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BOUNDEDNESS OF SOLUTIONS OF PARABOLIC EQUATIONS
WITH ANISOTROPIC GROWTH CONDITIONS

YU MINGQI AND LIAN XITING

ABSTRACT.  In this paper, we consider the parabolic equation with anisotropic
growth conditions, and obtain some criteriaon boundedness of solutions, which gener-
alize the corresponding results for the isotropic case.

1. Introduction. The boundedness of solutions of elliptic equations with aniso-
tropic growth conditions hasbeen investigated by many authors (see[1]-{11]). However,
according to our knowledge, there is no paper, the purpose of whichisto study parabolic
equations with anisotropic growth conditions. In this paper, we will consider the bound-
edness of its solutions, which generalize the corresponding results for the isotropic case.

Let G be a bounded domain in the n-dimensional Euclidean space E". Consider the
following equation.

1.1 U — Z %Ai(x,t, u, Vu) + B(x, t,u, Vu) = 0,

where (x,t) € Q = G x (0,T),0 < T < oo, A(Xt,u, &) and B(x, t,u, ) are defined
on Q x E! x E", measurable in x,t and continuous in u, &, and satisfy the following
conditions:

YEAKLULE > LGP, €= (. bn)

(1.2) AL O < ma (IR R, (=12,....0)
]

B, t,u, &) < 3 & +rlul~t+f(x.0),

wherek; > 1L,k >0,p>1,i=1,2,...,n.p,l,ri and v; are constants and satisfy

1 1.1 2
1.3 l<p<n ===%= P < p(l+2);
(1.3) p o nini P < p( n)
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n+p v. n
(1.4) p(n+2) 1= p(n+2)’
(1.5) | = p(1+§),
(1.6) ci(xt) € Ly, (Q),
Io=1-4-1 if1- <<y}
(1 7) r = o9, " if ﬁ :pl— T "
(8) e e L@, s> P

Let W(lpi)(G) denote the anisotropic Sobolev space, in which the norm of uis

4l 0 = 3 15 * 0o

1
and W(p y(G) denotes the closure of C}(G) i |n W, (G), (CX(G) isthe set of C!-functions

with compact support in G) Andforu e W(pl)(G) the following inequality holds.

1
(1.9) (/ ulP’ dx) <cn,p (/ Sl dx)
The function u is said to be a generalized solution of (1.1), if u € C(0,T;L2(G)) N

Lp(0, T; WE,,(G)) N Ly(Q) and satisfies

@) [ t (v A, £, V) + 0B, U, V) dce
+ /G (V(x, u(x, t) — v(x, 0)u(x, 0)) dx =

ol
Vte(0,T); v eW,(0,T;Lo(G)) NLy(0, T; W, (G))
For thecaseof pi = pand?; = 7, itisknownthatwhenp > &% andp— 8 < < p—

=, (in which we do not demand p < n), the generalized solution u € C(0, T; LZ(G))

Lp(0, T; W5(G)) of (1.1) is locally bounded in Q; But for thecase of 1 < p < 25, we
need the following restriction for the local boundednessof u:

~ n(2 —
(1.10) el @, T>X . P,
Moreover if uisbounded on the parabolic boundary of Q,i. e., thereisaconstantM > 0,
such that
(1.11) (Jul — M)" = max(ju| — M, 0) € L,(0,T; W, (G))
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(Jul = M)*|i=0 = 0,

then for p > 1, the generalized solution u € C(0, T; L2(G)) N Ly(0, T; WA(G)) of (1.1)
is globally bounded on Q (evenfor thecaseof 1 < p < % any additional integrability
for u is unnecessary).

In this paper, we extend the above results to parabolic equations with anisotropic
growth conditions. In the definition of the generalized solution, we require u € Ly(Q),
which is different from the isotropoic case because it does not ensure

Lo(0, T; Wi,y (G)) — Ly(Q),

is smooth sufficiently but the boundary of G. In addition, we restrict p < n because the
embedding inequality for p < nisdifferent from the onefor p > n.

In Section 2, we give some lemmas as preliminaries. In Section 3, we prove the local
boundedness of solutions and the global boundednessis proved in Section 4.

2. Preliminaries.

0 1
LEMMA 1. Letu € C(0,T;Lx(G)) N Ly(0, T; W,)(G)). Then there is a constant
C > 0, depending only on n and p;, such that

(2.1 (//Q|u|'dxdt)"_Ep < C{&swp/(;|u|2dx+//QZ|u,q|p‘ dxdt}

te(0,T)

Proor. Clearly, p* = % >pl+2)=1>2forp> &, andp* < | < 2for

n+2’

1<p< 2. Sosetinga = =5 € (0, 1), we get from the interpolation inequality and

n+2"

(1.8) that
/G|u|I dx < (/G|u|2dx)£17_2aﬂ(‘/6|u|p* dx)g_*|
1-o)l
gC(/G|u|2dx)£_2L/G;|uxi|”i dx;
hence
(2.2) .//Q|u|' dthSC(ﬁo%p/e'uﬁdx)g//(g;'u*'n dx dt.

If p= 23, then| = p(1+ 2) = 2. By taking o = -, we have

n+2’ n+2’

= ( [P ([ o)
< C(/G |u|? dx)lia /GZ |ux [P dx,

which implies (2.2) again. By using Young's inequality and (2.2), we deduce (2.1). The
proof of Lemma 1 is completed.
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LEMMA 2. Supposef(xl, X2, . - -, %n, 1) IS @ nonnegative and bounded function. If for
any pt <yi <z <pandt_, <T0,< 71 < to, there holds

B

2.3 fynyz,....¥nm) < 0f(21, 2, ..., + +D
(2.3 V1. Y2, -0 Y0 11) < 0F(21, 22, - ., Z0,70) + Z(z. y.)P' p—

where € (0,1), pp > 1, A,B,D > 0 are constants, then there exists a constant C,
independent of y1, ..., Yn, 21, . . ., Zn, 70, T1, SUCh that

A B
2.4)  f(y1,¥2.... Y1) <C + +D
24 fyLY2,---YnT) (;(Zi_yi)pi T )

V pt<yi<z<,®, t1<nm<n<t.
PROOF.  Let € (3,1) satisfy
(2.5) O P <1, i=12...,n; ad OAl<1

Setting 1™ = z — A"z — yi), t™ = 79+ A"(11 — 70), we have

f(yn, Y2,y Y 71) = f(r(lO), o rE]O),t(O))
<o (rd,...r, @) +Z( A B
 (r!

— o) to—m P

<.
< 0m+lf (r(rml) r(m+l) t(nr&l))

b -
Z( yl)p, _2(9A Y-

J_

Z(GA h@a—x)- 1+D20m

7'1

By (2.5) and letting m — oo, we get (2.4). The proof is completed.

3. Local boundednessof solutions.

THEOREM 1. Let conditions (1.2)—(1.8) and n2+”2 < p < nbe satisfied. Let u €
C(0, T; L2(G)) NLp(0, T; WE,(G)) N Ly(Q) be a generalized solution of equation (1.1).

Then uisboundedlocally in Q.

PrOOF. LetK(pi) = {|x| < pi,i = 1,2,...,n},p = pp_pu,ando < p<lbeso
small that
K(pi) x (to — p°, o) C Q.

We claim that u is bounded in K(3pi) x (to — 3P, to). To prove this, take p{', p?, 7o and
71 such that
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1 1 0 p 1p
o Spr<pr <p, to—p STo<71§to—EP-

Pi
2
Let ¢i(x) and v (t) be piecewise linear continuous functions of x; and t respectively
and satisfy
oy [ 1, for|x| < pt (1, fort>m
G0 = 0, for|x|> p:°, v = 0, fort<mg
Then, we have L
0<[(]<—5—3, 0<¥/(< :
Py — b; T1—To
Letk>0,q> 5% (i=1,2,...,n), and set
(3.2) v =Cu—KY ) = T1G).
I

For convenience, we assumeu; € L,(Q) (otherwise, we may substitute the Sleklov time-
average of v for v and deal with its similarly). Thus we may take v as atest function.
Inserting it into (1.1')and integrating by parts with respect to t, we obtain
t
0= /0 /G (uuﬁ;vm(x,t, u, Vu) + vB(x,t, U, Vu)) dxt
1 q _
= 90911 — k)T 12 dy — 2 q,,9-1 1111 LYF|2
> 5 L=k Pdx— 5 [ [t u— KPP e
[ U3 P
— (U= R (b Ol + Klul 2+ F(x ) ) oxat
i
t 1—1
_ =100 — k)t 5] i
;mqjo‘/ec WU - k) |VC|(JZ|UX;| )R dxat.

By using Young's inequality and taking the supremum for t € (0, tp), we have

esssup | ¢'u|(u— ke [f

Y K(kp?.r0)

// lu— k[2 dxat
T1—T0 K(kﬂ 170)

(p phyP / /K(kp (u—K)™ dxat

+ //K(kyﬂi%)(u — k)(; ci(x, t)|uy " + ,.i|u|l—l +f(x, t)) dxdt},

Y P e

3.2) < c{

where K(k, p?,70) = {K(p°) X (10,t0)} N {u > k} is the effective domain of the inte-
grations, and the constant C > 0 is independent of k, p°, pt, 7o, and 71. By the Holder
inequality, we have
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Il U 2 GO D[ ek

5[0 0X0) ([ Sl P xet) )

(3.3) < % / /K oy 20 [ P
+ c; (R (//K(k’pm(u — K dxdt) 'l("%’,

where C isthe constant in (3.2),
(3.4). ei(K) = [lci(x, t)”Lri(K(k,p?no))
Combining (3.2), (3.3) and Lemma 2, we get

esssup [ (U= ocr [ L3P dxe
(3.5) < c[ - im / /K (k,pio,m)(“ — K)2dxdt

D m S gt = 9P et

+% (R ( I NS K) dxdt)

¥ -//K(k,p?,m)(u =K (ul"t + (1) dth}

It follows from Lemma 1 that

(.//K(k, pz,Tz)(U —K)'dx dt) w5
@8  =cfx ﬁ [0 0P

+esssup [ |(u—K)*[Pdx+ //K(kplmz |y [P dxdt}
I PP i

te(0t) K

1
VEPiSPi2<Pi1<PiO§Pi, to—pP <1 <m <1 <t

1_b
I (=)

803

Since the constant C of (3.6) is independent of p?, p2, 71, and 72, combining with (3.5),

(3.6) and taking p° — pt = pt — p2, 11 — 170 = T2 — T1,We have
I I I |
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([/K(k, ,,iszz)(u — k) dx dt) w5
< C{TZ iTO [/K(k,pio,ro)(u _ k)2 dx dt

3.7) 2 (° _1 p2)P ‘//K(k,po,fo)(u — k)P dxat

+Y a(k)p ( I G K)' dxdt) Hae)

+ //l((k,pf’,m)(u — k)(|u|l—1 +f(x+ t)) dxdt}_

Let |e| denotethe n + 1-dimensional Lebesgue measure of set e. By virtue of

1t
0 p , —
IK(K, o7, 70)] < " /to_pp /K(m |uP dxdt — 0, ask — 00,

and the absolute continuity of a Lebesgueintegral and (3.4), we haveei(k) — Oask —
00. Observing (1.7), there holds

}( P )ZTl(p(n+2)) n

Y pi =i ntp /  n+p’
then
P 1 P
. |_’lT| 1\ TR
;e.(k)p { / /K R dxdt}
_ o\
(3.8) —e(k)(‘/( /K PR dxdt) ,
where

l(p_i)_L
)l ™ 6 ask — oo,

e® =S e ( / /K N K) dxdt

Hence, if k > ko (ko > Oislarge enough), by Lemma 2, it follows that

(/ /K(k,piz@)(“ — k) dx dt) v

: (.[/K(k,ppjo)(u — k) dxdt)% IK(K, p°, TO)|1,|2

T2 — T(
2—1T0 ) . p
- Ay 0 1-B
* Z (p? - piz)p' ([/l<(k,ﬂ.0#o)(u k) dx dt) Kk, o7, o)

(3.9 * .//K(kpo NChy k)! dxdt + K'[K (K, p?,70))|

<cf

i (//'“k’n?wo)(u — K deck) oKk, ) I
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If k > h, we have

Kol < [fl o TERT xat< [ TERT oxet,

and (3.9) can be rewritten as
(=40 ) ™
= C{TZ —To(k_ by //K(h ;. (U= ) dxet
SRS S NPy o
™) ) / /K<h,a?,m>(“ — h) dxat
e ([ - o))

1 1
Vk>hz=ko, P < pf <p <pi, to—pp§70<72§t0—§pp_

+(1+(k

Lete > Obedeterminated. Considering theabsolute continuity of aL ebesgueintegral,
wetake H > kg large enough such that

to . +
(3.11) /w ./K(p-) I(u— H)*| dxctt < ep™

Form=0,1,2,...set

H 1 1 P
H o m_ 1 :
kn = 2H om’ P _(2+2m+l)pp’

1 1 |
Tn=to— 50" = sozpPs I = / /K gy (U bl

Since the constant C in (3.10) is independent of k, h, p°, p?, 70 and 7, substituting Kp,
K1, p (m), p,(””) 7m and Tme1. for h, k, o, p?, 70 and 7, respectively, we have

(m+2)p  om+1
< 2 2

ml —

)' P I

e

(3.12) +(1+2m2N3 ( )'<1-*—->J } m=0,1,2,...

Noting that H > 1 and changing correspondingly the constant C in (3.12), we can
simplify (3.12) as

2(L+p)m

p _1
(3.13) J”*" <CJ“+p{ I + 2mgi } m=0,12...
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and since (3.11) implies Jo < €p™P, we can prove by induction for suitable 5 € (0,1)

that

(3.14) Jn <&6Mep™P, m=0,1,2,....

In fact, assumethat (3.14) holds for m. It follows by combining (3. 13) with (3. 14) that

w5 W5 (opmeE P img(—1 o1
(315 I < CIF (2P S+ 2 ) ).
Inview of 0 < p < 1, if at the beginning, welet ¢, § satisfy
C(e™ tem 3 < g,
dMgms <1, 2sm s <,

it is easy to see from (3.15) that (3.14) holdsfor m+ 1. By induction, (3.14) holdsfor all
m. Thus,

L _ _ |
o_angoJm_./[((ZH’%ﬂp_ﬁ’tofépp)(u 2H)' dxdt,

ess sup u<2H.
K(3o™ ) (to— 0P t0)
So, we have proved that u is locally bounded above in Q. And moreover , substituting

—u for u, we abtain similarly that u is locally bounded below. The proof of Theorem 1
is completed.

THEOREM 2. Suppose (1.2)«(1.8) holdand 1 < p < 2% Letu € C(0,T; L2(G)) N

n+2°
Lp(0,T; (pi)(G)) N Lp(Q) be a generalized solution of (1.1). Then if (1.10) holds, u is
locally bounded in Q.

ProOF. Wecan deducesimilarly that (3. 7) holdsfor1 < p < n2+"2, and simplify (3.7)
and (3.8), that is, we aso havefor 1 <p <

([/K(k, ,,izm(u — k) dx dt) w5

1
(3.16) gc{TZ_TO //K(kﬂ (u— K xe

Z (p| Z)D. //K(kp 0)(U - k)p' dx dt
+ [/K(k,ﬂoﬁo)(u — (Ut + () dxdt}

fl1<p< n+2, thenl = p(1+ 2) < 2. Although we can not deal with it asin Theorem
1, by condition (1.10) and the interpolation inequality, we have

+2
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@1 [[u—w?dxd< ([ =K dxdt)zTa ([f - dxdt)&Tj)'
where o € (0,1) satisfies

zl_a )
|

(3.18) 1=

Thus by (3.10) it follows that

([/K(K ﬂlzm(u — K dx dt) ™

1 2a
= C{ To —1T0 (.//K(h,p?,ro)(u B h)l dth) |
21-0)

(/L IS ' dxat)
(3.19) + Z m« — hyp! / /K (h,pm(u — h) dxdt
+ (1 + (kf h)') //K(hypi%)(u — h)' dxat

1_1

+(k — h)"'@—1-4 ( /K APRNCES h) dxdt) s }

1 1
Vk>h>ko, Sp<pf<p <p, to—p"<0<m<to—Spf,
Let e > 0. We can take H > kg large enough such that
o +1 N+
— < P
(3.20) /to_ﬂp /K oy (0= H)" et < ™.

Similar to Theorem 1, we get

(3.21)
5 < O (Sl F ey
i ;pp)m_]rﬁp +2'er%T%_%}, m=012....
(3.20) implies
(3.22) Jo < (ep™P) (wp™P)M T,

where w is the unit-ball volumein E". (1.10) and (3.18) yield

20 2-1 n

n+2
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Combining (3.18) with (3.21)—3.23), for suitabled, ¢, we have
(3.24) In < 6MeTw T Y™ m=0,1,2,....

(3.24) impliesthat uislocally bounded for thecaseof 1 < p < n+2
Itp= 2, thenl = p(1+2) = 2 < "B — T Taking (0,1) 3 a > 7%, we have

n+2’ n+p !

'//K(k,p?,m) (U~ ko dxd
< (M@= 0 ) ([ (010 et ;

< ( I NS K) dx dt)“((k —n- [ NS k) dx dt) e
vk > h > k.

Aswith (3.21), we have

o—-

2m
Jn+p < CJ n+p { p ( )(| N@a- oc)J np (epn+p)1 o

2(|+p)m N .

I 4 gme } m=0,1,2,....

(3.25)
pP

According to (3 22) and (3.25), we can prove the local boundedness of u in Q for the
caseof p= n+2 The proof of Theorem 2 is completed.

4. Global boundednessof solutions.

THEOREM 3. Suppose conditions (1.2)«(1.8) holdand 1 < p < n. Letu €
C(0, T;L2(G)) N Lp(0, T; WE,(G)) N Lp(Q) is @ generalized solution of (1.1). If there
exists a constant M > 0, such that

1
(4.1) (u—M)* e Lp(o,T;\?v(pl)(G)) and (U—M)|—o=0

then u is globally bounded on Q.

ProOF. Letk > M. Substituting k for M, (4.1) still holds. Let u; € L»(Q), and take
v = (u— K" as atest function. Then repeating the deduction process similarly as in
Theorem 1, we get correspondingly

( / MO K dxdt) ™
(4.2) < c{zijei(k)#?“. (/ »

* / A(k)(u —K)(Jul Tt +f(x 1) dth},

1R
(u— K)P dxdt)' P dxat
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where
AK) =QN{u>k}, (k) = [lc D], (-

Then therest of proof issimilar to that of Theorem 1. Noticing that the right side of (4.2)
doesnot appear theintegral termwith (u—k)?, we do not need any additional integrability

of uevenif 1 < p < 2.

REFERENCES

1. Lu Wenduan, Global boundedness for weak solutions of second order quasi-linear elliptic equations in
divergence form. J. Part. Diff. Equ., 1B(1988), 12-16. (in Chinese)

2. Wang Xiangdong and Liang Xiting, The boundedness for generalized solutions of a class of elliptic equa-
tions. J. Huaihua Teachers College, 9(1990), 89-96. (in Chinese)

3. L. Boccardo, P. Marcellini and C. Sbordone, Regularity for variational problemswith non-standard growth
conditions. Boll. U. M. I., 7, 4A(1990), 219-225.

4. F. Fusco and C. Shordone, Local boudedness of minimizers in a limit case. Manuscripta Math., 69(1990),
19-25.

5. B. Stroffolini, Global boundedness of solutions of anisotropic variational problems. Boll. U. M. 1., 7,
5A(1991), 345-352.

6. Hong Minchun, Some remarks on the minimizers of variational integrals with non-standard growth condi-
tions. Boll. U. M. |, 7, 6A(1992), 91-101.

7. Liang Xiting and Lu Youwen, A priori estimate for maximum modul es of generalized solutions of one class
of elliptic equations. J. Engineering Math., 9(1992), 109-112. (in Chinese)

8. Lian Xiting, Theboundednessfor solutions of variational inequalities with non-standard growth conditions.
J. Huaihua Teachers College, 11(1992), 58-66. (in Chinese)

9. N. Fusco and C. Shordone, Some remarks on the regularity of minima of anisotropic integrals. Comm., P.
D. E.,, 18(1993), 153-167.

10. Liang Xiting and Wang Xiangdong, A priori estimates to the maximum modulus of generalized solutions
of quasilinear elliptic equations with anisotropic growth conditions. Appl. Math. Mech. (English Ed.,)
15(1994), 1025-1034

11. Wang Xiangdong and Liang Xiting, The local boundedness for solutions of quasilinear elliptic equations
in anisotropic Sobolev space, to appear.

12. H. J. Choe, Holder regularity for the gradient of solutions of certain singular parabolic systems. Comm.
P D. E., 16(1991), 1709-1732.

13. H. J. Choe, Holder continuity for solutions of certain degenerate parabolic systems. Nonlinear Anal. T. M.
A., 18(1992), 235-243.

14. M. M. Porzio, Lj$ —estimates for degenerate and singular parabolic equations. Nonlinear Anal. T. M. A.,
17(1991), 1093-1107.

15. E. Dibenedetto and M. A. Herero, Nonnegative solutions of the evolution p-Laplacian equations, Initial
traces and Cauchy problems where 1 < p < 2. Arch. Rat. Mech. Anal., 111(1990), 225-290.

16. J. Moser, A new proof of de Giorgi’s theorem concerning the regularity problem for elliptic differential
equations. Comm. Pure Appl. Math., 13(1960), 457—468.

17. J. Moser, A Harnack inequality for parabolic differential equations. Comm. Pure Appl. Math., 14(1961),
577-591.

18. J. Moser, A Harnack inequality for parabolic differential equations. Comm. Pure Appl. Math., 17(1964),
101-134. Correction: ibid, 20(1967), 231-236.

Department of Mathematics Department of Mathematics
Shanxi University Zhongshan University
Taiyuan, 030006 Guangzhou, 510275
People’s Republic of China People’s Republic of China

https://doi.org/10.4153/CJM-1997-040-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-040-2

