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The Procrustes-based perturbation model (Goodall in J R Stat Soc Ser B Methodol 53(2):285–321,
1991) allows minimization of the Frobenius distance between matrices by similarity transformation. How-
ever, it suffers from non-identifiability, critical interpretation of the transformed matrices, and inappli-
cability in high-dimensional data. We provide an extension of the perturbation model focused on the
high-dimensional data framework, called the ProMises (Procrustes von Mises–Fisher) model. The ill-
posed and interpretability problems are solved by imposing a proper prior distribution for the orthogonal
matrix parameter (i.e., the von Mises–Fisher distribution) which is a conjugate prior, resulting in a fast
estimation process. Furthermore, we present the Efficient ProMises model for the high-dimensional frame-
work, useful in neuroimaging, where the problem has much more than three dimensions. We found a great
improvement in functional magnetic resonance imaging connectivity analysis because the ProMises model
permits incorporation of topological brain information in the alignment’s estimation process.

Key words: functional alignment, functional magnetic resonance imaging, high-dimensional data, Pro-
crustes analysis, Von Mises–Fisher distribution.

The Procrustes problem is aimed at matching matrices using similarity transformations by
minimizing their Frobenius distance. It allows comparison of matrices with dimensions defined
in an arbitrary coordinate system. This method raised the interest of applied researchers hence
highlighting its potentiality through a plethora of applications in several fields, such as ecology
(Saito et al., 2015), biology (Rohlf & Slice, 1990), analytical chemometrics (Andrade et al., 2004),
and psychometrics (Green, 1952; McCrae et al., 1996).

The interest of a large audience from applied fields stimulates, in parallel, the growth of a
vast body of literature. Despite this, essentially all applications comprise spatial coordinates (i.e.,
two- or three-dimensional). Haxby et al. (2011) first introduced the use of this approach into a
different context: align functionalMagnetic Resonance Images (fMRI). The coordinates are hence
substituted by voxels (i.e., three-dimensional pixels), and the problem becomes inherently high-
dimensional. The approach rapidly grew in popularity in the neuroimaging community because of
its effectiveness. However, the proposed solution is naive; the extension from the spatial context to
a more general and high-dimensional one is a theoretical challenge that needs adequate attention.

The most serious concern is the results’ interpretability. In most cases, Procrustes methods
turn into an ill-posed problem. It is a barely noticeable problem with spatial coordinates because
the solution is unique up to rotations; hence, the user has the freedom to choose the point of view
that provides the nicest picture. When the dimensions do not have a spatial meaning, any rotation
completely changes the interpretation of the results.
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To tackle this problem, we revise the perturbation model (Goodal, 1991), which rephrases
the Procrustes problem as a statistical model. The matrices are defined as a random perturbation
of a reference matrix plus an error term. The perturbation is expressed by rotation, scaling, and
translation, and the matrix normal distribution (Gupta & Nagar, 2018) is assumed for the error
terms. Like Green and Mardia (2013) and Mardia et al. (2006), we assume that the orthogonal
matrix parameter follows the von Mises–Fisher distribution. We prove that the proposed prior
distribution is conjugate, making the estimation process quite fast. Indeed, the maximum a pos-
terior estimate of the orthogonal matrix parameters results in a minor modification of the original
solution because the prior information enters into the pairwise cross-product of the matrices to be
aligned. The prior distribution plays the role of regularizing term, resolving the non-identifiability
of the orthogonal matrix parameter. In the application to fMRI data in Sect. 4, we further show that
specification of a prior distribution permits the integration of functional and topological aspects,
which largely improves the results’ interpretability. We then propose a comprehensive approach
to the Procrustes problem: the ProMises (Procrustes von Mises–Fisher) model.

The second problem raised by the extension to the high-dimensional framework is computa-
tional. The estimation algorithm of a Procrustes-based method involves a series of singular value
decompositions of m ×m matrices (m dimensions). In a typical fMRI data set, the subjects (i.e.,
the matrices to be aligned) have a few hundred (observations/rows) n and hundreds of thousands
of voxels (dimensions/columns) m. We prove that the minimization problem can be solved by a
series of singular value decompositions of n × n matrices, reducing the computation burden and
making the ProMises model applicable to matrices with virtually any number of columns. We
denote this approach as the Efficient ProMises model.

We emphasize here that the problem of aligning fMRI data is not three-dimensional as it
could appear at first glance, although it is high-dimensional: Each voxel is one dimension of the
problem. Nevertheless, in such conditions, three critical issues arise: The first is that the Procrustes
method combines any voxel inside the brain without distinguishing between adjacent and distant
anatomical locations. This can be questionable because the voxels have a spatial organization, and,
despite the inter-subject variability, we expect some degree of spatial similarity between subjects
in their functional organization. Therefore, we want the subjects’ voxels of a given location to
be more likely to contribute to the construction of voxels with the same location in the common
space. The second issue revolves around the non-identifiability of orthogonal transformations
Ri , where i indexes the subjects. The Procrustes method does not return a unique solution of the
maximum likelihood estimate for Ri : Given a solution (i.e., a three-dimensional image), any linear
combination that mixes the voxels’ values is an equivalent solution to the problem. The solutions
are equivalent only from a mathematical point of view because the practical consequence is the
loss of results’ topological interpretability. The third issue is the computational load: applying
the Procrustes-based alignment to the whole brain implies the decomposition of many square
matrices of dimensions roughly equal to 200.000 (i.e., the number of voxels.)

TheEfficient ProMisesmodel resolves all these three issues. Theuse of a properly chosenprior
shrinks the estimate to the anatomical solution (i.e., no rotation), hencemaking the solution unique
and interpretable from an anatomical point of view. Finally, as mentioned before, the Efficient
implementation permits performing functional alignment on high-dimensional data such as fMRI
data.

The paper is organized as follows. Section1 introduces the perturbation model (Goodall,
1991), stressing its critical issues. Section2 illustrates the ProMisesmodel and its challenges: iden-
tifiability, interpretability, and flexibility. Section3 defines the Efficient version of the ProMises
model, which permits application of the functional alignment to high-dimensional data. Finally,
the presented model is evaluated by analyzing task-related fMRI data in Sect. 4. The entire code
used is available in https://github.com/angeella/ProMisesModel using the programming language
Python (Van Rossum and Drake Jr, 1995) and in https://github.com/angeella/alignProMises using
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1424 PSYCHOMETRIKA

the R (R Core Team, 2018) package alignProMises. We report the proofs of the main lemmas
here, whereas the remaining proofs are included in the supplementary material.

1. Perturbation Model

1.1. Background

Let {X i ∈ IRn×m}i=1,...,N be a set of matrices to be aligned. The Procrustes-based method
uses similarity transformations to match each matrix to the target one as closely as possible,
according to the Frobenius distance.

Each matrix X i could be then assumed to be a similarity transformation of a shared matrix
M ∈ IRn×m , which contains the common reference space’s coordinates, plus a random error
matrix Ei ∈ IRn×m . The perturbation model proposed by Goodall (1991) is then reported.

Definition 1. (Goodall, 1991) Let {X i ∈ IRn×m}i=1,...,N be a set of matrices to be aligned and
O(m) the orthogonal group in dimension m. The perturbation model is defined as

X i = αi (M + Ei )R�
i + 1�

n t i subject to Ri ∈ O(m),

where Ei ∼ MN n,m(0,�n,�m) —i.e., the matrix normal distribution with �n ∈ IRn×n and
�m ∈ IRm×m scale parameters— M ∈ IRn×m is the shared matrix, αi ∈ IR+ is the isotropic
scaling, t i ∈ IR1×m defines the translation vector, and 1n ∈ IR1×n is a vector of ones.

To simplify the problem, the column-centered X i are considered. The distribution is

vec(CnXi |Ri , αi , M, �m, �n) ∼ Nnm(vec(αiCnMR�
i ), Ri�m R�

i ⊗ α2
i Cn�nC

�
n ),

where Cn = In − 1
n Jn , In ∈ IRn×n is the identity matrix, Jn is a n × n matrix of ones, and

vec(A) the vectorization of the matrix A. Let the singular value decomposition of Cn = ����,
where � ∈ IRn×(n−1), then:

vec(��CnXi |Ri , αi , M, �m, �n) ∼N(n−1)m(vec(αi�
�CnMR�

i ),

Ri�m R�
i ⊗ α2

i �
�Cn�nC

�
n �).

The �� transformation leads to independence between the rows of Ei without affecting the
estimation of Ri .��CnX i and ��CnM have now n−1 rows; however, we can simply re-project
them on IRn×m using �. Because we can always write X̃ i = ���CnX i , M̃ = ���CnM, and
�̃n = ���Cn�nC�

n ��� without loss of generality, we can re-write Definition 1 as follows:

Definition 2.

X i = αi (M + Ei )R�
i subject to Ri ∈ O(m), (1)

where Ei ∼ MN nm(0,�n,�m). This way, we obtain the following:

vec(X i |Ri , αi , M,�m,�n) ∼ Nnm(vec(αiMR�
i ), Ri�m R�

i ⊗ α2
i �n). (2)
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The following notation is also adopted: || · || to indicate the Frobenius norm and < ·, · > for the
Frobenius inner product (Golub & van Loan, 2013).

The main objective of this work is comparing the shapes X i instead of the form’s analysis
of the matrices. For that, the parameters of interest are Ri and αi , whereas M, �n , and �m

are considered as nuisance parameters for each i = 1, . . . , N . The estimation of the unknown
parameters changes if these nuisance parameters are known. Section1.2 initially presents the
estimates under this assumption and then provides the more realistic case of unknown nuisance
parameters.

1.2. Estimation of the Perturbation Model

We formalize some results from Theobald and Wuttke (2006) in the case of known nuisance
parameters M,�m , and�n , with�n and�m positive definite matrices by the following theorem:

Theorem 1. (Theobald&Wuttke 2006) Consider the perturbationmodel described inDefinition
2, and the singular value decomposition X�

i �−1
n M�−1

m = U i DiV�
i . The maximum likelihood

estimators equal R̂i = U iV�
i , and α̂i R̂i

= ||�−1/2
m R̂

�
i X�

i �n
−1/2||2/tr(Di ).

Now consider N independent observations X1, . . . , XN . The joint log-likelihood is simply the
sum of N log-likelihoods.

In the case of unknown nuisance parameters M, �m , and �n , the joint likelihood cannot
be written as product of separated likelihoods, one for each X i , because each of the unknown
parameters is a function of the others. The solution must be found by an iterative algorithm. In
particular, the two covariance matrices �m and �n can be estimated by a two-stage algorithm

defined in Dutilleul (1999), where �̂n = {∑N
i=1(X i − M̂)�̂

−1
m (X i − M̂)�}/Nm and �̂m =

{∑N
i=1(X i − M̂)��̂

−1
n (X i − M̂)}/Nn are maximum likelihood estimators.

The necessary and sufficient condition for the existence of �̂n and �̂m is N ≥ m
n + 1,

assuming �m and �n are positive definite matrices. In real applications, this assumption could be
problematic. For example, in fMRI data analysis,m roughly equals 200, 000, and n approximately
equals 200; therefore, the researcher would have to analyzing at least 1, 001 subjects, which is
virtually impossible because fMRI is costly.

Various solutions can be found in the literature: Theobald andWuttke (2006) proposed a reg-
ularization for the covariance matrix, whereas Lele (1993) estimated �n using the distribution of
X iX�

i . In this work, we maintain a general formulation of the estimator for �̂m = g(�̂n, M̂, X i )

and �̂n = g(�̂m, M̂, X i ), because we aim to find a proper estimate of Ri rather than�n and�m .
The shared matrix M is estimated by the element-wise arithmetic mean of {X̂ i }i=1,...,N , where
X̂ i = α̂−1

R̂i
X i R̂i . We then modified the iterative algorithm of Gower (1975) (i.e., generalized

Procrustes analysis), to estimate Ri .
Groisser (2005) proved the convergence of the generalized Procrustes analysis algorithm.

However, it leads to non-identifiable estimators of Ri , i = 1, . . . , N , proved by the following
lemma:

Lemma 1. Let {R̂i }i=1,...,N be the maximum likelihood solutions for {Ri }i=1,...,N with M, �n,
and �m as unknown parameters. If Z ∈ O(m), then {R̂i Z}i=1,...,N are still valid maximum
likelihood solutions for {R̂i }i=1,...,N .

Proof Consider Z ∈ O(m), and

1

αi
X i Ri Z − MZ = Ei Z ∼ MN (0,�n, Z��mZ).
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1426 PSYCHOMETRIKA

Algorithm 1
GeneralizedProcrustes analysis (Gower, 1975)with the two-stage algorithm fromDutilleul (1999),whereT is the threshold
for ||M̂ − M̂old ||2, maxIt is the maximum number of iterations allowed, and ε1and ε2 denote two infinitesimal positive
quantities.

Require: X i , T , maxIt, ∀i = 1, . . . , N
Ensure: X̂ i ∀i = 1, . . . , N
1: M̂ = ∑N

i=1 X i/N , α̂i = 1, �̂n; old = �̂n = In , �̂m; old = �̂m = Im
2: count = 0, dist = Inf
3: while dist > T OR count < maxIt do
4: for i = 1 to N do
5: U i DiV�

i = SVD(Xi
��̂n

−1
M̂�̂m

−1
) � Singular value decomposition

6: R̂i = U iV�
i

7: X̂ i = X i R̂i

8: α̂i R̂i
= ||�̂−1/2

m R̂
�
i X�

i �̂n
−1/2||2/tr(Di )

9: X̂ i = α̂i
−1
R̂i

X̂ i � Update X i

10: end for
11: M̂old = M̂ � Save M̂
12: M̂ = ∑N

i=1 X̂ i/N � Update M̂

13: �̂n = g(�̂m , M̂, X i ), �̂m = g(�̂n, M̂, X i )

14: while ||�̂n − �̂n; old||2 > ε1 OR ||�̂m − �̂m; old||2 > ε2 do
15: �̂n; old = �̂n , �̂m; old = �̂m

16: �̂n = g(�̂m , M̂, X i ), �̂m = g(�̂n, M̂, X i )

17: end while
18: dist = ||M̂ − M̂old||2, count = count + 1.
19: end while

Consider the proof of Theorem 1 placed in the supplementary material, we have

max
Ri∈O(m)

N∑

i=1

< Ri , X�
i �−1

n M�−1
m >= max

Ri∈O(m)

N∑

i=1

tr(Z�R�
i X�

i �−1
n MZZ��−1

m Z). (3)

Since Z�Z = ZZ� = Im , the solutions {R̂i Z}i=1,...,N are still valid solutions for the maximiza-
tion (3). 	


To sum up, in the more realistic case, when we must estimate the nuisance parameters, the
Procrustes solutions are infinite in general, in both in the high-dimensional case and the low-
dimensional by Lemma 1. We emphasize here that, to resolve the non-identifiability of Ri , the
proposed ProMises model imposes a prior distribution for the parameter Ri .

2. ProMises Model

2.1. Background

In the previous section, we justified how the perturbationmodel could be problematic because
Lemma 1 proves the non-identifiability of the parameter Ri in the realistic case of unknown
nuisance parameters. This scenario returns to be critical in several applications, where the m
columns of the matrix X i do not express the three-dimensional spatial coordinates, such as in the
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fMRI data framework illustrated in Sect. 4. In the high-dimensional case, the final orientations of
the aligned data can be relevant for interpretation purposes.

For that, we propose its Bayesian approach: the ProMises model. We stress here that a proper
prior distribution leads to a closed-form and interpretable, unique point estimate of Ri . The
specification of the prior parameters is essential, especially in our high-dimensional context.

2.2. Interpretation of the Prior Parameters

Because Ri ∈ O(m), a proper prior distribution must take values in the Stiefel manifold
Vm(IRm). The matrix von Mises–Fisher distribution is a non-uniform distribution on Vm(IRm),
which describes a rigid configuration of m distinct directions with fixed angles. It was proposed
by Downs (1972) and investigated by many authors (e.g., Chikuse, 1979; Jupp & Mardia 2003).

We report below the formal definition of the von Mises–Fisher distribution.

Definition 3. (Downs, 1972) The von Mises–Fisher distribution for Ri ∈ O(m) is

f (Ri ) = C(F, k) exp
{
tr(kF�Ri )

}
, (4)

where C(F, k) is a normalizing constant, F ∈ IRm×m is the location matrix parameter, and
k ∈ IR+ is the concentration parameter.

The parameter k defined in (4) balances the amount of concentration of the distribution around
F. If k → 0, the prior distribution is near a uniform distribution (i.e., unconstrained). If k → +∞,
the prior distribution tends toward a Dirac distribution (i.e., maximum constraint).

A proper specification of the prior distribution leads to improved estimation of Ri . Therefore,
the core of the ProMises model is the specification of F defined in (4). Consider the polar
decomposition and singular value decomposition of F = PK = L�B� = LB�B�B�, where
P, L, B ∈ O(m), and K ∈ IRm×m are symmetric positive semi-definite matrices, and � ∈
IRm×m diagonal matrix with non-negative real numbers on the diagonal. The mode of the density
defined in (4) equals P (Jupp & Mardia, 1979), so the most plausible rotation matrix depends on
the orientation characteristic of F. Merging the two decompositions, P = LB� describes the
orientation part of F, and K = B�B� defines the concentration part. Themode is specified by the
product of the left and right singular vectors of F. These decompositions are useful to understand
when the density (4) is uni-modal. If F has full rank, � does too, the polar decomposition is
unique, and thus the mode of the density (i.e., P is the global maximum). Let F be a full rank
matrix, then the maximum equals maxRi∈O(m) tr(FR�

i ) = tr{LB�B�B�(LB�)�} = tr(�).
To sum up, the prior specification allows us to include a priori information about the optimal

orientation in the perturbation model. We anticipate here the result of Lemma 3: If F is defined
as a full rank matrix, the maximum a posteriori solution R̂

′
i will be unique with the orientation

structure of F.
Two simple examples of F are delineated below.

Example 1. The most simple definition of F is Im (Lee, 2018). The eigenvalues are all 1, and
L and B are equal to e1, . . . , em , where ei is the standard basis forming an orthonormal basis of
IRm . The prior distribution shrinks the possible solutions for Ri toward orthogonal matrices that
consider only the combination of variables with the same location.

Alternatively, considering the fMRI scenario, the hyperparameter F can be defined as an
Euclidean similarity matrix using the 3D anatomical coordinates x , y, and z of each voxel:

F =
[
exp

{
−

√
(xi − x j )2 + (yi − y j )2 + (zi − z j )2

}]
,
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1428 PSYCHOMETRIKA

where i, j = 1, . . .m. In this way, F is a symmetric matrix with ones in the diagonal, which
means that voxels with the same spatial location are combined with weights equalling 1, and the
weights decrease as the voxels to be combined are more spatially distant.

Example 2. Consider N matrices, one for each plant, describing the three-dimensional spatial
trajectories of a climbing plant, Pisum sativum, having wooden support as a stimulus (Guerra et
al., 2019) across time. The spatiotemporal trajectories of the plants are analyzed until they come
to grasp the stick. The aim is to functionally align the three time series, one for each coordinate
(x , y, z); then, we have m = 3. In this case, we could suppose that the rotation along the z axis is
not of interest because the functional misalignment between plants can be along the x-axis and
y-axis with the z-axis being the one that reflects the growth of the plants and the x-axis and y-axis
describing the elliptical movement (circumnutation) of the plants (Guerra et al., 2019). Therefore,
the F location matrix parameter can be described as follows:

F =
⎡

⎣
0.5 0.5 0
0.5 0.5 0
0 0 1

⎤

⎦ . (5)

The axes x and y have the same probability of entering in the calculation of the first two dimensions
of the final common space, whereas the z axis is not considered.

We use the kinematic plant data from Guerra et al. (2019), consisting of five matrices/plants.
Figure 1 shows the elliptical movement expressed by the axes x and y, in the case of unaligned
and aligned plant trajectories. The rotation transformations are estimated by the ProMises model
with F expressed as (5).We do not go into detail about the meaning of the results because we have
introduced this example to explain the usefulness of F. However, we can note how the ProMises
model aligns the final coordinates of the tendrils (i.e., when the plant touches the wooden support).

2.3. Von Mises–Fisher Conjugate Prior

The von Mises–Fisher distribution (4) was proved by Khatri and Mardia (1977) to be a
member of the standard exponential family (Barndorff–Nielsen, 2014). Green and Mardia (2006)
mentioned that the von Mises–Fisher distribution is a conjugate prior for the matrix normal
distribution, which we formally prove in the following lemma under the perturbation model’s
assumptions.

Lemma 2. Consider the perturbation model of Definition 2, with Ri distributed according to (4),
then the posterior distribution f (Ri |k, F, X i ) is a conjugate distribution to the vonMises–Fisher
prior distribution with location posterior parameter equalling the following:

F� = Xi
��−1

n M�−1
m + kF. (6)

The posterior location parameter is the sumof X�
i �−1

n M�−1
m and the prior location parameter

F multiplied by k. Consider the singular value decomposition of X�
i �−1

n M�−1
m :

X�
i �−1

n M�−1
m = U i DiV�

i = U iV�
i V i DiV�

i . (7)

The right part of (7) V i DiV�
i is the elliptical part of X�

i �−1
n M�−1

m , which is a measure of
variation relative to the decomposition U iV�

i (i.e., the maximum likelihood estimator of Ri ).
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Focus on the right part of (6), F = PK , which is the polar decomposition of F, where P is the
mode of the von Mises–Fisher distribution, and K is its measure of variation. Therefore, F� is
expressed as a combination of the maximum likelihood estimate R̂i = U iV�

i and the prior mode
P , multiplied by corresponding measures of variation.

Thanks to the conjugacy, the estimation process remains simple; with a small modification
we keep the previous algorithm without increasing the computational burden.

2.4. Estimation of the ProMises Model

This section delineates the estimation process for Ri using the ProMises method. First of all,
f (Xi |αi , Ri ) depends only on the product αi Ri , we thus refer to the distribution f (Xi |αi Ri )

instead of f (Xi |αi , Ri ) defined in (2). The following density is then considered as prior distri-
bution for the product αi Ri :

f (αi Ri ) ∼ exp
{ k

αi
tr(F�Ri )

}
α−1
i . (8)

The following theorem delineates the estimation of Ri with known nuisance parameters:

Theorem 2. The ProMises model is defined as the perturbation model specified in Defini-
tion 2 imposing the prior distribution (8) for αi Ri . Let the singular value decomposition of
X�
i �−1

n M�−1
m +kF beU i DiV�

i . Then, themaximumaposteriori estimators equal R̂
′
i = U iV�

i

and α̂i
′
R̂

′
i
= ||�−1/2

m R̂
′�

iX�
i �

−1/2
n ||2/tr(Di ).

The prior information about Ri ’s structure is directly entered in the singular value decompo-
sition step; the maximum a posteriori estimator turns out to be a slight modification of the solution
given in Theorem 1. We decompose X�

i �−1
n M�−1

m + kF instead of X�
i �−1

n M�−1
m .

Let {X i ∈ IRn×m}i=1,...,N be a set of independent matrices. Then, the joint posterior distri-
bution is simply the product of the single posterior distribution.

If M, �n , and �m are unknown, the maximization problem has no closed-form solution,
like in Sect. 1.2. Because we proved that the prior specification modifies only the singular value
decomposition step of Theorem 1, we then modify the Line 5 of Algorithm 1, as follows:

Algorithm 2
ProMises model.

Use Algorithm 1, only modify:

5: U i DiV�
i = SVD(Xi

��̂n
−1

M̂�̂m
−1 + kF) � Singular value decomposition

2.5. On the Choice of the Parameter of the von Mises–Fisher Distribution

We choose the von Mises–Fisher distribution as prior distribution for Ri for its useful and
practical properties. First, as shown, it is a conjugate prior distribution, leading to a direct cal-
culation and interpretation of R̂

′
i . Second, it expresses the orthogonality constraint imposed by

the Procrustes problem. Finally, the definition of F does not require strong assumptions (Downs,
1972); nevertheless, if we specify it as a full-rank matrix, we guarantee solution’s uniqueness.
This permits formulation of the below lemma.
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Lemma 3. If F has full rank, the maximum a posteriori estimates for Ri given by Theorem 2 are
unique.

Proof Consider the proof of Lemma 1. Multiplying by Z leads to the following maximization:

N∑

i=1

tr(Z�R�
i (X�

i �−1
n MZZ��−1

m Z + kF)) �=
N∑

i=1

tr(R�
i (X�

i �−1
n M�−1

m + kF))

since the cyclic permutation invariance property of the trace does not work as Lemma 1 having
the additional term ktr(FRi ).

In addition, recalling Lemma 4, the solution for Ri is unique if and only if X�
i �−1

n M�−1
m +

kF has full rank. If F is defined with full rank, so X̃
�
i M̃ + kF, and the solution for Ri is

unique. Furthermore, recalling Jupp and Mardia (1979), the mode of the von Mises–Fisher is the
orientation part of location matrix parameter. Because the polar decomposition of F� is unique,
the maximum a posteriori estimate is unique. 	


To sum up, the ProMises model enables resolving the non-identifiability of Ri that character-
izes the perturbation model. The prior information inserted in the model permits guidance of the
estimation process, computing a unique and interpretable data orthogonal transformation. Finally,
all these properties are reached without complicating the estimation process of the perturbation
model; we only modify the singular value decomposition step of Algorithm 1.

3. Efficient ProMises Model

The framework depicted above can be applied both in low- and high-dimensional settings.
However, the extension to the high-dimensional case does not come for free if the perturbation
model is used. When n < m, rank equals n, the identifiability of the solution is lost even when
the nuisance parameters are known. The lemma below formally states:

Lemma 4. Consider X i ∈ IRn×m, if n < m, then the maximum likelihood estimate for Ri defined
in Theorem 1 is not unique.

Although the ProMises model provides unique solutions even in high-dimensional frame-
works, a second issue remains prominent: the computational load.At each step, the presented algo-
rithms perform N singular values decompositions of m ×m matrices, which have a polynomial-
time complexity O(m3). When m becomes large, as in fMRI data where m is a few hundred
thousands, the computation runtime, and the required storing memory, becomes inadmissible.

This section proposes the Efficient ProMises model, which resolves the two above points.
The method is efficient in terms of space and time complexity and fixes the non-identifiability of
Ri . The algorithm allows a faster and more accessible shape analysis without loss of information
in the case of n � m. It essentially merges the thin singular value decomposition (Bai et al.,
2000) with the Procrustes problem.

In practice, the Efficient ProMises approach projects the matrices X i into an n-lower-
dimensional space using a specific semi-orthogonal transformation (Abadir & Magnus, 2005;
Groß et al., 1999) Qi , with dimensions m × n, which preserve all the data’s information.
It aligns, then, the reduced n × n matrices {X i Qi ∈ IRn×n}i=1,...,N by the perturbation or
ProMises model. Finally, it projects the aligned matrices back to the original n ×m-size matrices
{X i ∈ IRn×m}i=1,...,N using the transpose of {Qi }i=1,...,N .
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The following theorem proves that the maximum defined in Eq. (3) using {X i Qi ∈
IRn×n}i=1,...,N equals the original maximum because the Procrustes problem analyzes the first
n × n dimensions of Ri . The maximum remains the same if we multiply {X i ∈ IRn×m}i=1,...,N
by Qi .

Theorem 3. Consider the perturbation model in Definition 2 with �m = σ 2 Im and the thin
singular value decompositions of X i = Li Si Q�

i for each i = 1, . . . , N,where Qi has dimensions
m × n. The following holds

max
Ri∈O(m)

tr(R�
i X

�
i �−1

n X j�
−1
m ) = max

R�
i ∈O(n)

tr(R��
i Q�

i X�
i �−1

n X j�
−1
m Q�

j ).

Additionally, the condition for the existence of �̂n by Dutilleul (1999) is satisfied because
X i now has dimensions n × n, and the functional alignment needs at least N = 2 observations.

So, Theorem 3 is used to define an Efficient version of the ProMises model.

Lemma 5. Consider the assumptions of Theorem 3, then

max
Ri∈O(m)

tr(R�
i X

�
i �n

−1X j�
−1
m + kF) = max

R�
i ∈O(n)

tr{R��
i (Q�

i X�
i �−1

n X j�
−1
m Q�

j + kF�)},

where F ∈ IRm×m and F� = Q�
i FQ j ∈ IRn×n.

Proofs of Theorem 3 and Lemma 5 are shown in the supplementary material, whereas here,
we make some further considerations about the proposed method.

At first glance, the assumption �m = σ 2 Im may dilute the resul’s impact. However, this
assumption does not imply that the data are column-wise independent because this dependence
is modeled by Ri . Additionally, the joint and accurate estimate of �m , �n and Ri requires a
large number of observations. So, it is common in real applications to set �m and �n to be
proportional to the identities in Procrustes-like problems (Haxby et al., 2020). When the model
is high-dimensional, this problem becomes even more pronounced because of the huge number
of parameters to be estimated.

The Efficient ProMises approach reaches the same maximum while working in the reduced
space of the first n eigenvectors, which contains all the information, instead of the full data set.
Therefore, the original problem estimates orthogonalmatrices of sizem×m: Ri ∈ O(m), whereas
the Efficient solution provides a set of orthogonal matrices of size n × n: R�

i ∈ O(n). Even when
the solution is projected back into them×m space through Qi R

�
i Q

�
i , the rank remains n, whereas

the matrices of the original solutions have rank m. This should clarify that the Efficient approach
reaches the same fit to the data under a different set of constraints that is n×n orthogonal matrices
instead of m × m matrices; hence, the solutions of the two algorithms will not be identical.

Then, we add on Algorithm 1 the lines used to reduce the dimensions of X i , and we modify
Line 5 to insert the prior information:
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Algorithm 3
Efficient ProMises model.

Use Algorithm 1, only add these three lines at the beginning:
1: for i = 1 to N do
2: Li Si Q�

i = SVD(Xi ) � Thin singular value decomposition
3: X i := Xi Qi
4: end for

and modify:

5: U i DiV�
i = SVD(Xi

��̂n
−1

M̂�̂m
−1 + kF) � Singular value decomposition

The Efficient approach reduces the time complexity from O(m3) to O(mn2) and the space
complexity from O(m2) to O(mn).

4. Functional Magnetic Resonance Imaging Data Application

4.1. Motivation

The alignment problem is recognized in fMRI multi-subject studies because the brain’s
anatomical and functional structures vary across subjects. The most used anatomical alignments
are the Talairach normalization (Talairach & Tournoux, 1988) and the Montréal Neurological
Institute (MNI) space normalization (Jenkinson et al., 2002), where the brain images are aligned
to an anatomical template by affine transformations using a set of major anatomical landmarks.
However, this alignment does not explore the between-subjects variability in anatomical positions
of the functional loci. The functional brain regions are not consistently placed on the anatomical
landmarks defined by the Talairach and MNI templates. The anatomical alignment is then an
approximate inter-subject registration of the functional cortical areas. Haxby et al. (2011) proved
that functional brain anatomy exhibits a regular organization at a fine spatial scale shared across
subjects.

Therefore, we can assume that anatomical and functional structures are subject-specific (Con-
roy et al., 2009; Sabuncu et al., 2010) and that the neural activities in different brains are noisy
rotations of a common space (Haxby et al., 2011). Functional alignments (e.g., Procrustes meth-
ods) attempt to rotate the neural activities to maximize similarity across subjects.

Specifically, each subject’s brain activation can be represented by a matrix, where the rows
represent the stimuli/time points, and the columns represent the voxels. The stimuli are time-
synchronized among subjects, so we have correspondence among the matrices’ rows. However,
the columns are not assumed to be in correspondence among subjects, as explained before. Each
time series of brain activation (i.e., each of thematrices’ columns) represents the voxels’ functional
characteristics that the anatomical normalization fails to align. We aim to represent the neural
responses to stimuli into a common high-dimensional space, rather than in a canonical anatomical
space that does not consider the variability of functional topographies loci.

Figure 2 shows three voxels’ neural activities (i.e., v1, v2, and v3) three columns of the data
matrix in two subjects recorded across time. The functional pattern of v2 is equal across subjects,
whereas v1 and v3 are swapped. A rotation matrix can resolve this misalignment, with the swap
being a particular case of the rotation matrix. For further details about the motivation in using
functional Procrustes-based alignment in fMRI studies, see Haxby et al. (2020).
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Figure 2.
Illustration of functional misalignment between fMRI images, where three voxels’ time series are plotted considering two
subjects. The time series of voxels v1 and v3 of the second subject are swapped with respect to the first subject.

4.2. Data Description

Weapply the proposedmethod to data fromPernet et al. (2015), available at https://openneuro.
org/datasets/ds000158/versions/1.0.0. The study consists of neural activations of 218 subjects
passively listening to vocal (i.e., speech) and nonvocal sounds. Because the application has had
a mere illustrative purpose, we choose to use a small number of subjects (18) to facilitate the
example’s reproducibility by the readers. We preprocessed the data using the Functional MRI of
the Brain Software Library (FSL) (Jenkinson et al., 2012) using a standard processing procedure
(i.e., high-pass filtering, brain extraction, spatially smoothing, registration to standardMNI space,
dealing with motion and differences in slice acquisition time). Anatomical and functional align-
ment (based on the ProMises model) is compared, having images preprocessed in the same way,
but in one case, the functional alignment is applied, while in the other case not. For details about
the experimental design and data acquisition, please see Pernet et al. (2015).

4.3. Functional Connectivity

Weperformed region of interest and seed-based correlation analysis (Cordes et al., 2000). The
seed-based correlation map shows the level of functional connectivity between a seed and every
voxel in the brain, whereas the region of interest analysis expresses the functional correlation
between predefined regions of interest coming from a standard atlas. The analysis process is
defined as follows: First, the subject images are aligned using Algorithm 3, then the element-wise
arithmetic mean across subjects is calculated, and finally, the functional connectivity analysis is
developed on this average matrix.

We take the frontal pole as seed, being a region with functional diversity (Liu et al., 2013).
The anatomical alignment considered here refers to the MNI space normalization (Jenkinson et
al., 2002). Figure 3 shows the correlation values between the seed and each voxel in the brain
using data without functional alignment (top of Fig. 3) and with functional alignment using the
Efficient ProMises model (bottom of Fig. 3). The first evidence is that the functional alignment
produces more interpretable maps, where the various regions, such as the superior temporal gyrus,
are delineated by marked spatial edges, while the non-aligned map produces more spread regions,
hence being less interpretable. It is interesting to evaluate the regions more correlated with the
frontal pole, for example, the superior temporal gyrus. This region is associatedwith the processing
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Figure 3.
Seed-based correlation map for M, using data only aligned anatomically (top figure), and data also functionally aligned
by the Efficient ProMises model (bottom figure). The black point refers to the seed used (i.e., frontal pole with MNI
coordinates (0, 64, 18)). So, the brain map indicates the level of correlation between each voxel and the frontal pole.

of auditory stimuli. The correlation of the superior temporal gyrus with the seed is clear in the
bottom part of Fig. 3, where functionally aligned images are used.

In contrast, the region of interest correlations analysis shows the integration mechanisms
between specialized brain areas. Figure4 indicates the correlationmatrices of time-series extracted
from the 39 main regions of the atlas of Varoquaux et al. (2011). Using functionally aligned data
(right side of Fig. 4), we can see delineated blocks of synchronized regions that can be interpreted
as large-scale functional networks. Instead, using data without functional alignment (left side of
Fig. 4) the distinctions between blocks are clearly worse. Using functionally aligned data, the
left and right visual systems, composed of the dorsolateral prefrontal cortex (DLPFC), frontal
pole (Front pol), and parietal (Par), are clearly visible, whereas in the analysis using functionally
nonaligned data, this distinction is hidden by noise.

The preprocessed data are available on the GitHub repository: http://github.com/
angeella/fMRIdata, as well as the code used to perform functional connectivity: http://github.
com/angeella/ProMisesModel/Code/Auditory.

5. Discussion

The ProMises model provides a methodologically grounded approach to the Procrustes prob-
lem allowing functional alignment on high-dimensional data in a computationally efficient way.
The issues of the perturbation model (Goodall, 1991)—non-uniqueness, critical interpretation,
and inapplicability when n � m—are completely surpassed thanks to our Bayesian extension.
Indeed, the ProMises method returns unique and interpretable orthogonal transformations, and
its efficient approach extends the applicability to high-dimensional data. The presented method is
particularly useful in fMRI data analysis because it allows the functional alignment of images hav-
ing roughly 200×200,000 dimensions, obtaining a unique representation of the aligned images
in the brain space and a unique interpretation of the related results.
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In the application example presented in Sect. 4, a subsample was analyzed. However, the
algorithm has a linear growth in N , and therefore, it is not a problem to work with larger samples.
Also, the algorithm permits a parallel computation for the subjects.

The Bayesian framework gives the user the advantage and the duty to insert prior informa-
tion into the model through k and F. The parameter k plays the role of regularization parameter,
which is rarely known a priori. We estimated it by cross-validation, although it may be inter-
esting to adapt approximations-based methods (e.g., generalized cross-validation) to reduce the
computational burden. Alternatively, we could assume a prior distribution taking values in R

+
for the regularization parameter k and proceed to jointly estimate this parameter as well. More
interestingly, the matrix F addresses the estimate of the optimal rotations, which is favorable in
the analysis of fMRI data because, in this context, the variables have a spatial anatomical location.
In the example in Sect. 4, our definition of F favors the combination of voxels with equal location.
However, a more thoughtful specification can entirely exploit the voxels’ specific spatial position
in the anatomical template. This opens up the possibility to explore various specifications of F
and will be the subject of further research.
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