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ABSTRACT 
Thermal convection is observed in snow and in a 

compact of water-saturated glass beads. While 
uncer tainty in the permeability of the snow limits our 
ability to compare the observed and calculated onset of 
convection, agreement between the observed and 
calculated effects of convection on heat transfer in snow 
is good. Experimental results with glass beads agree with 
both the calculated onset of and heat transfer by 
convection. Attempts are made to assess the effects of 
convection on snow metamorphism. While much is sti ll 
uncertain about the significance of thermal convection 
in snow, it is clear that the phenomenon does occur. 

INTRODUCTION 
Snow scientists have been interested in the 

possibility of thermal convection in snow for a variety 
of reasons. Trabant and Benson (1972) have suggested 
that thermal convection explains the high mass flux 
rates they observe in a subarctic snowcover. However , no 
direct observation of thermal convection has ever been 
made. 

If convection occurs with flow perpendicular to 
the slope (perpendicular to the isotherms), the rate of 
heat and water vapor transport will be greatly increased . 
Such flows occur when convection appears in a 
multicellular form termed Benard convection . Benard 
convection occurs only when the ratio of buoyancy to 
viscous forces is sufficiently high . The calculation of 
the critical conditions for the onset of convection for a 
saturated porous medium is discussed by Palm and 
Tveitereid (1979). Powers and others (1985) give a more 
sophisticated treatment covering the more complex 
problem of convection in a snow layer. 

Experimental observations of thermal convection in 
a saturated compact of glass beads and in snow are 
reported here. Our observations establish that thermal 
convection can occur in snow under conditions common 
to sub-arctic regions, and possibly in more temperate 
snow covers as well. Although it is clear that heat and 
mass flows are significantly increased by thermal 
convection, it is not clear what affects convection will 
have on snow metamorphism. However, the observation 
of thermal convection in a snowcover is itself 
significant since it ends two generations of unquantified 
speculation about that possibility. 

THEORY OF CONVECTION IN POROUS MEDIA 
The basis for the present work is the theory which 

has been developed to describe thermal convection in 
any porous medium. Fairly complete reviews of this 
theory are gi ven by Combarnous and Bories (1975) and 
Cheng (1978). That general work was extended to 
describe the more complex problem of convection in a 
snow layer by Powers and others (1985); pa rt of that 
work is reviewed here. 

Convection occurs when buoyant forces are 
sufficient to overcome viscous drag . The ratio of 

buoyant to viscous forces is given by the Rayleigh 
number 

Ra 
p pfJ g.t.THK 

j./.f K 
(I) 

where P o is the density of the fluid at some reference 
temperature, fJ the coefficient of thermal expansion of 
the fluid ("Cl), Ilf the fluid viscosity (kg/ m .s), g the 
acceleration of gravity , .t.T a charcteristic temperature 
difference, H the layer depth and K the intrinsic 
permeability (m 2). The parameter K is a thermal 
diffusivity defined as k / (PC)f where (pC)r is the 
volumetric heat capacity of thePfluid and kmPa thermal 
conductivity of the porous media which includes both 
fluid and solid contribu t ions. 

In a horizontal layer heated from below and 
cooled from above, convection occurs when the Rayleigh 
number exceeds a critical value. This critical value 
depends on the boundary conditions and on lateral 
confinement. The influence of lateral confinement is 
important only if both internal dimensions are much less 
than the layer depth H, and is not considered here. The 
influence of upper and lower boundary conditions a re 
tabulated in Table I, and are very significant. In Table 
I we consider an upper boundary which is impermeable 
and either an isothermal or uniform heat flux boundary . 
The four combinations given in Table I are those which 
we feel cover the range of interest in the study of 
convection in a snow layer. While the boundaries are 
almost never completely impermeable, the lower 

TABLE I. CRITICAL RA YLEIGH NUMBER FOR 
SEVERAL 
CONDITIONS. 

COMBINATIONS OF 
AFTER NEILD (1967). 

Case Top Bottom 

iso, imp iso, imp 

2 iso, imp iso , imp 

3 iso , imp flux, imp 

4 iso, perm flux, imp 

iso - constant temperature boundary 

flux - uniform heat flux boundary 

imp - impermeable boundary 

BOUNDARY 

Racr 

39.5 

27.1 

27.1 

17.7 

perm - permeable (constant pressure) boundary 
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boundary is almost always relatively impermeable 
compared to the snow cover. 

Fluid begins to flow when the Rayleigh number 
exceeds the critical value. Flow occurs in cellular 
patterns which may be either hexagonal cells or 
two-dimensional rolls (Combarnous and Bories 1975). The 
rate of heat transfer as increased by the flow is 
described by an effective thermal conductivity, kef£' 
which is defined as the ratio of the heat flux to the 
temperature gradient, both of which must be averaged 
horizontally due to the cellular nature of the convection. 
Results are commonly presented in dimensionless form 
by the Nusselt number, defined as 

Nu = (2) 

For heat transfer between isothermal and impermeable 
boundaries, the Nusselt number is well described by 

~
a 

Nu = I + 
Ra cr 

(3 ) 

for Rayleigh numbers greater than the critical value 
(Elder 1967). This correlation describes both numerical 
and experimental results well (Powers and others 1985). 
The Nusselt number equals one for Rayleigh numbers 
less than the critical value. 

We have not treated the problem of multi-layered 
snow covers because the wide variety of possible 
conditions makes it difficult to draw specific 
conclusions. If layering is present, it can affect the 
conditions necessary for the onset of convection as well 
as the strength of the convection should it occur. There 
has been a lot of work done on the effects of layering 
on convection in porous media and much of this work 
can be applied directly to snow. 

EXPERIMENTS 
The theory discussed above provides guidance for 

experiments to detect the presence of convection in 
snow. By heating the bottom and cooling the top, and 
measuring the heat flux and temperature profiles, we 
can ~Iot an effective thermal conductivity, kef!' as a 
functIOn of heat flux or temperature difference across 
the sample. If kef! increases with increasing temperature 
gradient, then convection is contributing to heat 
transfer. 

Prior to doing experiments on snow we conducted 
experiments on glass beads, using either water or air as 
the saturating fluids. These experiments were performed 
as a test of the experimental procedure. Results for 
convection studies with similar glass beads are well 
known (Bau 1980). 

The apparatus for glass bead experiments is shown 
in Figure I. Cold air was blown over an aluminum plate 
at the upper boundary. The lower boundary was heated 

Power 
Supply 

Glass Bead Experiment Schematic 

r.
".--_____ h~~~=OTemperalure Controller 

Cold ." _-~n 
-~a-

Fig.1. Apparatus for glass bead experiments. 

44 

using electric heating pads. Because these pads dissipated 
heat uniformly and at a constant rate, the heat flux 
was assumed to be constant over the lower boundary. 
This was desirable because the uniform flux condition is 
a realistic lower boundary condition for convective flows 
in snow. However, all previous experiments on 
convection in porous media have held the bottom 
boundary at a constant temperature. 

A sketch of the experimental apparatus for snow 
is shown in Figure 2. The top is kept isothermal by 
circulating glycol from a constant temperature bath 
through a cold plate. Variations in temperature were less 
than ± O.l·C along this boundary. The bottom was 
heated using an electric heating pad, as in the glass 
bead experiments. 

Snow 

Loose 
Insulat ion 

Side View, Schematic of Snow Experiment 

Fig.2. Side view of apparatus for snow experiments. 

The snow sample had lateral dimensions of 0.4 m 
x 0.1 m and was 0.5 m high. These dimensions were 
chosen to force a two-dimensional form of convection in 
the experiments. The two-dimentional form is easier to 
analyze both experimentally and theoretically, and 
neither the onset of nor the heat transfer by convection 
is different from the three-dimensional form. To minimize 
heat losses through the large sides, similar snow samples 
were kept on either side of the test sample. Heat losses 
were a greater problem in experiments with snow 
because of the low thermal conductivity. These exterior 
samples were heated and cooled in a manner similar to 
the interior sample; thus the temperature gradients across 
the wall between them were kept to a minimum, 
reducing heat losses. Each heater was controlled 
independently so that the best match of temperature 
profiles could be made. On the narrow ends, where heat 
losses were less of a problem because of the smaller 
area for heat flow, a loose styrofoam insulation was 
placed outside the polystyrene wall. This loose insulation 
was also heated and cooled to reduce heat losses. While 
the match between the temperature profiles was not as 
good on the ends, losses through the ends were smaller 
because of the reduced area. 

The net heat flux through the sample was 
calculated from the heat input plus or minus any gains 
or losses through the sidewall. Heat flows through the 
sidewalls were calculated using the temperature 
difference across the midpoint of each wall. All 
temperatures were measured with the thermocouples 
along both vertical and horizontal axes. An average 
temperature gradient was then calculated using the 
vertical temperature profile at the centerline of the 
sample. The effective thermal conductivity was then 
calculated as the ratio of the net heat flux to the 
average gradient. 

The snow was disaggregated and dropped into the 
apparatus. A snow density of about 250 Mg/m

g 
and 

grain size of about 1.5 mm was achieved. One snow 
sample was used for all of the experiments so we were 
concerned about grain growth and density changes . 
However, no settlement of the snow was observed, and 
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at the conclusion of the tests no appreciable grain 
growth had occurred. The lack of grain growth was 
partly attributed to crystal poisoning by the refrigerant, 
trichloroethelene. To check on changes in the physical 
properties during the tests , the temperature gradient was 
first increased from the lowest to the highest values and 
then decreased to repeat the tests at low temperature 
gradients. Since no change in kef{ was found at a low 
temperature gradient, we concluded that no significant 
changes in the physical properties had occurred. 

RESUL TS AND DISCUSSION 
Results are presented in Figures 3, 4 and 5, where 

keff is shown as a function of the net heat flux . Net 
heat flux is chosen as the independent variable, rather 
than the temperature difference from top to bottom, 
because at the bottom boundary a flux is specified 

0.5~------,----.,------,------,--------, 

01 
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q lW/ m') ,,' 
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Fig.3. Effective thermal conductivity versus net heat flow 
through glass bead with air. Calculated keff is shown. 
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Fig.4. Effective thermal conductivity versus net heat flow 
through glass beads with water. Calculated kerr is shown 
both with and without thermal convection . 
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Fig.5. Effective thermal conductivity versus net heat flo w 
through snow. The errors bars are an upper limit based 
on estimated heat flow out the sides; the actual errors are 
probably much less. 
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rather than a temperature. The error bars shown are 
based on uncertainty in the value of the heat flux 
through the sides and the bottom. We had information 
about the gradients through the walls only at the 
midpoints, thus our calculations of the fluxes through 
the sides and the bottom were approximate. How good 
our approximations were is not known, thus we took the 
error in the measured kef{ to be the percentage of the 
net heat flux due to side f1uxes which probably 
overestimates the error. Uncertainties in temperature 
measurements and in calculation of the heat input were 
considered negligible. Our method probably overestimates 
the uncertainty. 

Figures 3 and 4 show the results from the 
experiments with glass beads, with air and water as the 
saturating fluid, respectively. Theoretical predictions are 
given for comparison. The theoretical value of thermal 
conductivity in the absence of convection (horizontal 
lines) is calculated from the model of Luikov and others 
(1968). The Luikov model correctly predicted the 
observed thermal conductivity in the experiments of Bau 
(1980), who used the same glass beads as in the present 
work, with water as the saturating fluid . The data from 
our experiments also agree well with the Luikov model. 

The point at which convection is expected to begin 
is calculated from the theory presented earlier. When the 
bottom boundary is a uniform heat flux, q, the 
characteristic temperature difference is given by 

t. T = (4 ) 

The critical heat flux for the onset of convection is 
then gi ven by 

ILck ~ 
= [ ]Ra 

p (pC) gtlH2K er 
o p r 

(5) 

The physical properties of the porous medium appear as 
km' K and H. The thermal conductivity can be 
calculated from the Luikov model, or estimated from the 
experimental data. The layer height is known. The 
permeability, K, is calculated from the Carmen-Kozeny 
relation (Wallis 1960). 

K 
[ I ~:2 ] (6) 

where d is an average particle diameter and E the 
porosity . Bau (1980) measured permeabilities of glass 
beads and found that the Carmen- Kozeny relation 
described the permeability well. 

The calculated critical heat f1uxes for the glass 
bead experiments with air and water are 2.60 x 103 

W/ m2 and 54.5 W/ m2, respectively . From Figure 3 we see 
that the value for the experiments with air is outside 
the experimental range; thus we expect and observe a 
constant conductivity with increasing heat flux . In the 
experiments with water the critical heat flux is well 
within the experimental range . The break in the 
theoretical curve of Figure 4 occurs at the heat flux 
value calculated above, and indicates the theoretical 
onset of thermal convection . 

Above the critical heat flux , we expect the 
effective thermal conductivity to increase as convection 
intensifies. The numerical computations of Powers, 
Colbeck and O'Neill (in press) indicate that the heat 
transfer rate for a layer with a constant flux lower 
boundary condition is best represented by 

[ I + 0.365 (-q- -I)] 
qcr 

(7) 

so long as the remaining physical properties in the 
Rayleigh number are constant. This relation gives the 
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Fig.6. Effective thermal conductivity versus net heat flow 
through snow. The sloped line is calculated from theory. 
The horizontal line is from the measured thermal 
conductivity below the critical Rayleigh number. 

slope of the line to the right of the critical heat flux 
value in Figure 4. Again, the agreement is good between 
experiments and theory. 

Figure 6 shows the results of experiments with 
snow, presented without error bars for clarity, in 
comparison with theoretical results. For snow the values 
of thermal conductivity and permeability are not well 
known . Thus we cannot predict a priori the critical 
heat flux for the onset of convection, nor can we 
predict the thermal conductivity, km' The value of keff 
on the horizontal part of the curve in Figure 6, and the 
point indicating the onset of convection on this curve 
are both based solely on the experimental data. The 
slope of the line beyond the critical heat flux is 
calculated from Equation 7. From Figure 6 we see that 
the experimental results behave in a manner consistent 
with our theoretical understanding, although an exact 
comparison of theory and experiment cannot be made 
because of uncertainty in the value of the permeability. 

It is possible to estimate the permeability from the 
experiments if all the other physical parameters in the 
Rayleigh number are known. The only other unknown in 
the present experiments is the thermal conductivity, k . 
In the experiments we measure an effective therm~1 
conductivity, which includes heat conduction, vapor 
diffusion, and convection. In the absence of convection 
(q < qcr) the average value of keff from the experiments 
is 0.24 W Im. K . This k.ff is related to km by 

aT 
(8) 

where Deff is the effective diffusion coefficient, L, the 
latent heat of sublimation, and apyl aT the change in 
vapor density at saturation with temperature. Yosida 
(1955) measured Deff' and found an average value of 8.5 
x 10-5 m2 Is, invariant with snow density. Evaluating 
apv/ aT at the average sample temperature of -12 ·C, we 
calculate a value of km equal to 0.20 W/ m . k) . Although 
there is much uncertainty as to the value of Deff' the 
vapor diffusion contribution to heat transfer is, 
fortunately, much smaller than the heat conduction 
contribution, and thus the uncertainty in k due to 
uncertainty in D eff is not large. m 

Using values for properties of air evaluated at 
-IO·C, and a qcr equal to 7.8 W/ m2 from the 
experiments, we calculate an intrinsic permeability of 9.4 
x 10-8 m2 • This is higher than most reported 
permeabilities. Our snow sample was comprised of 
coarse-grained snow, with a density of 250 kg / m3 and an 
average grain size of 1.5 mm. Data on permeabilities of 
coarse~rained snow in this density range are somewhat 
scarce. Bader (1939) measures permea bilities as high as 
2.5 x 10-8 m2 for coarse-grained snow and depth hoar in 
the density range of the current experiments. 10hnson 
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(personal communication) has measured permeabilities of 
about 5 x 10-8 m2 in depth hoar layers of interior 
Alaska. The snow density of his experiments were less 
than 200 kg / m3 and thus his permeabilities would be 
likely to be greater than those in the present 
experiments . From the above information, it seems 
unlikely that our permeability is as high as our 
experiments would lead us to believe. Thus our 
experiments raise the possibility that we may have 
observed convection at lower Rayleigh numbers than we 
would expect from theory. We have no explanation for 
the discrepancy between theory and experiment, other 
than uncertainty in permeability. 

CONVECTION AND SNOW MET AMORPHISM 
When convection does occur, it must be accounted 

for in our description of vapor transport in snow and 
the metamorphism of snow. Because convection is 
cellular, the convective transport ca n be in the same 
direction as, opposite to, or perpendicular to the 
diffusion of vapor. Thus the effects of convection on 
snow metamorphism will vary spatially in a snow cover. 
In the absence of convection, water vapor transport 
occurs entirely by diffusion. The bottom of a snow 
cover is usually warmer than the top, and thus the 
vapor density is highest at the bottom. Vapor diffuses 
upwards. The dominant mechanism of vapor diffusion is 
what Yosida (1955) called "hand-to-hand" transport, that 
is, vapor diffuses directly from warm particles to 
adjacent cold particles. Thus the rate at which a cold 
particle grows is equal to the rate of mass transfer from 
the warmed particle . This mechanism allows significant 
grain growth to occur without a net accumulation of 
vapor. Thus grain growth increases as the flux rate 
increases, and not as the accumulation rate increases . 
Where flow is in the same direction as diffusion, we 
expect the vapor transport rate, and thus the rate of 
snow metamorphism, to increase substantially . Flow 
opposite the diffusive flux should retard metamorphism. 
It is not well understood what effect the flow 
perpendicular to the temperature gradient will have. 

Quantifying the effects of convection on snow 
metamorphism is more difficult . If, as we implied 
earlier, the growth rate at a snow particle is 
proportional to the flux rate of vapor to the particle, 
then by comparing diffusive and convective flow rates 
we should learn something about the relative influences 
of diffusion and convection on snow metamorphism. The 
easiest fluxes to compare are the macroscopic fluxes . 
The parameter Cl, defined as 

Cl = ---------- (7) 

[ 
apv aT] 

D --
eff aT az 

gives the ratio of the convective flux to the diffusive 
flux, each averaged over a sufficient number of 
particles. The Darcian velocity is equal to the volumetric 
flux rate of the saturating fluid, in this case air. The 
ratio p) ap) aT is relatively independent of temperature, 
and is equal to 11.2 K. For a temperature gradient of 
40 K / m, a calculated (Powers and others 1985) air 
velocity of 4.0 x 1O-4m/ s and an effective diffusivity of 
8.5 x 10-5 m2 / s, Cl is slightly more than one . We suspect 
that since both the convective and diffusive fluxes are 
averaged over an area of many particle sizes, the Cl 

calculated in this manner is also an average, and that Cl 

will be distributed such that local values may be either 
greater or less than the average value . The implication 
of this calculation is that convection will be just as 
important as diffusion in determining the rate of snow 
metamorphism for these particular conditions. 

The above analysis seems most applicable to the 
case of flow in the same direction as the diffusive flux . 
In this case, the convective flux will transport warm, 
moist air to a cold particle, and thus the tendency will 
be for the vapor to condense. When flow is opposite the 
diffusive flux, the convection is transporting cold, dry 
air to a warm particle. This air will always be 
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undersaturated with respect to the downwind particle, 
and thus even if the convective vapor flux is greater in 
magnitude than the diffusive flux, the downwind 
particle will not grow in the direction of the oncoming 
convective flux . In this case, it would seem that the 
convection would tend to erode the windward side of 
particles, while the diffusion will continue to deposit 
vapor on the lee side. 

It appears obvious that a full analysis of the 
effects of convection on snow metamorphism is beyond 
the scope of both this paper and our current research 
efforts. An additional complication is that, according to 
the flow regime criteria established by Donaghey (1980), 
the flow on a local scale must be considered mixed 
convection, implying that to describe the local flow field 
one must first fully describe the local temperature field . 
Thus even on the local scale a complex set of coupled 
differential equations must be solved before the mass 
transport problem can even be considered . This will 
indeed by a formidable task, but hopefully also one 
which will be fruitful, both to those working in snow 
metamorphism and to the crystal growth community as a 
whole. 

The solution of the mass transfer problem should 
enable a fuller description of the snow metamorphism 
process, given recent advances in our understanding of 
the interfacial kinetics of ice particles (Col beck 1983; 
Kuroda 1983). It is worth noting the work of Keller 
and Hallet (J 982) who observed a change in crystal 
habit with increasing ventilation rates, even in the 
absence of a .significant change in the growth rate . 
Although they simulated conditions more typical of 
atmosphere than of a seasonal snow-cover, the trends 
they observe may well apply to the case of present 
interest. Of special importance is their observation that 
ice crystals became more skeletal and fragile (depth hoar 
like?) when a flow was imposed on the environment. 

CONCLUSIONS 
The experimental results show that thermal 

convection can occur in snow. The comparison with 
theoretical analysis indicates that convection occurs more 
readily than theory predicts; however, there is much 
uncertainty about this conclusion because of our 
uncertainties about the permeability of snow. The 
experimental results with glass beads compare very 
favorably wi th the theoretical results, and thus it 
appears that it is only because of the special problems 
encountered in dealing with snow that the experiments 
were not more precisely revealing. While it is clear that 
convection, when it does occur, significantly transfers 
both heat and water vapor, it is not entirely clear what 
effect those fluxes will have on snow metamorphism. 
Although it now appears that thermal convection does 
occur in snow, much remains to be done to fully 
understand its effects . 
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