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Cyclic Surgery Between Toroidal Surgeries

Masakazu Teragaito

Abstract. We show that there is an infinite family of hyperbolic knots such that each knot admits a

cyclic surgery m whose adjacent surgeries m − 1 and m + 1 are toroidal. This gives an affirmative

answer to a question asked by Boyer and Zhang.

1 Introduction

For a knot K in the 3-sphere S3 and an integer m, K(m) denotes the closed orientable

3-manifold obtained by m-Dehn surgery on K. If K(m) has a finite cyclic fundamen-

tal group, then this surgery is called a cyclic surgery. By the solution of the spherical

space form conjecture [7], this is equivalent to K(m) being a lens space. It is a chal-

lenging problem to determine all hyperbolic knots that admit a cyclic surgery.

Motivated by a result in [2], Boyer and Zhang asked if there is a hyperbolic knot

K that admits a cyclic surgery with slope m, but neither of K(m − 1) and K(m + 1)

is an irreducible non-Haken manifold [2, Question (2)]. In the paragraph after the

question, they conjecture that the answer is negative. However, the purpose of this

paper is to answer it in the affirmative.

Theorem 1.1 There exist infinitely many hyperbolic knots K in S3, each of which

admits a cyclic surgery with slope m such that both K(m−1) and K(m+1) are irreducible

and toroidal.

Recall that a closed orientable 3-manifold is said to be Haken if it is irreducible

and contains an incompressible surface and toroidal if it contains an incompressible

torus.

2 Construction

Let n ≥ 2 be an integer. Consider the tangle Bn = (B3, t) as illustrated in Figure 2.1.

Here, the vertical rectangle with label n (−n, resp.) means n vertical right-handed

(left-handed, resp.) half-twists.

For a rational tangle α, Bn(α) denotes the knot or link in S3 obtained by filling the

central sphere with the rational tangle α. In fact, we use only the four rational tangles

illustrated in Figure 2.2. (We follow the convention of [5] for the parameterization

of rational tangles.)
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Let M[r, s] denote a Montesinos tangle consisting of two rational tangles associ-

ated with rational numbers r and s, respectively.

Lemma 2.1 The tangle Bn has the following properties.

(i) Bn(∞) is the trivial knot.

(ii) Bn(0) is the union of two Montesinos tangles.

(iii) Bn(−1) is the 2-bridge knot or link corresponding to −(10n2 +17n+7)/(10n+11).

(iv) Bn(−2) is the union of two Montesinos tangles.

Proof It is straightforward to verify that Bn(∞) is the trivial knot and that Bn(−1)

is the 2-bridge knot or link corresponding to −(10n2 + 17n + 7)/(10n + 11).

By Figure 2.3, Bn(0) is decomposed into the Montesinos tangles M[1/2, 1/n] and

M[−2/3, (2n + 1)/(2n + 3)]. Similarly, Bn(−2) is decomposed into the Montesinos

tangles M[1/2,−(n+1)/(n+2)] and M[1/2,−2/(2n+1)] as shown in Figure 2.4.

Let B̃n(α) denote the double branched cover of S3 branched over Bn(α).

Lemma 2.2 (i) B̃n(∞) is the 3-sphere.

(ii) B̃n(−1) is the lens space L(10n2 + 17n + 7,−10n − 11).

(iii) B̃n(0) and B̃n(−2) are irreducible toroidal manifolds.

Proof (i) and (ii) follow immediately from Lemma 2.1. For (iii), recall that the dou-

ble branched cover of a Montesinos tangle is a Seifert fibered manifold over the disk

with two exceptional fibers, which is irreducible and whose boundary torus is incom-

pressible. Thus we have the conclusion.

https://doi.org/10.4153/CMB-2010-108-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-108-6


558 M. Teragaito

n
-

n

Figure 2.3

n
-

n

n
-

n
n

n
-

n
n

-

Figure 2.4

https://doi.org/10.4153/CMB-2010-108-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-108-6


Cyclic Surgery Between Toroidal Surgeries 559

We remark that B̃n(0) (and B̃n(−2)) contains a separating incompressible torus.

By Lemma 2.2(i), the lift of Bn in B̃n(∞) = S3 gives a knot exterior. Since a knot

is uniquely determined by its exterior [6], we can define a knot Kn whose exterior is

the lift of Bn.

Lemma 2.3 The knot Kn satisfies the following properties.

(i) Kn admits a cyclic surgery with integer slope m for some m.

(ii) Kn(m − 1) and Kn(m + 1) are irreducible toroidal manifolds, each containing a

separating incompressible torus.

Proof This is a direct consequence of Lemma 2.2.

It follows from Lemma 2.2(ii) that m = ±(10n2 + 17n + 7). By using an explicit

description of Kn, we can see that in fact m is 10n2 + 17n + 7.

Lemma 2.4 Kn is hyperbolic.

Proof It suffices to show that Kn is neither a torus knot nor a satellite knot. First, Kn

is not a torus knot because no torus knot yields a separating incompressible torus by

Dehn surgery [8]. Suppose that Kn is a satellite knot. Since Kn has a cyclic surgery, it

is the (2, 2pq+ε)-cable of a (p, q)-torus knot, where ε = ±1 [1,10–12]. In particular,

the cyclic surgery corresponds to an integer 4pq + ε, which is adjacent to the slope

4pq+2ε of the cabling annulus. Thus Kn(4pq+2ε) is reducible, so Kn is not a satellite

knot by Lemma 2.3(ii).

Proof of Theorem 1.1 Lemmas 2.3 and 2.4 show that the knot Kn has the desired

properties. By [3], any hyperbolic knot admits at most two cyclic surgeries, and

if there are two, then they correspond to consecutive integers. Thus the Kn’s are

mutually distinct.

It is possible to give an explicit description of the knot Kn as in [4]. Attaching the

∞-tangle to Bn, we have the trivial knot U (= Bn(∞)). The core ξ of the ∞-tangle

(that is, the trivial straight arc connecting the two strings) has its endpoints on U .

Then the lift of ξ in the double branched cover, which is S3 again, of S3 branched over

U gives Kn. As the simplest example, we show K2 in Figure 2.5. Although there is one

negative crossing, it will be canceled by a positive crossing in the 2-full twists. Thus K2

has the form of a closed positive braid. Then K2 is fibered and the Seifert algorithm

on the diagram gives a minimal genus Seifert surface [9]. Since the braid has six

strings and 67 positive crossings, the genus is equal to 31. For K2, 81-surgery gives

the lens space L(81,−31), and 80-, 82-surgeries yield irreducible toroidal manifolds.
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