (even in the substitutive case, it is a
deep and fundamental theorem of Mossé), so it is not clear why it would be always possible
to obtain this property while keeping the alphabet rank bounded or why recognizability is
not connected with a dynamical property of the system. Thus, an answer to this question
seems to be fundamental to the understanding of the finite topological rank class.

This question has been recently addressed, first in [Esp20] by purely combinatorial
methods, and then also in [GH21] in the BV formulation by using an abstract construction
from [AEG15]. In this work, we refine both approaches and obtain, as a first consequence,
the optimal answer to Question 1.2 in a more general, non-minimal context.

THEOREM 1.3. Let (X, T ) be an S-adic subshift generated by an everywhere growing
and proper directive sequence of alphabet rank equal to K, and π : (X, T )→ (Y , S) be
an aperiodic subshift factor. Then, (Y , S) is anS-adic subshift generated by an everywhere
growing, proper, and recognizable directive sequence of alphabet rank at most K.

Here, a directive sequence σ = (σn : A+n+1 → A+n )n∈N is everywhere growing if
limn→∞ mina∈An |σ0 . . . σn−1(a)| = ∞, and a system (X, T ) is aperiodic if every orbit
{T nx : n ∈ Z} is infinite. Theorem 1.3 implies that the topological rank cannot increase
after a factor map (Corollary 4.8). Theorem 1.3 implies the following sufficient condition
for a system to be of finite topological rank.

COROLLARY 1.4. Let (X, T ) be an aperiodic minimal S-adic subshift generated by an
everywhere growing directive sequence of finite alphabet rank. Then, the topological rank
of (X, T ) is finite.

An interesting corollary of the underlying construction of the proof of Theorem 1.3 is
the coalescence property for this kind of system, in the following stronger form.
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COROLLARY 1.5. Let (X, T ) be an S-adic subshift generated by an everywhere growing
and proper directive sequence of alphabet rank equal to K, and (X, T )

π1→ (X1, T1)
π2→

. . .
πL→ (XL, TL) be a chain of aperiodic subshift factors. If L > log2 K , then at least one

πj is a conjugacy.

One of the results in [Dur00] is that factor maps between aperiodic linearly recurrent
subshifts are finite-to-one. In particular, they are almost k-to-1 for some finite k. For finite
topological rank subshifts, we prove the following.

THEOREM 1.6. Let π : (X, T )→ (Y , S) be a factor map between aperiodic minimal
subshifts. Suppose that (X, T ) has topological rank equal to K. Then π is almost k-to-1
for some k ≤ K .

We use this theorem, in Corollary 4.12, to prove that Cantor factors of finite topological
rank subshifts are either odometers or subshifts.

In [Dur00], the author proved that linearly recurrent subshifts have finite topological
rank, and that this kind of system has finitely many aperiodic subshift factors up to
conjugacy. Inspired by this result, we use ideas from the proof of Theorem 1.3 to obtain
the following.

THEOREM 1.7. Let (X, T ) be a minimal subshift of topological rank K. Then, (X, T ) has
at most (3K)32K aperiodic subshift factors up to conjugacy.

Altogether, these results give a rough picture of the set of totally disconnected factors of
a given finite topological rank system: they are either equicontinuous or subshifts satisfying
the properties in Theorems 1.3, 1.5, 1.7, and 1.6. Now, in a topological sense, totally
disconnected factors of a given system (X, T ) are ‘maximal,’ so, the natural next step
in the study of finite topological rank systems is asking about the connected factors. As we
have seen, the finite topological rank condition is a rigidity condition. By this reason, we
think that the following question has an affirmative answer.

Question 1.8. Let (X, T ) be a minimal system of finite topological rank and π : (X, T )→
(Y , S) be a factor map. Suppose that Y is connected. Is (Y , S) an equicontinuous system?

We remark that the finite topological rank class contains all minimal subshifts of
non-superlinear complexity [DDMP21], but even for the much smaller class of linear
complexity subshifts, the author is not aware of results concerning Question 1.8.

1.1. Organization. In the next section, we give the basic background in topological and
symbolic dynamics needed in this article. Section 3 is devoted to prove some combinatorial
lemmas. The main results about the topological rank of factors are stated and proved in §4.
Next, in §5, we prove Theorem 1.6, which is mainly a consequence of the so-called critical
factorization theorem. Finally, in §6, we study the problem about the number of symbolic
factors and prove Theorem 1.7.
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2. Preliminaries
For us, the set of natural numbers starts with zero, i.e. N = {0, 1, 2, . . .}.

2.1. Basics in topological dynamics. A topological dynamical system (or just a system)
is a pair (X, T ), where X is a compact metric space and T : X→ X is a homeomorphism
of X. We denote by OrbT (x) the orbit {T nx : n ∈ Z} of x ∈ X. A point x ∈ X is p-periodic
if T px = x, periodic if it is p-periodic for some p ≥ 1, and aperiodic otherwise. A
topological dynamical system is aperiodic if any point x ∈ X is aperiodic, is minimal
if the orbit of every point is dense in X, and is Cantor if X is a Cantor space (i.e. X is totally
disconnected and does not have isolated points). We use the letter T to denote the action of
a topological dynamical system independently of the base set X. The hyperspace of (X, T )
is the system (2X, T ), where 2X is the set of all closed subsets of X with the topology
generated by the Hausdorff metric dH (A, B) = max(supx∈A d(x, A), supy∈B d(y, A)),
and T the action A 	→ T (A).

A factor between the topological dynamical systems (X, T ) and (Y , T ) is a continuous
function π from X onto Y such that π ◦ T = T ◦ π . We use the notation π : (X, T )→
(Y , T ) to indicate the factor. A factor map π : (X, T )→ (Y , T ) is almost K-to-1 if
#π−1(y) = K for all y in a residual subset of Y. We say that π is distal if whenever
π(x) = π(x′) and x �= x′, we have infk∈Z dist(T kx, T kx′) > 0.

Given a system (X, T ), the Ellis semigroup E(X, T ) associated with (X, T ) is
defined as the closure of {x 	→ T nx : n ∈ Z} ⊆ XX in the product topology, where the
semi-group operation is given by the composition of functions. On X, we may consider
the E(X, T )-action given by x 	→ ux. Then, the closure of the orbit under T of a point
x ∈ X is equal to the orbit of x under E(X, T ). If π : (X, T )→ (Y , T ) is a factor between
minimal systems, then π induces a surjective map π∗ : E(X, T )→ E(Y , T ), which is
characterized by the formula

π(ux) = π∗(u)π(x) for all u ∈ E(X, T ) and x ∈ X.

If the context is clear, we will not distinguish between u and π∗(u). When u ∈ E(2X, T ),
we write u ◦ A instead of uA, the last symbol being reserved to mean uA = {ux :
x ∈ A}. We can describe more explicitly u ◦ A as follows: it is the set of all x ∈
X for which we can find nets xλ ∈ A and mλ ∈ Z such that limλ T

mλxλ = x and
limλ T

mλ = u. Finally, we identify X with {{x} ⊆ 2X : x ∈ X}, so that the restriction
map E(2X, T )→ E(X, T ), which sends u ∈ E(2X, T ) to the restriction u|X : X→ X,
is an onto morphism of semigroups. As above, we will not distinguish between u ∈ 2X

and u|X.

2.2. Basics in symbolic dynamics.

2.2.1. Words and subshifts. Let A be an alphabet i.e. a finite set. Elements in A are
called letters and concatenations w = a1 . . . a� of them are called words. The number � is
the length of w and it is denoted by |w|, the set of all words in A of length � is A�, and
A+ =⋃

�≥1 A�. The word w ∈ A+ is |u|-periodic, with u ∈ A+, if w occurs in a word
of the form uu . . . u. We define per(w) as the smallest p for which w is p-periodic. We
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will use notation analogous to that introduced in this paragraph when dealing with infinite
words x ∈ AN and bi-infinite words x ∈ AZ. The set A+ equipped with the operation of
concatenation can be viewed as the free semigroup on A. It is convenient to introduce
the empty word 1, which has length 0 and is a neutral element for the concatenation. In
particular, A+ ∪ {1} is the free monoid in A. Finally, for W ⊆ A+, we write 〈W〉 :=
minw∈W |w| and |W | := maxw∈W |w|.

The shift map T : AZ→ AZ is defined by T ((xn)n∈Z) = (xn+1)n∈Z. For x ∈ AZ

and integers i < j , we denote by x[i,j) the word xixi+1 . . . xj . Analogous notation
will be used when dealing with intervals of the form [i,∞), (i,∞), (−∞, i], and
(−∞, i). A subshift is a topological dynamical system (X, T ), where X is a closed and
T-invariant subset of AZ (we consider the product topology in AZ) and T is the shift
map. Classically one identifies (X, T ) with X, so one says that X itself is a subshift. When
we say that a sequence in a subshift is periodic (respectively aperiodic), we implicitly
mean that this sequence is periodic (respectively aperiodic) for the action of the shift.
Therefore, if x ∈ AZ is periodic, then per(x) is equal to the size of the orbit of x. The
language of a subshift X ⊆ AZ is the set L(X) of all words w ∈ A+ that occur in
some x ∈ X.

The pair (x, x̃) ∈ AZ ×AZ is right asymptotic if there exist k ∈ Z satisfying x(k,∞) =
x̃(k,∞) and xk �= x̃k . If moreover k = 0, (x, x̃) is a centered right asymptotic. A right
asymptotic tail is an element x(0,∞), where (x, x̃) is a centered right asymptotic pair. We
make similar definitions for left asymptotic pairs and tails.

2.2.2. Morphisms and substitutions. LetA andB be finite alphabets and τ : A+ → B+
be a morphism between the free semigroups that they define. Then, τ extends naturally to
maps fromAN to itself and fromAZ to itself in the obvious way by concatenation (in the
case of a two-sided sequence, we apply τ to positive and negative coordinates separately
and we concatenate the results at coordinate zero). We say that τ is positive if for every
a ∈ A, all letters b ∈ B occur in τ(a), is r-proper, with r ≥ 1, if there exist u, v ∈ Br such
that τ(a) starts with u and ends with v for any a ∈ A, is proper when is 1-proper, and is
letter-onto if for every b ∈ B there exists a ∈ A such that b occurs in a. The minimum and
maximum lengths of τ are respectively the numbers 〈τ 〉 := 〈τ(A)〉 = mina∈A |τ(a)| and
|τ | := |τ(A)| = maxa∈A |τ(a)|.

We observe that any map τ : A→ B+ can be naturally extended to a morphism (that
we also denote by τ ) fromA+ to B+ by concatenation, and any morphism τ : A+ → B+
is uniquely determined by its restriction toA. From now on, we will use the same notation
for denoting a map τ : A→ B+ and its extension to a morphism τ : A+ → B+.

Definition 2.1. Let X ⊆ AZ be a subshift and σ : A+ → B+ be a morphism. We say
that (k, x) ∈ Z×X is a σ -factorization of y ∈ BZ in X if y = T kσ(x). If moreover k ∈
[0, |σ(x0)|), then (k, x) is a centered σ -factorization in X.

The pair (X, σ) is recognizable if every point y ∈ BZ has at most one centered
σ -factorization in X, and recognizable with constant r ∈ N if whenever y[−r ,r] = y′[−r ,r]
and (k, x), (k′, x′) are centered σ -factorizations of y, y′ ∈ BZ in X, respectively, we have
(k, x0) = (k′, x′0).
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The cuts of (k, x) are defined by

cσ ,j (k, x) =
{
−k + |σ(x[0,j))| if j ≥ 0,

−k − |σ(x[j ,0))| if j < 0.

We write Cσ (k, x) = {cσ ,j (k, x) : j ∈ Z}.
Remark 2.2. In the context of the previous definition we have the following.

(i) The point y ∈ BZ has a (centered) σ -factorization in X if and only if y belongs to
the subshift Y :=⋃

n∈Z T nσ(X). Hence, (X, σ) is recognizable if and only if every
y ∈ Y has a exactly one centered σ -factorization in X.

(ii) If (k, x) is a σ -factorization of y ∈ BZ in X, then (cσ ,j (k, x), T jx) is a
σ -factorization of y in X for any j ∈ Z. There is exactly one factorization in this
class that is centered.

(iii) If (X, σ) is recognizable, then it is recognizable with constant r for some r ∈ N

[DDMP21].

The behavior of recognizability under composition of morphisms is given by the
following lemma.

LEMMA 2.3. [BSTY19, Lemma 3.5] Let σ : A+ → B+ and τ : B+ → C+ be morphisms,
X ⊆ AZ be a subshift, and Y =⋃

k∈Z T kσ(X). Then, (X, τσ ) is recognizable if and only
if (X, σ) and (Y , τ) are recognizable.

Let X ⊆ AZ and Z ⊆ CZ be subshifts and π : (X, T )→ (Z, T ) a factor map. The
classic Curtisâ–Hedlundâ–Lyndon theorem asserts that π has a local code, this is, a
function ψ : A2r+1 → C, where r ∈ N, such that π(x) = (ψ(x[i−r ,i+r]))i∈Z for all x ∈ X.
The integer r is called the a radius of π . The following lemma relates the local code of a
factor map to proper morphisms.

LEMMA 2.4. Let σ : A+ → B+ be a morphism, X ⊆ AZ and Z ⊆ CZ be subshifts, and
Y =⋃

k∈Z T kσ(X). Suppose that π : (Y , T )→ (Z, T ) is a factor map of radius r and
that σ is r-proper. Then, there exists a proper morphism τ : A+ → C+ such that |τ(a)| =
|σ(a)| for any a ∈ A, Z =⋃

k∈Z T kτ(X) and the following diagram commutes:

X

Y Z

σ
τ

π

(1)

Proof. Let ψ : A2r+1 → B be a local code of radius r for π and u, v ∈ Br be such that
σ(a) starts with u and ends with v for all a ∈ A. We define τ : A→ C+ by τ(a) =
ψ(vσ(a)u). Then, since σ is r-proper, τ is proper and we have π(σ(x)) = τ(x) for all
x ∈ X (that is, Diagram (1) commutes). In particular,⋃

k∈Z
T kτ(X) =

⋃
k∈Z

T kπ(σ(X)) = π(Y ) = Z.
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2.2.3. S-adic subshifts. We recall the definition of an S-adic subshift as stated in
[BSTY19]. A directive sequence σ = (σn : A+n+1 → A+n )n∈N is a sequence of morphisms.
For 0 ≤ n < N , we denote by σ[n,N) the morphism σn ◦ σn+1 ◦ · · · ◦ σN−1. We say that σ
is everywhere growing if

lim
N→+∞〈σ[0,N)〉 = +∞, (2)

and primitive if for any n ∈ N, there exists N > n such that σ[n,N) is positive. We remark
that this notion is slightly different from the usual one used in the context of substitutional
dynamical systems. Observe that σ is everywhere growing if σ is primitive. Let P be a
property for morphisms (e.g. proper, letter-onto, etc). We say that σ has property P if σn
has property P for every n ∈ N.

For n ∈ N, we define

X(n)σ = {x ∈ AZ

n : for all � ∈ N, x[−�,�] occurs in σ[n,N)(a) for some N > n, a ∈ AN }.
This set clearly defines a subshift that we call the nth level of the S-adic subshift generated
by σ . We set Xσ = X(0)σ and simply call it the S-adic subshift generated by σ . If σ is
everywhere growing, then every X(n)σ , n ∈ N, is non-empty; if σ is primitive, then X(n)σ
is minimal for every n ∈ N. There are non-everywhere growing directive sequences that
generate minimal subshifts.

The relation between levels of an S-adic subshift is given by the following lemma.

LEMMA 2.5. [BSTY19, Lemma 4.2] Let σ = (σn : A+n+1 → A+n )n∈N be a directive

sequence of morphisms. If 0 ≤ n < N and x ∈ X(n)σ , then there exists a (centered)
σ[n,N)-factorization in X(N)σ . In particular, X(n)σ =⋃

k∈Z T kσ[n,N)(X
(N)
σ ).

The levels X(n)σ can be described in an alternative way if σ satisfies the correct
hypothesis.

LEMMA 2.6. Let σ = (σn : A+n+1 → A+n )n∈N be an everywhere growing and proper
directive sequence. Then, for every n ∈ N,

X(n)σ =
⋂
N>n

⋃
k∈Z

T kσ[n,N)(AZ

N). (3)

Proof. Let Z be the set in the right-hand side of (3). Since, by Lemma 2.5, X(n)σ =⋃
k∈Z T kσ[n,N)(X

(N)
σ ) for any N > n, we have that X(n)σ included in Z.

Conversely, let x ∈ Z and � ∈ N. We have to show that x[−�,�) occurs in σ[n,N)(a) for
someN > n and a ∈ AN . LetN > n be big enough so that σ[n,N) is �-proper. Then, by the
definition of Z, there exists y ∈ AZ

N such that x[−�,�) occurs in σ[n,N)(y). Since 〈σ[n,N)〉 ≥ �
(as σ[n,N) is �-proper), we deduce that

x[−�,�) occurs in σ[n,N)(ab) for some word ab of length 2 occurring in y. (4)

Hence, by denoting by u and v the suffix and prefix of length � of τ[n,N)(a) and τ[n,N)(b),
respectively, we have that x[−�,�) occurs in σ[n,N)(a), in τ[n,N)(b), or in uv. In the first two
cases, we are done. In the last case, we observe that since σ[n,N) is �-proper, the following
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is true: for every M > N such that 〈σ[N ,M)〉 ≥ 2, vu � σ[n,M)(c) for any c ∈ AM . In
particular, x[−�,�) � τ[n,M)(c) for such M and c. We have proved that x ∈ X(n)σ .

We define the alphabet rank of a directive sequence τ as

AR(τ ) = lim inf
n→+∞ #An.

A contraction of τ is a sequence τ̃ = (τ[nk ,nk+1) : A+nk+1
→ A+nk )k∈N, where 0 = n0 <

n1 < n2 < . . .. Observe that any contraction of τ generates the same S-adic subshift Xτ .
When the context is clear, we will use the same notation to refer to τ and its contractions.
If τ has finite alphabet rank, then there exists a contraction τ̃ = (τ[nk ,nk+1) : A+nk+1

→
A+nk )k∈N of τ in whichAnk has cardinality AR(τ ) for every k ≥ 1.

Finite alphabet rank S-adic subshifts are eventually recognizable.

THEOREM 2.7. [DDMP21, Theorem 3.7] Let σ be an everywhere growing directive
sequence of alphabet rank equal to K. Suppose that Xσ is aperiodic. Then, at most log2 K

levels (X(n)σ , σn) are not recognizable.

We will also need the following property.

THEOREM 2.8. [EM21, Theorem 3.3] Let (X, T ) be an S-adic subshift generated by an
everywhere growing directive sequence of alphabet rank K. Then, X has at most 144K7

right (respectively left) asymptotic tails.

Proof. In the proof of theorem 3.3 in [EM21], the authors show the following: the set
consisting of pairs (x, y) ∈ X ×X such that x(−∞,0) = y(−∞,0) and x0 �= y0 has at most
144K7 elements. In our language, this is equivalent to saying that X has at most 144K7

left asymptotic tails. Since this is valid for any S-adic subshift generated by an everywhere
growing directive sequence of alphabet rank K, 144K7 is also an upper bound for right
asymptotic tails.

3. Combinatorics on words lemmas
In this section, we present several combinatorial lemmas that will be used throughout the
article.

3.1. Lowering the rank. Let σ : A+ → B+ be a morphism. Following ideas from
[RS97], we define the rank of σ as the least cardinality of a set of words D ⊆ B+ such
that σ(A+) ⊆ D+. Equivalently, the rank is the minimum cardinality of an alphabet
C in a decomposition into morphisms A+ q−→ C+ p−→ B+ such that σ = pq. In this
subsection, we prove Lemma 3.6, which states that in certain technical situations, the rank
of the morphism σ under consideration is small and its decomposition σ = pq satisfies
additional properties.

We start by defining some morphisms that will be used in the proofs of this subsection.
If a �= b ∈ A are different letters and ã is a letter not in A, then we define φa,b : A+ →
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(A \ {b})+, ψa,b : A+ → A+, and θa,ã : A+ → (A ∪ {ã})+ by

φa,b(c) =
{
c if c �= b,

a if c = b.
ψa,b(c) =

{
c if c �= b,

ab if c = b.
θa,ã(c) =

{
c if c �= a,

ãa if c = a.

Observe that these morphisms are letter-onto. Before stating the basic properties of these
morphisms, we need one more set of definitions.

For a morphism σ : A+ → B+, we define |σ |1 =∑
a∈A |σ(a)|. When u, v, w ∈ A+

satisfy w = uv, we say that u is a prefix of w and that v a suffix of w. Recall that 1 stands
for the empty word.

LEMMA 3.1. Let σ : A+ → B+ be a morphism.
(i) If σ(a) = σ(b) for some a �= b ∈ A, then σ = σ ′φa,b, where σ ′ : (A \ {b})+ →

B+ is the restriction of σ to (A \ {b})+.
(ii) If σ(a) is a prefix of σ(b) and σ(b) = σ(a)t for some non-empty t ∈ B+, then

σ = σ ′ψa,b, where σ ′ : A+ → B+ is defined by

σ ′(c) =
{
σ(c) if c �= b,

t if c = b.
(5)

(iii) If σ(a) = st for some s, t ∈ B+ and a ∈ A, then σ = σ ′θa,ã , where σ ′ : (A ∪
{ã})+ → B+ is defined by

σ ′(c) =

⎧⎪⎪⎨
⎪⎪⎩
σ(c) if c �= a, ã,

s if c = ã,

t if c = a.

(6)

Proof. The lemma follows from unraveling the definitions. For instance, in case
(ii), we have σ ′(ψa,b(a)) = σ ′(a) = σ(a), σ ′(ψa,b(b)) = σ ′(ab) = σ(a)t = σ(b), and
σ ′(ψa,b(c)) = σ ′(c) = σ(c) for all c �= a, b, which shows that σ ′ψa,b = σ .

LEMMA 3.2. Let {σj : A+ → B+j }j∈J be a set of morphisms such that

for every fixed a ∈ A, �a := |σj (a)| is constant for any chosen j ∈ J , (7)

and u, v ∈ A+, with u of length at least � :=∑
a∈A �a . Assume that u and v start with

different letters and that σj (u) is a prefix of σj (v) for every j ∈ J .
Then, there exists a letter-onto morphism q : A+ → C+, with #C < #A, and morphisms

{pj : C+ → B+j }j∈J satisfying a condition analogous to (7) and such that σj = pjq.

Remark 3.3. If in the previous lemma we change the last hypothesis to ‘u and v end with
different letters and σj (u) is a suffix of σj (v) for every j ∈ J ’, then the same conclusion
holds. This observation will be used in the proof of Lemma 6.7.

Proof of Lemma 3.2. By contradiction, we assume that u, v, and {σj }j∈J are counterex-
amples for the lemma. Moreover, we suppose that � is as small as possible.
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Let us write u = au′ and v = bv′, where a, b ∈ A. Since σj (u) is a prefix of σj (v), we
have that for every j ∈ J ,

one of the words in {σj (a), σj (b)} is a prefix of the other. (8)

We consider two cases. First, we suppose that �a = �b. In this case, (8) implies that
σj (a) = σj (b) for every j ∈ J . Hence, we can use (i) of Lemma 3.1 to decompose each
σj as σ ′jφa,b, where σ ′j is the restriction of σj to (A \ {b})+. Since φa,b is letter-onto and
�c = |σ ′j (c)| for every j ∈ J , c ∈ A \ {b}, the conclusion of the lemma holds, contrary to
our assumptions.

This leaves to consider the case in which �a �= �b. We only do the case �a < �b as the
other is similar. Then, by (8), for every j ∈ J , there exists a non-empty word tj ∈ B�b−�aj

of length �b − �a such that σj (b) = σj (a)tj . Thus, we can use (ii) of Lemma 3.1 to write,
for any j ∈ J , σj = σ ′jψa,b, where σ ′j is defined as in (5).

Let ũ = ψa,b(u
′) and ṽ = bψa,b(v

′). We want now to prove that ũ, ṽ, and {σ ′j : j ∈ J }
satisfy the hypothesis of the lemma. First, we observe that for every j ∈ J ,

if c �= b, then |σ ′j (c)| = �c, and |σ ′j (b)| = |tj | = �b − �a . (9)

Therefore, {σ ′j }j∈J satisfy (7). Also, since ψa,b(c) never starts with b, we have that

ũ, ṽ start with different letters. (10)

Furthermore, by using the symbol ≤p to denote the prefix relation, we can compute:

σj (a)σ
′
j (ũ) = σj (a)σj (u′) = σj (u) ≤p σj (v) = σ ′j (ψa,b(v)) = σ ′j (a)σ ′j (ṽ).

This and the fact that σj (a) is equal to σ ′j (a) imply that

σ ′j (ũ) is a prefix of σ ′j (ṽ) for every j ∈ J . (11)

Finally, we note

|ũ| ≥ |u| − 1 ≥
∑
c∈A

�c − �a =: �′. (12)

We conclude from (9), (10), (11), and (12) that ũ, ṽ, and {σ ′j : j ∈ J } satisfy the hypothesis
of this lemma. Since �′ < �, the minimality of � implies that there exist a letter-onto
morphism q ′ : A+ → C+, with #C < #A, and morphisms {pj : C+ → B+j }j∈J satisfying
σ ′j = pjq ′ and a property analogous to (7). However, then q := q ′ψa,b is also letter-onto
and the morphisms {pj }j∈J satisfy σj = pjq and a property analogous to (7). Thus, the
conclusion of the lemma holds for {σj }j∈J , contrary to our assumptions.

LEMMA 3.4. Let σ : A+ → B+ be a morphism, u, v ∈ A+, a, b be the first letters of u, v
respectively, and σ(a) = st be a decomposition of σ(a) in which t is non-empty. Assume
that σ(u) is a prefix of sσ (v), |u| ≥ |σ |1 + |s|, and either that s = 1 and a �= b or that
s �= 1.

Then, there exist morphisms q : A+ → C+ and p : C+ → B+ such that #C ≤ #A, q is
letter-onto, |p|1 < |σ |1, and σ = pq.
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Remark 3.5. As in Lemma 3.2, there are symmetric hypotheses for the previous lemma
that involve suffixes instead of prefixes and which give the same conclusion. We will use
this in the proof of Lemma 3.6.

Proof of Lemma 3.4. Let us write u = au′ and v = bv′. We first consider the case in which
s = 1. In this situation, u and v start with different letters, so Lemma 3.2 can be applied
(with the index set J chosen as a singleton) to obtain a decomposition A+ q→ C+ p→ B+
such that q is letter-onto, #C < #A, and σ = pq. Since C has strictly fewer elements than
A, we have |p|1 < |σ |1. Hence, the conclusion of the lemma holds in this case.

We now assume that s �= 1. In this case, t and s are non-empty, so we can use (iii) of
Lemma 3.1 to factorize σ = σ ′θa,ã , where ã is a letter not inA and σ ′ is defined as in (6).
We set ũ = aθa,ã(u

′) and ṽ = θa,ã(v). Our plan is to use Lemma 3.2 with ũ, ṽ and σ ′.
Observe that θa,ã(c) never starts with a, so

ũ, ṽ start with different letters. (13)

Also, by using, as in the previous proof, the symbol ≤p to denote the prefix relation,

sσ ′(ũ) = sσ ′(a)σ ′(θa,ã(u
′)) = stσ (u′) = σ(u) ≤p sσ (v) = sσ ′(θa,ã(v)) = sσ ′(ṽ),

which implies that

σ ′(ũ) is a prefix of σ ′(ṽ). (14)

Finally, we use (6) to compute:

|ũ| ≥ |u| − 1 ≥ |σ |1 + |s| − 1 ≥ |σ |1 = |σ ′|1. (15)

We conclude, by (13), (14), and (15) that Lemma 3.2 can be applied with ũ, ṽ, and σ ′ (and
J as a singleton). Thus, there exist morphisms q ′ : (A ∪ {ã})+ → C+ and p : C+ → B+
such that #C < #(A ∪ {ã}), q ′ is letter-onto, and σ ′ = pq ′. Then, #C ≤ #A, q := q ′θa,ã
is letter-onto, and σ = pq ′θa,ã = pq. Moreover, since θa,ã is not the identity function, we
have |p|1 < |σ |1.

The next lemma is the main result of this subsection. To state it, we introduce additional
notation. For an alphabet A, let A++ be the set of words w ∈ A+ in which all letters
occur. Observe that σ : A+ → B+ is letter-onto if and only if σ(A++) ⊆ B++.

LEMMA 3.6. Let φ : A+ → C+, τ : B+ → C+ be morphisms such that τ is �-proper, with
� ≥ |φ|41, and φ(A+) ∩ τ(B++) �= ∅. Then, there exist B+ q−→ D+ p−→ C+ such that

(i) #D ≤ #A, (ii) τ = pq, (iii) q is letter-onto and proper.

Proof. By contradiction, we suppose that the lemma does not hold for φ and τ and,
moreover, that |φ|1 as small as possible.

That φ(A)+ ∩ τ(B++) is non-empty means that there exist u = u1 . . . un ∈ A+
and w = w1 . . . wm ∈ B++ with φ(u) = τ(w). If m = 1, then, since w ∈ B++, we
have #B = {v1} and the conclusion of the lemma trivially holds for D = {a ∈ C :
a occurs in τ(w1)}, q : B+ → D+, w1 	→ τ(w1), and p : D+ → C+ the inclusion map,
contradicting our initial assumption. Therefore, m ≥ 2 and {1, . . . , m− 1} is non-empty.
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Let k ∈ {1, . . . , m− 1}. We define ik as the smallest number in {1, . . . , n} for which
|τ(w1 . . . wk)| < |φ(u1 . . . uik )| holds. Since |φ(u1)| ≤ |φ|1 ≤ � ≤ |τ(w1 . . . wk)|, ik is
at least 2 and, thus, |φ(u1 . . . uik−1)| ≤ |τ(w1 . . . wk)| by minimality of ik . Hence, there
exists a decomposition φ(uik ) = sktk such that tk is non-empty and

tkφ(uik+1 . . . un) = τ(wk+1 . . . wm). (16)

Our next objective is to use Lemma 3.4 to prove that sk and uk have a very particular
form.

CLAIM 3.6.1. For every k ∈ {1, . . . , m− 1}, sk = 1 and u1 = uik .
Proof. To prove this, we suppose that it is not true, that is, there exists k ∈ {1, . . . , m− 1}
such that

sk �= 1 or u1 �= uik . (17)

Let ũ := uik . . . uik+|φ|21−1 and ṽ := u1 . . . u|φ|31 . We are going to check the hypothesis of
Lemma 3.4 for ũ, ṽ and φ.

First, we observe that, since φ(u) = τ(v), we have that φ(ṽ) is a prefix of τ(v).
Moreover, given that |φ(ṽ)| ≤ |φ|41 ≤ � and that τ is �-proper, φ(ṽ) is a prefix of τ(b)
for every b ∈ B. In particular,

φ(ṽ) is a prefix of τ(wk). (18)

Second, from (16) and the inequalities |tkφ(uik+1 . . . uik+|φ|21−1)| ≤ |φ|31 ≤ � ≤ |τ(wk)|,
we deduce that tkφ(uik+1 . . . uik+|φ|21−1) is a prefix of τ(wk). Therefore,

φ(ũ) = sktkφ(uik+1 . . . uik+|φ|21−1) is a prefix of skτ (wk). (19)

We conclude from (18), (19), and the inequality |φ(ũ)| ≤ |φ|31 = |ṽ| ≤ |skφ(ṽ)| that

φ(ũ) is a prefix of skφ(ṽ).

This, the inequality |ũ| ≥ |φ|1 + |sk| and (17) allow us to use Lemma 3.4 with ũ, ṽ, and

φ and obtain morphisms A+ q̃−→ Ã+ φ̃−→ C+ such that #Ã ≤ #A, φ = φ̃q̃ and |φ̃|1 <
|φ|1. Then, � ≥ |φ|41 > |φ̃|41 and φ̃(Ã+) ∩ τ(B++) contains the element φ̃(q̃(u)) = τ(w),
and so τ and φ̃ satisfy the hypothesis of this lemma. Therefore, by the minimality of |φ|1,
there exists a decomposition B+ q→ D+ p→ C+ of τ satisfying conditions (i)–(iii) of this
lemma, contrary to our assumptions.

An argument similar to the one used in the proof of the previous claim gives us that

un = uik−1 for every k ∈ {1, . . . , m− 1}. (20)

We refer the reader to Remark 3.5 for further details.
Now we can finish the proof. First, from (16) and the first part of the claim, we get

that τ(wk) = φ(uik−1 . . . uik−1) for k ∈ {2, . . . , m− 1}, τ(w1) = φ(u1 . . . ui1−1) and
τ(wm) = φ(uim−1 . . . un). Being w ∈ B++, these equations imply that each τ(b), b ∈ B,
can be written as a concatenation x1 . . . xN , with xj ∈ φ(A). Moreover, by the second part
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FIGURE 1. Illustration of a local period.

of the claim and (20), we can choose this decomposition so that x1 = u1 and xN = un.
This defines (maybe non-unique) morphisms B+ q−→ D+1

p1−→ C+ such that τ = p1q,
#D1 ≤ #{φ(u1), . . . , φ(un)} ≤ #A, and q is proper. If we define D as the set of letters
d ∈ D1 that occur in some w ∈ q(B), and p as the restriction of p1 to D, then we obtain
a decomposition B+ q−→ D+ p−→ C+ that still satisfies the previous properties, but in
which q is letter-onto. Hence, p and q met conditions (i), (ii), and (iii).

3.2. Periodicity lemmas. We will also need classic results from combinatorics on words.
We follow the presentation of [RS97, Ch. 6].

Let w ∈ A∗ be a non-empty word. We say that p is a local period of w at the position
|u| if w = uv, with u, v �= 1, and there exists a word z, with |z| = p, such that one of the
following conditions holds for some words u′ and v′:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(i) u = u′z and v = zv′;
(ii) z = u′u and v = zv′;
(iii) u = u′z and z = vv′;
(iv) z = u′u = vv′.

(21)

Further, the local period of w at the position |u|, in symbols per(w, u), is defined as the
smallest local period of w at the position u (see Fig. 1). It follows directly from (21) that
per(w, u) ≤ per(w).

The following result is known as the critical factorization theorem.

THEOREM 3.7. (Theorem 6.2 and Ch. 6, [RS97]) Each non-empty word w ∈ A∗, with
|w| ≥ 2, possesses at least one factorization w = uv, with u, v �= 1, which is critical, i.e.
per(w) = per(w, u).

4. Rank of symbolic factors
In this section, we prove Theorem 1.3. We start by introducing the concept of factor
between directive sequences and, in Proposition 4.4, its relation with factor maps between
S-adic subshifts. These ideas are the S-adic analogs of the concept of premorphism
between ordered Bratteli diagrams from [AEG15] and their proposition 4.6. Although
Proposition 4.4 can be deduced from proposition 4.6 in [AEG15] by passing from directive
sequences to ordered Bratteli diagrams and backwards, we consider this a little bit artificial
since it is possible to provide a direct combinatorial proof; this is done in the Appendix.
It is interesting to note that our proof is constructive (in contrast of the existential proof in
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[AEG15]) and shows some additional features that are a consequence of the combinatorics
on words analysis made.

Next, we use ideas from [Esp20, GH21] to prove Theorem 1.3. In particular, this
improves the previous bounds in [Esp20, GH21] to the best possible one. We apply these
results, in Corollary 4.8, to answer affirmatively Question 1.2 and, in Theorem 1.5, to
prove a strong coalescence property for the class of systems considered in Theorem 1.3.
It is worth noting that this last result is only possible due to the bound in Theorem 1.3
being optimal. We end this section by proving that Cantor factors of finite topological rank
systems are either subshifts or odometers.

4.1. Rank of factors of directive sequences. The following is the S-adic analog of the
notion of premorphism between ordered Bratteli diagrams in [AEG15].

Definition 4.1. Let σ = (A+n+1 → A+n )n∈N, τ = (B+n+1 → B+n )n∈N be directive
sequences. A factor φ : σ → τ is a sequence of morphisms φ = (φn)n∈N, where
φ0 : A+1 → B+0 and φn : A+n → B+n for n ≥ 1, such that φ0 = τ0φ1 and φnσn = τnφn+1

for every n ≥ 1.
We say that φ is proper (respectively letter-onto) if φn is proper (respectively letter-onto)

for every n ∈ N.

Remark 4.2. Factors are not affected by contractions. More precisely, if 0 = n0 < n1 <

n2 < . . ., then φ′ = (φnk )k∈N is a factor from σ ′ = (σ[nk ,nk+1))k∈N to τ ′ = (τ[nk ,nk+1))k∈N.

The next lemma will be needed at the end of this section.

LEMMA 4.3. Let φ = (φn)n≥1 : σ → τ be a factor. Assume that σ and τ are everywhere
growing and proper and that φ is letter-onto. Then, Xτ =⋃

k∈Z T kφ0(X
(1)
σ ) and X(n)τ =⋃

k∈Z T kφn(X
(n)
σ ) for every n ≥ 1.

Proof. We start by proving thatX(n)τ ⊆⋃
k∈Z T kφn(X

(n)
σ ). Let y ∈ X(n)τ and � ∈ N. There

exist N > n and b ∈ Bn such that y[−�,�] occurs in τ[n,N)(b). In addition, since φN
is letter-onto, there exists a ∈ AN for which b occurs in φN(a). Then, y[−�,�] occurs
in τ[n,N)φN(b) and, consequently, also in φnσ[n,N)(b) as τ[n,N)φN = φnσ[n,N). Hence,
by taking the limit �→∞, we can find (k′, x) ∈ Z×X(n)σ such that y = T k′φn(x).
Therefore, y ∈⋃

k∈Z T kφn(X
(n)
σ ). To prove the other inclusion, we use Lemma 2.6 to

compute:

φn(X
(n)
σ ) =

⋂
N>n

⋃
k∈Z

T kφnσ[n,N)(AZ

N) =
⋂
N>n

⋃
k∈Z

T kτ[n,N)φN(AZ

N)

⊆
⋂
N>n

⋃
k∈Z

T kτ[n,N)(BZN) = X(n)τ .

As we mentioned before, the following proposition is a consequence of the main result
in [AEG15]. We provide a combinatorial proof in the Appendix.

PROPOSITION 4.4. Let σ be a letter-onto, everywhere growing, and proper directive
sequence. Suppose that Xσ is aperiodic. Then, there exist a contraction σ ′ = (σ ′n)n∈N,
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a letter-onto, everywhere growing, proper and recognizable τ = (τn)n∈N generating Xσ ,
and a letter-onto factor φ : σ ′ → τ , φ = (φn)n∈N, such that φ0 = σ ′0.

The next proposition is the main technical result of this section. To state it, it is
convenient to introduce the following concept. The directive sequences σ and τ are
equivalent if σ = ν′, τ = ν′′ for some contractions ν′, ν′′ of a directive sequence ν.
Observe that equivalent directive sequences generate the same S-adic subshift.

PROPOSITION 4.5. Let φ : σ → τ be a letter-onto factor between the everywhere growing
and proper directive sequences. Then, there exist a letter-onto and proper factor ψ : σ ′ →
ν, where:
(1) σ ′ is a contraction of σ ;
(2) ν is letter-onto, everywhere growing, proper, equivalent to τ , AR(ν) ≤ AR(σ ), and

the first coordinate of ψ and φ coincide;
(3) if τ is recognizable, then ν is recognizable.

Proof. Let us write σ = (A+n+1 → A+n )n∈N and τ = (B+n+1 → B+n )n∈N. Up to contrac-
tions, we can suppose that for every n ≥ 1, #An = AR(σ ) and that τn is |φn|41-proper (for
the last property, we used that τ is everywhere growing and proper).

Using that φn+1 is letter-onto, we can compute:

τn(B++n+1) ⊇ τn(φn+1(A++n+1)) = φn(σn(A++n+1)) ⊆ φn(A+n ),
where in the middle step, we used the commutativity property of φ. We deduce that

τn(B++n+1) ∩ φn(A+n ) �= ∅ for every n ∈ N.

This and the fact that τn is a |φn|41-proper morphism allow us to use Lemma 3.6 to find

morphisms B+n+1
qn+1−→ D+n+1

pn−→ B+n such that

(i) #Dn+1 ≤ #An, (ii) τn = pnqn+1, (iii) qn+1 is letter-onto and proper.

We define ν0 := p0, the morphisms νn := qnpn : D+n+1 → D+n and ψn := qnφn : A+n →
D+n , n ≥ 1, and the sequences ν = (νn)n∈N and ψ = (ψn)n∈N, where ψ0 := φ0. We are
going to show that these objects satisfy the conclusion of the proposition.

We start by observing that it follows from the definitions that the diagram below
commutes for all n ≥ 1:

A+n B+n D+n

A+n+1 B+n+1 D+n+1

φn qn

σn

φn+1

τn

qn+1

pn
νn

In particular, νnνn+1 = qnτnpn+1, so 〈ν[n,n+1]〉 ≥ 〈τn〉. Being τ everywhere growing, this
implies that ν has the same property. We also observe that condition (iii) implies that νn =
qnpn is letter-onto and proper. Altogether, these arguments prove that, up to contracting
the first levels, ν is everywhere growing and proper.
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Next, we note that ν and τ are equivalent as both are contractions of (p0, q1, p1, q2, . . .).
This implies, by Lemma 2.3, that ν is recognizable if τ is recognizable. Further, by
condition (i), ν has alphabet rank at most AR(σ ).

It is only left to prove that ψ is a letter-onto and proper factor. By unraveling the
definitions we can compute:

ψ0 = φ0 = τ0φ1 = p0q1φ1 = ν0ψ1,

and from the diagram, we have σnψn = ψn+1τn for all n ≥ 1. Therefore, ψ is a factor.
Finally, since qn is letter-onto and proper by condition (iii) and φ was assumed to be
letter-onto, ψn = qnφn is letter-onto and proper.

4.2. Rank of factors of S-adic subshifts. In this section, we will prove Theorem 1.3 and
its consequences. We start with a technical lemma.

The next lemma will allow us to assume without loss of generality that our directive
sequences are letter-onto.

LEMMA 4.6. Let τ = (τn : A+n+1 → A+n )n∈N be an everywhere growing and proper

directive sequence. If Ãn = An ∩L(X(n)σ ), τ̃n is the restriction of τn to Ãn+1 and τ̃ =
(τ̃0, τ̃1, . . .), then τ̃ is letter-onto and X(n)

τ̃
= X(n)τ for every n ∈ N. Conversely, if τ is

letter-onto, thenAn ⊆ L(X(n)τ ) for every n ∈ N.

Proof. By Lemma 2.5, τ̃n is letter-onto mapping Ã+n+1 into Ãn. Moreover, that lemma
also gives that for every x ∈ X(n)τ and N > n, there exists a τ[n,N)-factorization (k′, x′) of

x in X(N)τ . This together with the inclusion X(N)τ ⊆ ÃZ

N imply that

Z :=
⋂
N>n

⋃
k∈Z

T kτ[n,N)(Ã
Z

N) ⊇ X(n)τ .

Now, τ̃ is everywhere growing and proper, so we can apply Lemma 2.6 to obtain that
X
(n)

τ̃
= Z ⊇ X(n)τ . Since it is clear that X(n)

τ̃
⊆ X(n)τ as ÃN ⊆ AN for every N, we

conclude that X(n)
τ̃
= X(n)τ .

If τ is letter-onto, then An ⊆ L(⋃k∈Z T kτ[n,N)(AZ

N)) for every N > n, and hence, by
the formula in Lemma 2.6,An ⊆ L(X(n)τ ).

Now we are ready to prove Theorem 1.3. We re-state it in a more precise way.

THEOREM 1.3. Let π : (X, T )→ (Y , T ) be a factor map between aperiodic subshifts.
Suppose that X is generated by the everywhere growing and proper directive sequence
σ = (σn : A+n+1 → A+n )n∈N of alphabet rank K. Then, Y is generated by a letter-onto,
everywhere growing, proper, and recognizable directive sequence τ of alphabet rank at
most K.

Moreover, if σ is letter-onto, then, up to contracting the sequences, there exists a proper
factor φ : σ → τ such that π(σ0(x)) = φ0(x) for all x ∈ X(1)σ and |σ0(a)| = |φ0(a)| for
all a ∈ A1.
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Proof. Thanks to Lemma 4.6, we can assume without loss of generality that σ is
letter-onto. Moreover, in this case,

An ⊆ L(X(n)σ ) for every n ∈ N. (22)

Let us write σ = (σn : A+n+1 → A+n )n∈N. By contracting σ , we can further assume
that σ0 is r-proper and π has radius r. Then, Lemma 2.4 gives us a proper morphism
τ : A+1 → B+, where B is the alphabet of Y, such that

π(σ0(x)) = τ(x) for all x ∈ X(1)σ and |σ0(a)| = |τ(a)| for every a ∈ A1. (23)

In particular, π(σ[0,n)(x)) = τσ[1,n)(x) and |σ[0,n)(a)| = |τσ[1,n)(a)| for all n ∈ N, x ∈
X
(n)
σ , and a ∈ An, so (23) holds for any contraction of σ .
We define σ̃ = (τ , σ1, σ2, . . .) and observe this is a letter-onto, everywhere growing

and proper sequence generating Y. This and that Y is aperiodic allow us to use Proposition
4.4 and obtain, after a contraction, a letter-onto factor φ̃ : σ̃ → τ̃ , where φ̃0 = σ̃0 = τ
and τ̃ is a letter-onto, everywhere growing, proper, and recognizable directive sequence
generating Y. The sequence τ̃ has all the properties required by the theorem but having
alphabet rank bounded by K. To overcome this, we use Proposition 4.5 with φ̃ and do more
contractions to obtain a letter-onto and proper factor φ : σ̃ → τ such that φ0 = φ̃0 = τ
and τ is a letter-onto, everywhere growing, proper, and recognizable directive sequence
generating Y and satisfying AR(τ ) ≤ AR(σ̃ ) = AR(σ ).

It is left to prove the last part of the theorem. Observe that since σ̃ and σ differ only
at their first coordinate, φ is also a factor from σ to τ . Further, by (23) and the fact that
φ0 = τ , we have π(σ0(x)) = τ(x) = φ0(x) and |σ0(a)| = |φ0(a)| for every x ∈ X(1)σ and
a ∈ A1.

COROLLARY 4.7. Let (X, T ) be an aperiodic minimal subshift generated by an every-
where growing and proper directive sequence of alphabet rank K. Then, the topological
rank of X is at most K.

Proof. We can use Theorem 1.3 to obtain an everywhere growing, proper, and recog-
nizable directive sequence τ = (τn : B+n+1 → B+n )n∈N generating X and having alphabet
rank at most K. Due to Lemma 4.6, we can assume that τ is letter-onto. In particular,
Bn ⊆ L(X(n)τ ) for every n ∈ N.

We claim thatX(n)τ is minimal. Indeed, if Y ⊆ X(n)τ is a subshift, then τ[0,n)(Y ) is closed
(as τ[0,n) : X

(n)
τ → Xτ is continuous), so

⋃
k∈Z T kτ[0,n)(Y ) =⋃

|k|≤|τ[0,n)| T
kτ[0,n)(Y ) is

a subshift in Xτ which, by minimality, is equal to it. Thus, any point x ∈ X(n)τ has a
τ[0,n)-factorization (k, z) with z ∈ Y . The recognizability property of (X(n)τ , τ[0,n)) then
implies that Y = X(n)τ .

Now, we prove that for any n ∈ N, there exists N > n such that τ[n,N) is positive. This
would imply that the topological rank of X is at most K and hence would complete the
proof. Let n ∈ N and R be a constant of recognizability for (X(n)τ , τ[0,n)). Since X(n)τ is
minimal, there exists a constant L ≥ 1 such that two consecutive occurrences of a word
w ∈ L(X(n)τ ) ∩ B2R+1

n in a point x ∈ X(n)τ are separated by at most L. Let N > n be big
enough so that 〈τ[0,N)〉 ≥ L+ 2R. Then, for all a ∈ BN ⊆ L(X(N)τ ) and w ∈ L(X(n)τ ) ∩
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B2R+1
n , w occurs at a position i ∈ {R, R + 1, . . . , |τ[0,N)(a)| − R} of τ[0,N)(a). Since R is

a recognizability constant for (X(n)τ , τ[0,n)), we deduce that for all a ∈ BN and b ∈ Bn, b
occurs in τ[n,N)(a). Thus, τ[n,N) is positive.

We can now prove Corollary 1.4.

COROLLARY 1.4. Let (X, T ) be an aperiodic minimal subshift generated by an every-
where growing directive sequence of finite alphabet rank. Then, the topological rank of
(X, T ) is finite.

Proof. We are going to prove that X is generated by an everywhere growing and proper
directive sequence τ of finite alphabet rank. This would imply, by Corollary 4.7, that the
topological rank of X is finite. Let σ = (σn : A+n+1 → A+n )n∈N be an everywhere growing
directive sequence of finite alphabet rank generating X. We contract τ in a way such that
#An ≤ K for every n ≥ 1.

We are going to inductively define subshiftsXn, n ∈ N. We start withX0 := X. We now
assume thatXn is defined for some n ∈ N. Then the setX′n+1 = {x ∈ X(n+1

σ : σn(x) ∈ Xn}
is a subshift. We define Xn+1 as any minimal subshift contained in X′n+1. It follows from
the definition of Xn+1 that

⋃
k∈Z T kσn(Xn+1) ⊆ Xn. Being Xn minimal,⋃

k∈Z
T kσn(Xn+1) = Xn. (24)

Let Ãn = An ∩L(Xn). Equation (24) and the fact that σ is everywhere growing allow us
to assume without loss of generality that, after a contraction of σ , the following holds for
every n ∈ N:

if a ∈ Ãn+1 and w ∈ L(Xn) has length 3, then w occurs twice in σn(a). (25)

Let us fix a word wn = anbncb ∈ L(Xn) of length 3. Then, by (25), we can decompose
σn(a) = un(a)vn(a) in a way such that

un(a) ends with an, vn(a) starts with bncn, and |vn(a)| ≥ 2. (26)

To define τ , we need to introduce additional notation first. Let Bn be the alphabet
consisting of tuples

[
a
b

]
such that ab ∈ L(Xn). Also, if w = w1 . . . w|w| ∈ L(Xn) has

length |w| ≥ 2, then χn(w) := [
w1
w2

][
w2
w3

]
. . .

[
w|w|−1
w|w|

] ∈ B+n , and ifw′ = [
w1
w2

]
. . .

[
w|w|−1
w|w|

] ∈
B+0 , then η(w′) := w1 . . . w|w|−1 ∈ A+0 . Observe that η : B+0 → A+0 is a morphism.

We now define τ . Let τn : B+n+1 → B+n be the unique morphism such that τn(
[
a
b

]
) =

χn(vn(a)un(a)bn) for every
[
a
b

] ∈ Bn+1. Observe that since vn(a)un(a)bn ∈ L(Xn), it is
indeed the case that τn(

[
a
b

]
) ∈ B+n . We set τ = (ητ0, τ1, τ2, . . .).

It follows from (26) that for every n ∈ N and
[
a
b

] ∈ Bn+1, τn(
[
a
b

]
) starts with

[
bn
cn

]
and

ends with
[
an
bn

]
. Thus, τ is proper. Moreover, since |vn(a)| ≥ 2, we have |vn(a)un(a)bn| ≥

3 and thus |τn(
[
a
b

]
)| ≥ 2. Therefore, 〈τn〉 ≥ 2 and τ is everywhere growing. Also, #Bn ≤

#A2
n ≤ K2 for every n ∈ N, so the alphabet rank of τ is finite.
It remains to prove that X = Xτ . By minimality, it is enough to prove that X ⊇

Xτ . Observe that since τnχn+1(ab) = χn(vn(a)un(b)bn), the word τnχn+1(ab) occurs
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in χnσn(ab). Moreover, for every w = w1 . . . w|w| ∈ L(X(n)σ ), τnχn+1(w) occurs in
χnσn(w). Then, by using the symbol � to denote the ‘subword’ relation, we can write
for every n ∈ N and ab ∈ L(X(n)σ ):

τ[0,n)χn(ab) � τ[0,n−1)χn−1σn−1(ab)

� τ[0,n−2)χn−2σ[n−2,n)(ab) � · · · � χ0σ[0,n)(ab).

Hence, ητ[0,n)(
[
a
b

]
) � ηχ0σ[0,n)(ab) � σ[0,n)(ab). We conclude that Xτ ⊆ Xσ = X.

COROLLARY 4.8. Let (X, T ) be a minimal subshift of topological rank K and
π : (X, T )→ (Y , T ) a factor map, where Y is an aperiodic subshift. Then, the topological
rank of Y is at most K.

Proof. By Theorem 1.1, (X, T ) is generated by a proper and primitive direc-
tive sequence σ of alphabet rank equal to K. In particular, σ is everywhere
growing and proper, so we can use Theorem 1.3 to obtain an everywhere grow-
ing, proper, and recognizable directive sequence τ = (τn : B+n+1 → B+n )n≥0 gen-
erating (Y , T ) and having alphabet rank at most K. Then, the hypothesis of
Corollary 4.7 holds for (Y , T ), and thus the topological rank of (Y , T ) is at
most K.

The following notion will be used in the proof of the theorem below: σ = (σn : A+n+1 →
An)n≥0 has exact alphabet rank at most K if #An ≤ K for all n ≥ 1.

COROLLARY 1.5. Let (X, T ) be an S-adic subshift generated by an everywhere growing
and proper sequence of alphabet rank K, and πj : (Xj+1, T )→ (Xj , T ), j = 0, . . . , L
be a chain of aperiodic symbolic factors, with XL = X. Suppose that L > log2(K). Then
πj is a conjugacy for some j.

Proof. We start by using Theorem 1.3 with the identity function id : (X, T )→ (X, T ) to
obtain a letter-onto, everywhere growing, proper, and recognizable directive sequence σL
of alphabet rank at most K generating X. By doing a contraction, we can assume that σL
has exact alphabet rank at most K.

By Theorem 1.3 applied to πL−1 and σL, there exists, after a contraction of σL, a
letter-onto factor φL−1 : σL→ σL−1, where σL−1 is letter-onto, everywhere growing,
proper, recognizable, has alphabet rank at most K, generates XL−1, and, if φL−1,0 and σL,0

are the first coordinates of φL−1 and σL, respectively, then πL−1(σL,0(x)) = φL−1,0(x) for
every x ∈ X(1)σL and |σL,0(a)| = |φL−1,0(a)| for every letter a in the domain of σL,0. By con-
tracting these sequences, we can also suppose that σL−1 has exact alphabet rank at most K.
The same procedure applies to πL−2 and σL−1. Thus, by continuing in this way, we obtain
for every j = 0, . . . , L− 1 a letter-onto factor φj : σj+1 → σj such that the following
holds.
• σj is letter-onto, everywhere growing, proper, recognizable, has exact alphabet

rank at most K, generates Xj , πj (σj+1,0(x)) = φj ,0(x) for every x ∈ X(1)σj+1 , and
|σj+1,0(a)| = |φj ,0(a)| for every a ∈ Aj+1,1.
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Here, we are using the notation σj = (σj ,n : A+j ,n+1 → A+j ,n)n∈N, φj = (φj ,n : A+j+1,n→
A+j ,n)n∈N and X(n)j = X(n)σj . We note that:

(�1 ) for every x ∈ X(1)j+1, πj (σj+1,0(x)) = φj ,0(x) = σj ,0φj ,1(x) since φj ,0 =
σj ,0φj ,1;

(�2 ) X
(1)
j =

⋃
k∈Z T kφj ,1(X

(1)
j+1) by Lemma 4.3.

Hence, the following diagram commutes:

X
(1)
0 · · · X

(1)
j X

(1)
j+1 · · · X

(1)
L

X
(0)
0 · · · X

(0)
j X

(0)
j+1 · · · X

(0)
L

σ0,0 σj ,0

φ0,1

σj+1,0

φj ,1

σL,0

φL−1,1

π0 πj πL−1

CLAIM 4.8.1. If (X(1)j+1, φj ,1) is recognizable, then πj is a conjugacy.

Proof. Let us assume that (X(1)j+1, φj ,1) is recognizable, and let, for i = 0, 1, xi ∈ X(1)j+1
such that y = πj (x0) = πj (x1). We have to show that x0 = x1. First, we use Lemma 2.5
to find a centered σj+1,0-factorization (ki , zi) of xi in X(1)j+1. Then, equation �1 allows us
to compute:

T k
0
σj ,0φj ,1(z

0) = T k0
πj (σj+1,0(z

0)) = πj (x0) = πj (x1) = T k1
σj ,0φj ,1(z

1).

This implies that (ki , zi) is a σj ,0φj ,1-factorization of y in X
(1)
j+1 for i = 0, 1. More-

over, these are centered factorizations as, by •, |σj ,0φj ,1(a)| = |σj+1,0(a)| for all a ∈
Aj+1,1. Now, being (X(1)j , σ0,j ) and (X(1)j+1, φj ,1) recognizable, Lemma 2.3 gives that

(X
(1)
j+1, σj ,1φj ,1) is recognizable, and thus we have that (k0, z0) = (k1, z1). Therefore,

x0 = x1 and π is a conjugacy.

Now we can finish the proof. We assume, by contradiction, that πj is not a conjugacy
for all j. Then, by the claim,

(X
(1)
j , φ1,j ) is not recognizable for every j ∈ {0, . . . , L− 1}. (27)

Let

ν = (φ0,1, φ1,1, φ2,1, . . . , φL−1,1, σL,1, σL,2, σL,3, . . .).

The idea is to use Theorem 2.7 with ν to obtain a contradiction. To do so, we first note that,
since ν and σ (L) have the same ‘tail’, X(m+L)ν = X(m+1)

L for all m ∈ N. Moreover, �2 and
the previous relation imply that

X
(j)
ν =

⋃
k∈Z

T kφj ,1(X
(j+1)
ν ) = · · · =

⋃
k∈Z

T kφj ,1 . . . φL−1,1(X
(L)
ν )

=
⋃
k∈Z

T kφj ,1 . . . φL−1,1(X
(1)
L ) =

⋃
k∈Z

T kφj ,1 . . . φL−2,1(X
(1)
L−1) = · · · = X(1)j .
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This and (27) imply that for every j ∈ {1, . . . , L− 1}, the level (X(j)ν , φj ,1) of ν is not
recognizable. Being ν everywhere growing as σL has this property, we conclude that
Theorem 2.7 can be applied and, therefore, that X(1)0 = Xν is periodic. However, then
X0 =⋃

k∈Z T kσ0,0(X
(1)
0 ) is periodic, contrary to our assumptions.

A system (X, T ) is coalescent if every endomorphism π : (X, T )→ (X, T ) is an
automorphism. This notion has been relevant in the context of topological dynamics; see
for example [Dow97].

COROLLARY 4.9. Let (X, T ) be an S-adic subshift generated by an everywhere growing
and proper directive sequence of finite alphabet rank. Then, (X, T ) is coalescent.

Remark 4.10. A linearly recurrent subshift of constant C is generated by a primitive and
proper directive sequence of alphabet rank at most C(C + 1)2 [Dur00, Proposition 6]. In
[DHS99], the authors proved the following.

THEOREM 4.11. [DHS99, Theorem 3] For a linearly recurrent subshift X of constant C,
in any chain of factors πj : (Xj , T )→ (Xj+1, T ), j = 0, . . . , L, with X0 = X and L ≥
(2C(2C + 1)2)4C

3(2C+1)2 , there is at least one πj which is a conjugacy.

Thus, Theorem 1.5 is not only a generalization of this result to a much larger class of
systems, but also improves the previous super-exponential constant to a logarithmic one.

In Proposition 28 of [DHS99], the authors proved that Cantor factors of linearly
recurrent systems are either subshifts or odometers. Their proof only uses that this kind
of system satisfies the strong coalescence property that we proved in Corollary 4.9 for
finite topological rank systems. Therefore, by the same proof, we have the following.

COROLLARY 4.12. Let π : (X, T )→ (Y , T ) be a factor map between minimal systems.
Assume that (X, T ) has finite topological rank and that (Y , T ) is a Cantor system. Then,
(Y , T ) is either a subshift or a odometer.

Proof. We sketch the proof from [DHS99] that we mentioned above.
Let (Pn)n∈N be a sequence of clopen partitions of Y such that Pn+1 is finer than Pn and

their union generates the topology of Y. Also, let Yn be the subshift obtained by codifying
the orbits of (Y , T ) by using the atoms of Pn. Then, the fact that Pn is a clopen partition
induces a factor map πn : (Y , T )→ (Yn, T ). Moreover, since Pn+1 is finer than Pn, there
exists a factor map ξn : (Yn+1, T )→ (Yn, T ) such that ξnπn+1 = πn. Hence, we have the
following chain of factors:

(X, T )
π−→ (Y , T )

πn−→ (Yn, T )
ξn−1−→ (Yn−1, T )

ξn−2−→ · · · ξ1−→ (Y0, T ).

We conclude, by also using the fact that the partitions Pn generate the topology of Y, that
(Y , T ) is conjugate to the inverse limit

←−
limn→∞(Yn; ξn).

Now we consider two cases. If Yn is periodic for every n ∈ N, then Y is the inverse limit
of periodic system, and hence an odometer. In the other case, we have, by Corollary 1.5,
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that ξn is a conjugacy for all big enough n ∈ N, and thus that (Y , T ) is conjugate to one of
the subshifts Yn.

5. Fibers of symbolic factors
The objective of this section is to prove Theorem 1.6, which states that factor maps
π : (X, T )→ (Y , T ) between S-adic subshifts of finite topological rank are always almost
k-to-1 for some k bounded by the topological rank of X. We start with some lemmas from
topological dynamics.

LEMMA 5.1. [Aus88] Let π : X→ Y be a continuous map between compact metric
spaces. Then π−1 : Y → 2X is continuous at every point of a residual subset of Y.

The next lemma gives a sufficient condition for a factor map π to be almost k-to-1.
Recall that E(X, T ) stands for the Ellis semigroup of (X, T ).

LEMMA 5.2. Let π : (X, T )→ (Y , T ) be a factor map between topological dynamical
systems, with (Y , T ) minimal and K ≥ 1 an integer. Suppose that for every y ∈ Y , there
exists u ∈ E(2X, T ) such that #u ◦ π−1(y) ≤ K . Then, π is almost k-to-1 for some k ≤ K .

Proof. First, we observe that by the description of u ◦ A in terms of nets at the end of §2.1,
we have

#u ◦ A ≤ #A, for all u ∈ E(2X, T ), A ∈ 2X. (28)

Now, by the previous lemma, there exists a residual set Ỹ ⊆ Y of continuity points for
π−1. Let y, y′ ∈ Ỹ be arbitrary. Since Y is minimal, there exists a sequence (n�)� such
that lim� T

n�y = y′. If w ∈ E(2X, T ) is the limit of a convergent subnet of (T n�)�, then
wy = y′. By the continuity of π−1 at y′ and (28), we have

#π−1(y′) = #π−1(wy) = #w ◦ π−1(y) ≤ #π−1(y).

We deduce, by symmetry, that #π−1(y′) = #π−1(y). Hence, k := π−1(y) does not depend
on the chosen y ∈ Ỹ . To end the proof, we have to show that k ≤ K . We fix y ∈ Ỹ and take,
using the hypothesis, u ∈ E(2X, T ) such that #u ◦ π−1(y) ≤ K . As above, by minimality,
there exists v ∈ E(2X, T ) such that vuy = y. Then, by the continuity of π−1 at y,

π−1(y) = π−1(vuy) = (vu) ◦ π−1(y) = v ◦ (u ◦ π−1(y)).

This and (28) imply that k = #π−1(y) ≤ #u ◦ π−1(y) ≤ K .

Let σ : A+ → B+ be a morphism, (k, x) a centered σ -factorization of y ∈ BZ in AZ,
and � ∈ Z. Note that there exists a unique j ∈ Z such that � ∈ [cσ ,j (k, x), cσ ,j+1(k, x))
(recall the notion of cut from Definition 2.1). In this context, we say that (cσ ,j (k, x), xj ) is
the symbol of (k, x) covering position � of y.

THEOREM 1.6. Let π : (X, T )→ (Y , T ) be a factor between subshifts, with (Y , T )
minimal and aperiodic. Suppose that X is generated by a proper and everywhere growing
directive sequence σ of alphabet rank K. Then, π is almost k-to-1 for some k ≤ K .
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Proof. Let σ = (σn : An+1 → An)n≥0 be a proper and everywhere growing directive
sequence of alphabet rank at most K generating X. Due the possibility of contracting σ ,
we can assume without loss of generality that #An ≤ K for every n ≥ 1 and that σ0 is
r-proper, where r is the radius of π . Then, by Lemma 2.4, Y is generated by an everywhere
growing directive sequence of the form τ = (τ , σ1, σ2, . . .), where τ : A+1 → B+ is such
that τ(x) = π(σ0(x)) for every x ∈ X(1)τ = X(1)σ . We will use the notation τ[0,n) = τσ[1,n).
Further, for y ∈ Y and n ≥ 1, we write Fn(y) to denote the set of τ[0,n)-factorizations of y
in Y (n)τ .

Before continuing, we prove the following claim.

CLAIM 5.2.1. There exist �n ∈ Z and Gn ⊆ Z× Bn+1 with at most K elements such that
if (k, x) ∈ Fn(y), then the symbol of (k, x) covering position �n of y is in Gn.

Proof. First, since Y is aperiodic, there exists L ∈ N such that

all words w ∈ L(Y ) of length ≥ L have at least period greater than |τ[0,n)|. (29)

We assume, by contradiction, that the claim does not hold. In particular, for every � ∈
[0, L), there exist K + 1τ[0,n)-factorizations (x, k) of y in Y (n)τ such that their symbols
covering position � of y are all different. Now, since #τ[0,n)(An+1) ≤ K , we can use the
pigeonhole principle to find two of such factorizations, say (k, x) and (k′, x′), such that if
(c, a) and (c′, a′) are their symbols covering position � of y, then a = a′ and c < c′. Then,

y(c,c+|τ[0,n)(a)|] = τ[0,n)(a) = y(c′,c′+|τ[0,n)(a)|]

and, thus, y(c,c′+|τ[0,n)(a)|] is (c′ − c)-periodic. Being � ∈ (c′, c + |τ[0,n)(a)|), we deduce
that the local period of y[0,L) at � is at most c′ − c ≤ |τ[0,n)|. Since this is true for every � ∈
[0, L) and since, by Theorem 3.7, per(y[0,L)) = per(y[0,L), y[0,�)) for some � ∈ [0, L), we
conclude that per(y[0,L)) ≤ |τ[0,n)|. This contradicts (29) and proves thereby the claim.

Now we prove the theorem. It is enough to show that the hypothesis of Lemma 5.2
holds. Let y ∈ Y and F̃n(y) ⊆ Fn(y) be such that #F̃n(y) = #Gn and the set consisting
of all the symbols of factorizations (k, x) ∈ F̃n(y) covering position �n of y is equal to
Gn. Let z ∈ π−1(y) and (k, x) be a σ[0,n)-factorization of z in X(n)σ . Then, T kτ[0,n)(x) =
T kπ(σ[0,n)(x)) = π(z) = y and (k, x) is a τ[0,n)-factorization of y in Y (n)τ . Thus, we can
find (k′, x′) ∈ F̃n(y) such that the symbols of (k, x) and (k′, x′) covering position �n of y
are the same; let (m, a) be this common symbol. Since σ is proper, we have

z[m−〈σ[0,n−1)〉,m+|σ[0,n)(a)|+〈σ[0,n−1)〉] = z′[m−〈σ[0,n−1)〉,m+|σ[0,n)(a)|+〈σ[0,n−1)〉],

where z′ = T k′σ[0,n)(x
′) ∈ X is the point that (k′, x′) factorizes in (X(n)σ , σ[0,n)). Then, as

�n ∈ (m, m+ |σ[0,n)(a)|],
z(�n−〈σ[0,n−1)〉,�n+〈σ[0,n−1)〉] = z′(�n−〈σ[0,n−1)〉,�n+〈σ[0,n−1)〉].

Thus, dist(T �nz, T �nPn(y)) ≤ exp(−〈σ[0,n−1)〉), where Pn(y) ⊆ π−1(y) is the set of all
points T k

′′
σ[0,n)(x

′′) ∈ X such that (k′′, x′′) ∈ F̃n(y). Since this holds for every n ≥ 1,
we obtain that dH(T

�nπ−1(y), T �nPn(y)) converges to zero as n goes to infinity (where,
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we recall, dH is the Hausdorff distance). By taking an appropriate convergent subnet u ∈
E(2X, T ) of (T �n)n∈N, we obtain #u ◦ π−1(y) ≤ supn∈N #Pn = supn∈N #Gn ≤ K . This
proves that the hypothesis of Lemma 5.2 holds. Therefore, π is almost k-to-1 for some
k ≤ K .

6. Number of symbolic factors
In this section, we prove Theorem 1.7. To do this, we split the proof into three subsections.
First, in Lemma 6.3 of §6.1, we deal with the case of Theorem 1.7 in which the
factor maps are distal. Next, we show in Lemma 6.7 from §6.2 that in certain technical
situation—which will arise when we consider non-distal factor maps—it is possible to
reduce the problem to a similar one, but where the alphabet is smaller. Then, we prove
Theorem 1.7 in §6.3 by a repeated application of the previous lemmas.

6.1. Distal factor maps. We start with some definitions. If (X, T ) is a system, then we
always give Xk the diagonal action T [k] := T × · · · × T . If π : (X, T )→ (Y , T ) is a
factor map and k ≥ 1, then we define Rkπ = {(x1, . . . , xk) ∈ Xk : π(x1) = · · · = π(xk)}.
Observe that Rkπ is a closed T [k]-invariant subset of Xk .

The next lemma follows from classical ideas from topological dynamics. See, for
example, theorem 6 in ch. 10 of [Aus88].

LEMMA 6.1. Let π : (X, T )→ (Y , T ) be a distal almost k-to-1 factor between minimal
systems, z = (z1, . . . , zk) ∈ Rkπ and Z = orbT [k](z). Then, π is k-to-1 and Z is minimal.

We will also need the following lemma.

LEMMA 6.2. [Dur00, Lemma 21] Let πi : (X, T )→ (Yi , T ), i = 0, 1, be two factors
between aperiodic minimal systems. Suppose that π0 is finite-to-one. If x, y ∈ X are such
that π0(x) = π0(y) and π1(x) = T pπ1(y), then p = 0.

LEMMA 6.3. Let (X, T ) be an infinite minimal subshift of topological rank K and J an
index set of cardinality #J > K(144K7)K . Suppose that for every j ∈ J there exists a
distal symbolic factor πj : (X, T )→ (Yj , T ). Then, there are i �= j ∈ J such that (Yi , T )
is conjugate to (Yj , T ).

Proof. We start by introducing the necessary objects for the proof and doing some general
observations about them. First, thanks to Theorem 1.6, we know that πj is almost kj -to-1
for some kj ≤ K , so, by the pigeonhole principle, there exist J1 ⊆ J and k ≤ K such
that #J1 ≥ #J/K > (144K7)K and kj = k for every j ∈ J1. For j ∈ J1, we fix zj =
(z
j

1, . . . , zjk ) ∈ Rkπj with zjn �= zjm for all n �= m. Let Zj = orbT [k](zj ) and ρ : Xk → X

be the factor map that projects onto the first coordinate. By Lemma 6.1, πj is k-to-1 and
Zj minimal. This implies that if x = (x1, . . . , xk) ∈ Zj , then

{x1, . . . , xk} = π−1
j (πj (xn)) for all n ∈ {1, . . . , k}, (30)

xn �= xm for all n, m ∈ {1, . . . , k}. (31)
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Indeed, since Zj is minimal, (T [k])n�z→ x for some sequence (n�)�, so,

inf
n�=m dist(xn, xm) ≥ inf

n�=m,l∈Z dist(T lzn, T lzm) > 0,

where in the last step is due to the fact that πj is distal. This gives (31). For (30), we first
note that {x1, . . . , xk} ⊆ π−1

j (πj (xn)) as x ∈ Rπj , and then that the equality must hold

since #π−1
j (πj (xn)) = k = #{x1, . . . , xk} by (31).

The next step is to prove that asymptotic pairs in Zj are well-behaved.

CLAIM 6.3.1. Let j ∈ J1 and (xj = (xj1 , . . . , xjk ), x̃
j = (x̃j1 , . . . , x̃jk )) be a right asymp-

totic pair in Zj , this is,

lim
n→−∞ dist((T [k])nxj , T [k]x̃j ) = 0 and xj �= x̃j . (32)

Then, (xjn , x̃jn) is right asymptotic for every n ∈ {1, . . . , k}.

Proof. Suppose, with the aim to obtain a contradiction, that (xjn , x̃jn) is not right
asymptotic for some n ∈ {1, . . . , k}. Observe that (32) implies that

for every m ∈ {1, . . . , k}, either (xjm, x̃jm) is right asymptotic or xjn = x̃jn . (33)

Therefore, xjn = x̃jn . Using this and that xj , x̃j ∈ Rkπj , we can compute:

πj (x
j
m) = πj (xjn) = πj (x̃jn) = πj (x̃jl ) for all m, l ∈ {1, . . . , k},

and thus, by (30),

{xj1 , . . . , xjk } = π−1
j (πj (x

j
n)) = π−1

j (πj (x̃
j
n)) = {x̃j1 , . . . , x̃jk }.

The last equation, (31), and that xj �= x̃j imply that there exist m �= l ∈ {1, . . . , k} such
that x̃jl = xjm. This last equality and (33) tell us that xjm and xjl are either asymptotic or
equal. However, in both cases a contradiction occurs: in the first one with the distality of
π and in the second one with (31).

Let j ∈ J1. Since Yj is infinite, Zj is a infinite subshift. It is a well-known fact
from symbolic dynamics that this implies that there exists a right asymptotic pair (xj =
(x
j

1 , . . . , xjk ), x̃
j = (x̃j1 , . . . , x̃jk )) in Zj . We are now going to use Theorem 2.8 to prove

the following.

CLAIM 6.3.2. There exists i, j ∈ J1, i �= j , such that Zi = Zj .

Proof. On one hand, by the previous claim, (xjn , x̃jn) ∈ X2 is right asymptotic for every
n ∈ {1, . . . , k} and j ∈ J1. Let pjn ∈ Z be such that (T p

j
nx
j
n , T p

j
n x̃
j
n) is centered right

asymptotic. On the other hand, Theorem 2.8 asserts that the set

{x(0,∞) : (x, x̃) is centered right asymptotic in X}
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has at most 144K7 elements. Since #J1 > (144K7)K , we conclude, by the pigeonhole
principle, that there exist i, j ∈ J1, i �= j , such that

T p
i
nxin and T p

j
nx
j
n agree on (0,∞) for every n ∈ {1, . . . , k}. (34)

We are going to show that Zi = Zj .

Using (34), we can find u ∈ E(X, T ) such that uT p
i
nxin = uT p

j
nx
j
n for every n. Then,

by putting yin = uxin, yjn = uxjn and qn = pjn − pin, we have

yi := (yi1, . . . , yik) ∈ Zi , yj := (yj1 , . . . , yjk ) ∈ Zj and yin = T qnyjn .

Hence, π(yin) = T qnπ(yjn) and Lemma 6.2 can be applied to deduce that q := qn has the
same value for every n. We conclude that yi = T qyj ∈ T qZj = Zj , that Zi ∩ Zj is not
empty, and, therefore, that Zi = Zj as these are minimal systems.

We can now finish the proof. Let i �= j ∈ J1 be the elements given by the previous
claim, so that Z := Zi = Zj . Let y ∈ Yi and x = (x1, . . . , xk) ∈ ρ−1π−1

i (y) ∩ Z. Then,
by (30), π−1

i (y) = {x1, . . . , xk} = π−1
j (πj (x1)), and so πjπ−1

i (y) contains exactly one
element, which is πj (x1). We define ψ : Yi → Yj by ψ(y) = πj (x1).

Observe that π−1
i : Yi → 2X is continuous (as πi is distal and hence open) and

commutes with T. Being πj a factor map, ψ is continuous and commutes with T.
Therefore, ψ : (Yi , T )→ (Yj , T ) is a factor map. A similar construction gives a factor
map φ : Yj → Yi which is the inverse function of ψ . We conclude that ψ is a conjugacy
and, thus, that Yi and Yj are conjugate.

6.2. Non-distal factor maps and asymptotic pairs lying in fibers. To deal with non-factor
maps, we study asymptotic pairs belonging to fibers of this kind of factor. The starting point
is the following lemma.

LEMMA 6.4. Let π : (X, T )→ (Y , T ) be a factor between minimal subshifts. Then, either
π is distal or there exists a fiber π−1(y) containing a pair of right or left asymptotic points.

Proof. Assume that π is not distal. Then, we can find a fiber π−1(y) and proximal points
x, x′ ∈ π−1(y), with x �= x′. This implies that for every k ∈ N, there exist a (may be
infinite) interval Ik = (ak , bk) ⊆ Z, with bk − ak ≥ k, for which x and x′ coincide on I,
and Ik is maximal (with respect to the inclusion) with this property. Since x �= x ′, then
ak > −∞ or bk <∞. Hence, there exists an infinite set E ⊆ N such that ak > −∞ for
every k ∈ E or bk <∞ for every k ∈ E. In the first case, we have that (T bk (x, x′))k∈E
has a left asymptotic pair (z, z′) as an accumulation point, while in the second case, it is
a right asymptotic pair (z, z′) which is an accumulation point of (T ak (x, x′))k∈E . In both
cases we have that (z, z′) ∈ R2

π since (T bk (x, x′))k∈E and (T ak (x, x′))k∈E are contained
in R2

π and R2
π is closed. Therefore, the fiber π−1(π(z)) contains a pair z, z′ of asymptotic

points.

The next lemma allows us to pass from morphisms σ : X→ Y to factors π : X′ → Y

in such a way that X′ is defined on the same alphabet as X and has the ‘same’ asymptotic
pairs. We remark that its proof is simple, but tedious.
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LEMMA 6.5. Let X ⊆ A+ be an aperiodic subshift, σ : A+ → B+ be a morphism,
and Y =⋃

k∈Z T kσ(X). Define the morphism iσ : A+ → A+ by iσ (a) = a|σ(a)|, a ∈
A, and X′ =⋃

k∈Z T kiσ (X). Then, centered asymptotic pairs in X′ are of the form
(iσ (x), iσ (x̃)), where (x, x̃) is a centered asymptotic pair in X, and there exists a factor
map π : (X′, T )→ (Y , T ) such that π(iσ (x)) = τ(x) for all x ∈ X.

Proof. Our first objective is to prove that (X, iσ ) is recognizable. We start by observing
that

if (k, x), (k̃, x̃) are centered iσ -factorizations of y ∈ X′, then x0 = x̃0. (35)

Indeed, since the factorizations are centered, we have x0 = iσ (x0)k = y0 = iσ (x̃0)k̃ = x̃0.
Let � be the set of tuples (k, x, k̃, x̃) such that (k, x), (k̃, x̃) are centered

iσ -factorizations of the same point. Moreover, for R ∈ {=, >}, let �R be the set of those
(k, x, k̃, x̃) ∈ � satisfying k R k̃.

CLAIM 6.5.1. If (k, x, k̃, x̃) ∈ �=, then (0, T x, 0, T x̃) ∈ �=, and if (k, x, k̃, x̃) ∈ �>,
then (|iσ (x0)| − k + k̃, x̃, 0, T x) ∈ �>.

Proof. If (k, x, k̃, x̃) ∈ �=, then, since x0 = x̃0 by (35), we can write iσ (T x) =
T kiσ (x) = T k̃iσ (x̃) = iσ (T x̃). Thus, (0, T x, 0, T x̃) ∈ �=. Let now (k, x, k̃, x̃) ∈ �>
and y := T kiσ (x) = T k̃iσ (x̃). We note that

T |iσ (x0)|−k+k̃ iσ (x̃) = T |iσ (x0)|−ky = T |iσ (x0)|iσ (x) = iσ (T x),
so (|iσ (x0)| − k + k̃, x̃) and (0, T x) are iσ -factorizations of the same point. Now, since
x0 = x̃0 (by (35)) and (k, x), (k̃, x̃) are centered, we have k, k̃ ∈ [0, |iσ (x0)|). This and the
fact that k > k̃ imply that k − k̃ ∈ (0, |iσ (x0)|). Therefore, |iσ (x0)| − k + k̃ ∈ (0, |iσ (x0)|)
and, consequently, (|iσ (x0)| − k + k̃, x̃, 0, T x) ∈ �>.

We prove now that (X, iσ ) is recognizable. Let (k, x, k̃, x̃) ∈ �. We have to show
that (k, x) = (k̃, x̃). First, we consider the case in which k = k̃. In this situation, the
previous claim implies that (0, T x, 0, T x̃) ∈ �=. We use again the claim, but with
(0, T x, 0, T x̃), to obtain that (0, T 2x, 0, T 2x̃) ∈ �=. By continuing in this way, we get
(0, T nx, 0, T nx̃) ∈ �= for any n ≥ 0. Then, (35) implies that xn = x̃n for all n ≥ 0.
A similar argument shows that xn = x̃n for any n ≤ 0, and so (k, x) = (k̃, x̃). We now
do the case k > k̃. Another application of the claim gives us (p1, x̃, 0, T x) ∈ �> for
some p1 ∈ Z. As before, we iterate this procedure to obtain that (p2, T x, 0, T x̃) ∈
�>, (p3, T x̃, 0, T 2x) ∈ �>, and so on. From these relations and (35), we deduce that
x0 = x̃0, x̃0 = (T x)0 = x1, x1 = (T x)0 = (T x̃)0 = x̃1, x̃1 = (T x̃)0 = (T 2x)0 = x2, etc.
We conclude that xn = x̃n = x0 for any n ≥ 0. Then, by compacity, the periodic point
· · · x0.x0x0 · · · belongs to X, contrary to our aperiodicity hypothesis on X. Thus, the case
k > k̃ does not occur. This proves that (X, iσ ) is recognizable.

Using the property we just proved, we can define the factor map π : X′ → Y as
follows: if x′ ∈ X′, then we set π(x′) = T kτ(x) ∈ Y , where (k, x) is the unique centered
iσ -factorization of x′ in X. To show that π is indeed a factor map, we first observe that
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since

|τ(a)| = |iσ (a)| for all a ∈ A, (36)

π commutes with T. Moreover, thanks to condition (iii) in Remark 2.2, π is continuous.
Finally, if y ∈ Y , then by the definition of Y, there exist a centered (k, x)τ -factorization
of y in X. Thus, by (36), (k, x) is a centered iσ factorization of x′ := T kiσ (x). Therefore,
π(x′) = y and π is onto. Altogether, these arguments show that π is a factor map. That
π(iσ (x)) = τ(x) for every x ∈ X follows directly from the definition of π .

It is left to prove the property about the asymptotic pairs. We only prove it for left
asymptotic pairs since the other case is similar. We will use the following notation: if Z is
a subshift, then A(Z) denotes the set of centered left asymptotic pairs. To start, we observe
that (iσ (x), iσ (x′)) ∈ A(X′) for every (x, x̃) ∈ A(X). Let now (z, z̃) ∈ A(X′), and (k, x)
and (k̃, x̃) be the unique centered iσ -factorizations of z and z̃ in X, respectively. We have to
show that k = k̃ = 0 and that (x, x̃) ∈ A(X). Due to condition (iii) in Remark 2.2, (X, iσ )
has a recognizability constant. This and the fact that (z, z̃) is centered left asymptotic imply
that (k, x) and (k̃, x̃) have a common cut in (−∞, 0], this is, that there exist p, q ≤ 0 such
that

m := −k − |iσ (x[p,0))| = −k̃ − |iσ (x̃[q,0))| ∈ (−∞, 0].

We take m as big as possible with this property. Then, xp �= x̃q . Moreover, being zm = xp
and z̃m = x̃p by the definition of iσ , we have that zm �= z̃m and consequently, by also
using that (z, z̃) is centered left asymptotic, that m ≥ 0. We conclude that m = 0, i.e.
that k + |iσ (x[p,0))| = k̃ + |iσ (x̃[q,0))| = 0. Hence, k = k̃ = p = q = 0. Now, it is clear
that x(−∞,p] = x̃(−∞,q], so from the last equations, we obtain that (x, x̃) ∈ A(X). This
completes the proof.

We will also need the following lemma to slightly strengthen Proposition 2.8.

LEMMA 6.6. Let X ⊆ AZ be an aperiodic subshift with L asymptotic tails. Then, (X, T )
has at most 2L2 · #A2 centered asymptotic pairs.

Proof. Let Pr be the set of centered right asymptotic pairs in X and Tr = {x(0,∞) :
(x, x̃) ∈ �} ⊆ AN≥1 be the set of right asymptotic tails, where N≥1 = {1, 2, . . .}. We are
going to prove that

#Pr ≤ #T2
r · #A2. (37)

Once this is done, we will have by symmetry the same relation for the centered left
asymptotic pairs Pl , and thus we are going to be able to conclude that the number of
centered asymptotic pairs in X is at most (#T2

r + #T2
l ) · #A2 ≤ 2L2 · #A2, completing the

proof.
Let (x, x̃) ∈ Pr and Rx = {k ≤ 0 : x(k,∞) ∈ Tr}. We claim that #Rx ≤ #Tr . Indeed, if

this is not the case, then, by the pigeonhole principle, we can find k′ < k and w ∈ Tr
such that w = x(k,∞) = x(k′,∞). However, this implies that w has period k − k′, and so
X contains a point of period k − k′, contrary to the aperiodicity hypothesis. Thus, Rx is
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finite and, since Rx is non-empty as it contains x(0,∞), kx := min Rx is a well-defined
non-positive integer.

Let now φ : Pr → T2
r ×A2 be the function defined by

φ(x, x̃) = (x(kx ,∞), x̃(kx̃ ,∞), xkx , x̃kx̃ ).

If φ is injective, then (37) follows. Let us then prove that φ is injective.
We argue by contradiction and assume that there exist (x, x̃) �= (y, ỹ) such that

φ(x, x̃) = φ(y, ỹ) = (z, z̃, a, ã). Without loss of generality, we may assume that x �= y.
Then, x(kx ,∞) = z = y(ky ,∞) and xkx = a = yky . Being x �= y, this implies that (x, y) is
asymptotic. Furthermore, it implies that there exist p < k and q < � such that (T px, T qy)
is centered right asymptotic. In particular, x(p,∞) ∈ Tr and p < kx , contrary to the
definition of kx . We conclude that φ is injective and thereby complete the proof of the
lemma.

LEMMA 6.7. Let X ⊆ AZ be a subshift of topological rank K, J be an index set, and, for
j ∈ J , let τj : A+ → B+j be a morphism. Suppose that for every j ∈ J :

(I) Yj =⋃
k∈Z T kτj (X) is aperiodic;

(II) for every fixed a ∈ A, |τj (a)| is equal to a constant �a independent of j ∈ J .
Then, one of the following situations occur.
(1) There exist i, j ∈ J , i �= j , such that (Yi , T ) is conjugate to (Yj , T ).
(2) There exist φ : A+ → A+1 with #A1 < #A, a set J1 ⊆ J having at least

#J/2#A2(144K7)2 −K(144K7)K elements, and morphisms τ ′j : C+1 → Bj ,
j ∈ J1, such that τj = τ ′jφ. In particular, the hypothesis of this lemma holds for
X1 :=⋃

k∈Z T kφ(X) and τ ′j , j ∈ J1.

Proof. Let i : A+ → A+ be the morphism defined by i(a) = a�a , a ∈ A, and X′ =⋃
k∈Z T ki(X). We use Lemma 6.5 with X and τj to obtain a factor map πj : (X′, T )→

(Yj , T ) such that

π(i(x)) = τj (x) for every x ∈ X. (38)

If πj is distal for K(144K7)K + 1 different values of j ∈ J , then by Lemma 6.3, we can
find i, j such that (Yi , T ) is conjugate to (Yj , T ). Therefore, we can suppose that there
exists J ′ ⊆ J such that

#J ′ ≥ #J −K(144K7)K and πj is not distal for every j ∈ J ′. (39)

From this and Lemma 6.4, we obtain, for every j ∈ J ′, a centered asymptotic pair
(x(j), x̃(j)) in X′ such that πj (x(j)) = πj (x̃(j)). This and (38) imply that

τj (x
(j)) = πj (x(j)) = πj (x̃(j)) = τj (x̃(j)). (40)

Now, by Lemma 6.6, X has at most 2#A2(144K7)2 centered asymptotic pairs and thus,
thanks to Lemma 6.5, the same bound holds for X′. Therefore, by the pigeonhole prin-
ciple, there exist J1 ⊆ J satisfying #J1 ≥ #J ′/2#A2(144K7)2 ≥ #J/2#A2(144K7)2 −
K(144K7)K and a centered asymptotic pair (x, x̃) in X′ such that (x, x̃) = (x(j), x̃(j))
for every j ∈ J1.
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We assume that (x, x̃) is right asymptotic as the other case is similar. Then, (40) implies
that if � =∑

a∈A �a , then, for every j ∈ J1,

one of the words in {τj (x[0,�)), τj (x̃[0,�))} is a prefix of the other. (41)

This, hypothesis (II), and the fact that, since (x, x̃) is a centered asymptotic pair,
x0 �= x̃0 allows us to use Lemma 3.2 with u := x[0,�), v := x̃[0,�), J := J1, and wj :=
τj (x[0,∞))[0,�), and obtain morphisms φ : A+ → A+1 and τ ′j : A+1 → B+j , j ∈ J1, such
that #A1 < #A, τj = τ ′jφ, and

for every a ∈ A1, �′a := |τ ′j (c)| does not depend on the chosen j ∈ J . (42)

Finally, we observe that X1 and τ ′j , j ∈ J1, satisfy the hypothesis of the lemma:
condition (I) holds since, by the relation τj = τ ′jφ, the subshift X1 :=⋃

k∈Z T kφ(X)
satisfies that

⋃
k∈Z T kτ ′j (X1) = Yj is aperiodic; condition (II) is given by (42).

6.3. Proof of main result. We now prove Theorem 1.7. We restate it for convenience.

THEOREM 1.7. Let (X, T ) be an minimal subshift of topological rank K. Then, (X, T ) has
at most (3K)32K aperiodic symbolic factors up to conjugacy.

Proof. We set R = (3K)32K . We prove the theorem by contradiction: assume that there
exist X ⊆ AZ of topological rank K and, for j ∈ {0, . . . , R}, factor maps πj : (X, T )→
(Yj , T ) such that (Yi , T ) is not conjugate to (Yj , T ) for every i �= j ∈ {0, . . . , R}. We
remark that X must be infinite as, otherwise, it would not have any aperiodic factor.

To start, we build S-representations for the subshifts X and Yj . Let σ = (σn : A+n+1 →
A+n )n∈N be the primitive and proper directive sequence of alphabet rank K generating X
given by Theorem 1.1. Let r ∈ N be such that every πj has a radius r and let Bj be the
alphabet of Yj . By contracting σ , we can assume that σ0 is r-proper and #An = K for all
n ≥ 1. Then, we can use Lemma 2.4 to find morphisms τj : A+1 → B+j such that

πj (σ1(x)) = τj (x) for all x ∈ X(1)σ and |τj (a)| = |σ0(a)| for all a ∈ A1. (43)

Next, we inductively define subshifts Xn ⊆ CZn and morphisms {τn,j : C+n → Bj : j ∈
Jn} such that:

(i) Xn has topological rank at most K;
(ii) Yj =⋃

k∈Z τn,j (Xn);
(iii) for every c ∈ Cn, �n,a := |τn,j (c)| does not depend on the chosen j ∈ Jn.

First, we set X0 = X(1)σ , C0 = A1, J0 = J , and, for j ∈ J0, τ0,j = τj , and note that by the
hypothesis and (43), they satisfy conditions (i), (ii), and (iii). Let now n ≥ 0 and suppose
that Xn ⊆ CZn and τn,j , j ∈ Jn, has been defined in a way such that conditions (i), (ii), and
(iii) hold. If #Jn/2#A2(144K7)2 −K(144K7)K ≤ 1, then the procedure stops. Otherwise,
we define step n+ 1 as follows. Thanks to conditions (i), (ii), and (iii), we can use
Lemma 6.7, and since there are no two conjugate (Yi , T ), this lemma gives us a morphism
φ : C+n → C+n+1, a set Jn+1 ⊆ Jn, and morphisms {τn+1,j : C+n+1 → B+j : j ∈ Jn+1} such
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that

#Cn+1 < #Cn, #Jn+1 ≥ #Jn/2#C2
n(144K7)2 −K(144K7)K and τn,j = τn+1,jφn.

Furthermore, Xn+1 :=⋃
k∈Z T kφn(Xn) and τn+1,j satisfy the hypothesis of that lemma,

that is, conditions (ii) and (iii) above. Since (φn . . . φ0σ1, σ2, σ3, . . .) is a primitive and
proper sequence of alphabet rank K generating Xn+1, Theorem 1.3 implies that condition
(i) is met as well.

Since #C0 > #C1 > . . ., there is a last CN defined. Our next objective is to prove that
N ≥ K . Observe that #Cn ≤ K , so

#Jn+1 ≥ #Jn/2K2(144K7)2 −K(144K7)K for any n ∈ {0, . . . , N − 1}.
Using this recurrence and the inequalities #J0 > (3K)32K andK ≥ 2, it is routine to verify
that the following bound holds for every n ∈ {0, . . . , K − 1} such that the nth step is
defined:

#Jn/2#C2
n(144K7)2 −K(144K7)K > 1.

Therefore, N ≥ K . We conclude that #CN ≤ #C0 −K = 0, which is a contradiction.

Remark 6.8. In theorem 1 of [Dur00], the author proved that linearly recurrent subshifts
have finitely many aperiodic symbolic factors up to conjugacy. Since this kind of systems
have finite topological rank (see Remark 4.10), Theorem 1.7 generalizes the theorem of
[Dur00] to the much larger class of minimal finite topological rank subshifts.

Acknowledgements. This research was partially supported by grant ANID-AFB
170001. The first author thanks Doctoral Fellowship CONICYT-PFCHA/Doctorado
Nacional/2020-21202229.

A. Appendix
To prove Proposition 4.4, we start with some lemmas concerning how to construct
recognizable pairs (Z, τ) for a fixed subshift Y =⋃

k∈Z T kτ(Z).

A.1. Codings of subshifts. If Y ⊆ BZ is a subshift, U ⊆ Y and y ∈ Y , we denote by
RU(y) the set of return times of y to U, this is, RU(y) = {k ∈ Z : T ky ∈ U}. We recall
that the set Cτ (k, z) in the lemma below corresponds to the cuts of (k, z) (see Definition
2.1 for further details).

LEMMA A.1. Let Y ⊆ BZ be an aperiodic subshift, with B ⊆ L(Y ). Suppose that
U ⊆ Y is:

(I) d-syndetic, for every y ∈ Y there exists k ∈ [0, d − 1] with T ky ∈ U ;
(II) of radius r, U ⊆⋃

u∈Ar ,v∈Ar+1 [u.v];
(III) �-proper, U ⊆ [u.v] for some u, v ∈ A�;
(IV) ρ-separated, U , T U , . . . , T ρ−1U are disjoint.
Then, there exist a letter-onto morphism τ : C+ → B+ and a subshift Z ⊆ CZ such that:
(1) Y =⋃

n∈Z T nτ(Z) and C ⊆ L(Y );
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(2) (Z, τ) is recognizable with constant r + d;
(3) |τ | ≤ d , 〈τ 〉 ≥ ρ and τ is min(ρ, �)-proper;
(4) Cτ (k, z) = RU(y) for all y ∈ Y and τ -factorization (k, z) of y in Z.

Remark A.2. If U ⊆ Y satisfies condition (III), then U is ρ := min per(L�(Y ))-separated.
Indeed, if U ∩ T kU �= ∅ for some k > 0, then [v] ∩ T k[v] �= ∅, where v ∈ A� is such that
U ⊆ [v]. Hence, v is k periodic and k ≥ ρ.

Proof. Let y ∈ Y . By condition (I), the sets RU(y) ∩ [0,∞), RU(y) ∩ (−∞, 0] are
infinite. Thus, we can write RU(y) = {· · · k−1(y) < k0(y) < k1(y) · · · }, with min{i ∈
Z : ki(y) > 0} = 1. LetW = {y[ki (y),ki+1(y)) : y ∈ Y , i ∈ Z} ⊆ B+. By condition (I),W
is finite, so we can write C := {1, . . . , #W} and choose a bijection φ : C→W. Then, φ
extends to a morphism τ : C+ → B+. As B ⊆ L(Y ), φ is letter-onto. We define ψ : Y →
CZ by ψ(y) = (φ−1(y[ki (y),ki+1(y))))i∈Z and set Z = ψ(Y ). We are going to prove that τ
and Z satisfy items (1–4).

CLAIM A.2.1.
(i) If y[−d−r ,d+r] = y′[−d−r ,d+r], then ψ(y)0 = ψ(y′)0.

(ii) τ(ψ(y)) = T k0(y)y.
(iii) T jψ(y) = ψ(T ky) for j ∈ Z and k ∈ [kj (y), kj+1(y)).

Proof. Let y, y′ ∈ Y such that y[−d−r ,d+r] = y′[−d−r ,d+r]. By condition (I), we have
ki+1(y)− ki(y) ≤ d for all i ∈ Z and, thus, |k0(y)|, |k1(y)| ≤ d . Since U has radius
r and y[−d−r ,d+r] = y′[−d−r ,d+r], we deduce that k0(y) = k0(y

′) and k1(y) = k0(y
′).

Hence,ψ(y)0 = φ−1(y[k0(y),k1(y))) = φ−1(y′[k0(y′),k1(y′))) = ψ(y′)0. To prove claim (ii) we
compute:

τ(ψ(y)) = τ(· · · φ−1(y[k−1(y),k0(y))).φ
−1(y[k0(y),k1(y))) · · · )

= · · · y[k−1(y),k0(y)).y[k0(y),k1(y)) · · · = T k0y.

Finally, for claim (iii) we write, for k ∈ [kj (y), kj+1(y)),

T jψ(y) = · · · φ−1(y[kj−1(y),kj (y))).φ
−1(y[kj (y),kj+1(y))) · · · = ψ(T ky).

Now we prove the desired properties of τ and Z.
(1) From claim (i), we see that ψ is continuous and, therefore, Z is closed. By claim

(iii), Z is also shift-invariant and, then, a subshift. By claim (ii), Y =⋃
n∈Z T nτ(Z). The

condition C ⊆ L(Y ) follows from the definition ofW and τ .
(2) We claim that the only centered τ -interpretation in Z of a point y ∈ Y is

(−k0(y), ψ(y)). Indeed, this pair is a τ -interpretation in Z by claim (ii), and it is
centered because k0(y) ≤ 0 < k1(y) implies −k0(y) ∈ [0, k1(y)− k0(y)) = [0, |ψ(y)0|).
Let (n, z) be another centered τ -interpretation of y in Z. By the definition of Z, there exists
y′ ∈ Y with z = ψ(y′). Then, by claim (ii),

T n+k0(y
′)y′ = T nτ(ψ(y′)) = T nτ(z) = y. (44)

https://doi.org/10.1017/etds.2022.21 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.21


1544 B. Espinoza

Now, on one hand, we have |τ(z0)| = |τ(ψ(y′)0)| = k1(y
′)− k0(y

′). On the other
hand, that (n, ψ(y′)) is centered gives that n ∈ [0, |τ(z0)|). Therefore, n+ k0(y

′) ∈
(k0(y

′), k1(y
′)]. We conclude from this, claim (iii), and (44) that ψ(y′) = ψ(y).

Hence, y = T nτψ(y′) = T nτψ(y) = T n+k0(y)y, which implies that n = −k0(y) as Y
is aperiodic. This proves that (−k0(y), ψ(y)) is the only τ -interpretation of y in Z. From
this and claim (i), we deduce property (2).

(3) Since U is d-syndetic, |τ(ψ(y)i)| = |y[ki (y),ki+1(y))| = ki+1(y)− ki(y) ≤ d for
y ∈ Y and i ∈ Z, so |τ | ≤ d . Similarly, we can obtain 〈τ 〉 ≥ ρ using that U is
ρ-separated. Let u, v ∈ B� satisfying U ⊆ [u.v]. Since ki , ki+1 ∈ RU(y), we have that
u = y[ki (y),ki (y)+|u|), v = y[ki+1(y)−|v|,ki+1(y)) and, thus, that τ is min(�, 〈τ 〉)-proper. In
particular, it is min(�, ρ)-proper.

(4) This follows directly from the definition of τ and RU(y).

LEMMA A.3. For j ∈ {0, 1}, let σj : A+j → B+ be a morphism and Xj ⊆ AZ

j be a
subshift such that Y :=⋃

n∈Z T nσj (Xj ) and Aj ⊆ L(Xj ) for every j ∈ {0, 1}. Suppose
that:
(1) (X0, σ0) is recognizable with constant �;
(2) σ1 is �-proper;
(3) Cσ0(k

0, x0)(y) ⊇ Cσ1(k
1, x1)(y) for all y ∈ Y and σj -factorizations (kj , xj ) of y in

Xj , j = 0, 1.
Then, there exist a letter-onto and proper morphism ν : A+1 → A+0 such that σ1 = σ0ν

and X0 =⋃
k∈Z T kν(X1).

Proof. Since σ1 is �-proper, we can find u, v ∈ B� such that σ1(a) starts with u and
ends with v for every a ∈ A1. We define ν as follows. Let a ∈ A1 and x ∈ X1 such
that a = x0. Since σ1 is �-proper, the word v.σ1(a)u occurs in σ1(x) ∈ Y at position 0.
By item (3), we can find w ∈ L(X0) with σ1(x0) = σ0(w). We set ν(a) = w. Since
(X0, σ0) is recognizable with constant � and u, v have length �, w uniquely determined
by v.σ1(a)u and, therefore, ν is well defined. Moreover, the recognizability implies that
the first letter of ν(a) depends only on v.u, so ν is left-proper. A symmetric argument
shows that ν is right-proper and, in conclusion, that it is proper. We also note that ν is
letter-onto as A0 ⊆ L(X0). It follows from the definition of ν that σ1 = σ0ν. Now, let
x ∈ X1 and (k, x′) be a centered σ0-factorization of σ1(x) in X0. By item (3), k = 0 and
σ1(xj ) = σ0(x

′
[kj ,kj+1)

) for some sequence · · · < k−1 < k0 < · · · Hence, by the definition
of ν, ν(x) = x′ ∈ X0. This argument shows that X′0 :=⋃

n∈Z T nν(X1) ⊆ X0. Then,⋃
n∈Z T nσ0(X

′
0) =

⋃
n∈Z T nσ0ν(X1) = Y , where in the last step, we used that σ0ν = σ1.

Since the points in Y have exactly one σ0-factorization, we must have X′0 = X0. This ends
the proof.

A.2. Factors of S-adic sequences. Now we are ready to prove Proposition 4.4. For
convenience, we repeat its statement.

PROPOSITION A.4. Let σ = (σn : An→ An−1)n≥0 be a letter-onto, everywhere growing,
and proper directive sequence. Suppose that Xσ is aperiodic. Then, there exists a
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contraction σ ′ = (σnk )k∈N and a letter-onto and proper factor φ : σ ′ → τ , where τ is
letter-onto, everywhere growing, proper, recognizable, and generates Xσ .

Proof. We start by observing that from Lemma 4.6, we can get that

An ⊆ L(X(n)σ ) for every n ∈ N. (45)

Let pn = min{per(σ[0,n)(a)) : a ∈ An}. Since σ is everywhere growing and Xσ is aperi-
odic, limn→∞ pn = ∞. Hence, we can contract σ in a way such that, for every n ≥ 2,

(In) pn ≥ 3|σ[0,n−1)|, (IIn) σ[0,n) is 3|σ[0,n−1)|-proper.

For n ≥ 2, let Un =⋃
u,v∈A2

n
[σ[0,n)(u.v)]. Observe that Un is |σ[0,n)|-syndetic, has radius

2|σ[0,n)|, is 3|σ[0,n−1)|-proper and, by Remark A.2, is pn-separated. Thus, by (In), U is
3|σ[0,n−1)|-separated. We can then use Lemma A.1 with (X(n)σ , σ[0,n)) to obtain a letter-onto
morphism νn : B+n → A+0 and a subshift Yn ⊆ BZn such that:
(P 1
n ) Xσ =⋃

k∈Z T kνn(Yn) and Bn ⊆ L(Yn);
(P 2
n ) (Yn, νn) is recognizable with constant 3|σ[0,n)|;

(P 3
n ) |νn| ≤ |σ[0,n)|, 〈νn〉 ≥ 3|σ[0,n−1)|, and νn is 3|σ[0,n−1)|-proper;

(P 4
n ) Cνn(k, y) = RUn(x) for all x ∈ Xσ and νn-factorization (k, y) of x in Yn.

We write Cνn(x) := Cνn(k, y) if x ∈ Xσ and (k, y) is the unique νn-factorization of x in
Yn. Observe that Un+1 ⊆ Un for n ≥ 2. Thus, Cνn+1(x) = RUn+1(x) ⊆ RUn(x) = Cνn(x)
for all x ∈ Xσ . This, (P 2

n ) and (P 3
n+1) allow us to use Lemma A.3 with (Yn+1, νn+1)

and (Yn, νn) and find a letter-onto and proper morphism τn : B+n+1 → B+n such that
νnτn = νn+1 and Yn =⋃

k∈Z T kτn(Yn+1).
Next, we claim that Cνn(x) ⊇ Cσ[0,n+1) (k, z) for all x ∈ Xσ and σ[0,n+1)-factorization

(k, z) of x in X(n+1)
σ . Indeed, if j ∈ Z, then T cσ[0,n+1) ,j (k,z)

x ∈ [σ[0,n+1)(zj−1.zj zj+1)] ⊆
[σ[0,n)(a.bc)] ⊆ Un, where a is the last letter of σn(zj−1) and bc the first two letters of
σn(zj zj+1), so cσ[0,n+1),j (k, z) ∈ RUn(x) = Cνn(x), as desired.

Thanks to the claim, (P 2
n ), (In+1), and (45), we can use Lemma A.3 with (Yn, νn) and

(X
(n+1)
σ , σ[0,n+1)) to obtain a proper morphism φn : A+n+1 → B+n such that σ[0,n+1) =

νnφn and Yn =⋃
k∈Z T kφn(X

(n+1)
σ ).

Now we can define the morphisms τ1 := ν2 and φ1 := ν2φ2 and the sequence:

φ = (φn)n≥1, τ = (τn)n≥1 and σ ′ = (σ[0,2), σ2, σ3, . . .)n≥2.

We are going to prove that φ, σ ′, and τ are the objects that satisfy the conclusion of the
proposition.

These sequences are letter-onto as each νn and each φn is letter-onto. Next, we show
that φ is a factor. The relation φ1 = τ1φ2 follows from the definitions. To prove the other
relations, we observe that from the commutative relations for τn and φn, we have that

νnφnσn+1 = σ[0,n+1)σn+1 = σ[0,n+2) = νn+1φn+1 = νnτnφn+1. (46)

In particular, νnφnσn+1(x) = νnτnφn+1(x) for any x ∈ X(n+2)
σ . Since φnσn+1(x) and

τnφn+1(x) are both elements of Yn and (Yn, νn) is recognizable, we deduce that
φnσn+1(x) = τnφn+1(x) for any x ∈ X(n+2)

σ . Thus, one of the words in {φnσn+1(x0),
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τnφn+1(x0)} is a prefix of the other. Since An+2 ⊆ L(X(n+2)
σ ), we deduce that, for any

a ∈ An+2, one of the words in {τnφn+1(a), νnφnσn+1(a)} is a prefix of the other. However,
by (46), the words νnτnφn+1(a) and νnφnσn+1(a) have the same length, so φnσn+1(a)must
be equal to τnφn+1(a) for every n ≥ 2. This proves that φnσn+1 = τnφn+1 for every n ≥ 2
and that φ : σ ′ → τ is a factor.

The following commutative diagram, valid for all n ≥ 2, summarizes the construction
so far:

A+n+2 A+n+1 A+0

B+n+1 B+n

σn+1

φn+1

σ[0,n+1)

φn

τn

νn+1 νn

As shown in the diagram, we have that νnτn = νn+1 for n ≥ 2. Thus, τ1τ2 . . . τn = νn+1,
and hence 〈τ1τ2 . . . τn〉 ≥ 〈νn+1〉 ≥ pn→n→∞ ∞. Therefore, τ is everywhere growing.
Also, by using Lemma 2.3 with (Yn, νn) = (Yn, τ1τ2 . . . τn−1), we deduce that (Yn, τn−1)

is recognizable for every n ≥ 2, which implies that τ is recognizable. Finally, as each τn
is proper, τ is proper.
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