
J. Fluid Mech. (2024), vol. 999, A43, doi:10.1017/jfm.2024.709

On the laminar solutions and stability of
accelerating and decelerating channel flows

Alec J. Linot1,†, Peter J. Schmid2 and Kunihiko Taira1

1Department of Mechanical and Aerospace Engineering, University of California, Los Angeles,
CA 90095, USA
2Department of Mechanical Engineering, Division of Physical Sciences and Engineering (PSE),
King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia

(Received 19 December 2023; revised 16 May 2024; accepted 27 July 2024)

We study the effect of acceleration and deceleration on the stability of channel flows. To
do so, we derive an exact solution for laminar profiles of channel flows with an arbitrary,
time-varying wall motion and pressure gradient. This solution then allows us to investigate
the stability of any unsteady channel flow. In particular, we restrict our investigation to
the non-normal growth of perturbations about time-varying base flows with exponentially
decaying acceleration and deceleration, with comparisons to growth about a constant
base flow (i.e. the time-invariant simple shear or parabolic profile). We apply this
acceleration and deceleration through the velocity of the walls and through the flow rate.
For accelerating base flows, perturbations never grow larger than perturbations about a
constant base flow, while decelerating flows show massive amplification of perturbations
– at a Reynolds number of 500, properly timed perturbations about the decelerating base
flow grow O(105) times larger than perturbations grow about a constant base flow. This
amplification increases as we raise the rate of deceleration and the Reynolds number. We
find that this amplification arises due to a transition from spanwise perturbations leading
to the largest amplification to streamwise perturbations leading to the largest amplification
that only occurs in the decelerating base flow. By evolving the optimal perturbations
through the linearized equations of motion, we reveal that the decelerating base flow
achieves this massive amplification through the Orr mechanism, or the down-gradient
Reynolds stress mechanism, which accelerating and constant base flows cannot maintain.
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1. Introduction

In the study of flow stability a frequently overlooked topic is the stability of unsteady,
aperiodic flows. Despite this oversight, these transient flows appear in many systems
like airfoil gust encounters (Jones 2020), start-up flow in a pipe (Kataoka, Kawabata
& Miki 1975) and particle sedimentation (Guazzelli & Hinch 2011). A common feature
of unsteady flows is that under acceleration, the flow tends to stabilize, while under
deceleration, the flow tends to destabilize. Such trends have been observed and analysed
for both periodic flows (Gerrard 1971; Hino et al. 1983) and transient flows (Kurokawa &
Morikawa 1986; Shuy 1996; He & Jackson 2000). Understanding the mechanism by which
this stabilization or destabilization occurs is highly valuable as it could either be used as a
tool to actuate steady flows or it could be used to inform control of already unsteady flows.
Two key challenges with systematically investigating the stability of unsteady laminar
flows are: (1) the base profile about which to perform the analysis may be unknown, and
(2) standard linear stability methods examine the long-time dynamics of a time-invariant
linear operator, while for unsteady flows we wish to examine transient dynamics associated
with a time-varying linear operator.

Although analytical laminar profiles are known for various boundary conditions (Drazin
& Riley 2006), solutions are not known for arbitrary boundary conditions. Two widely
studied geometries with many different analytical laminar solutions are pipe flow and
channel flow. The different analytical solutions for pipe flow correspond to different
pressure gradients (these pressure gradients may be dictated by a prescribed flow rate),
and the different analytical solutions for channel flows correspond to different pressure
gradients and wall motion. The simplest cases are either constant pressure gradient or
constant, opposite wall motion (in the channel flow case). The former results in a parabolic
flow (Poiseuille) and the latter in simple shear flow (Couette) (Bird et al. 2015).

Unlike the constant pressure gradient case, an unsteady pressure gradient yields different
solutions between the pipe and channel geometries. First, we discuss some of the unsteady
solutions in pipe flow. A widely studied flow type is pulsatile or Womersley flow
(Womersley 1955). This flow corresponds to pipe flow driven by a periodic pressure
gradient. Although Womersley’s derivation is widely cited, earlier derivations of this
profile exist (Szymanski 1932), as noted in Urbanowicz et al. (2023). Other common
solutions for pipe flow are start-up flow by either a discontinuous change in the pressure
gradient (Szymanski 1932) or a linear ramp change in the pressure gradient (Ito 1952).
Kannaiyan, Varathalingarajah & Natarajan (2021) later extended these start-up solutions
for prescribing the flow rates instead of pressure gradients. Fan (1964) also found solutions
for general pressure gradients and for rectangular ducts. For a more complete review of
solutions in pipe flow, we refer the reader to Urbanowicz et al. (2023).

Next, we survey analytical solutions for channel flows. Two classical solutions in this
domain are Stokes’ first and second problems (Batchelor 2000; Liu 2008; Schlichting
& Gersten 2017). These solutions correspond to the cases of instantaneously moving a
wall from rest and periodic wall motion. In addition to these solutions, there also exists a
solution for a periodic pressure gradient in channel flows (Majdalani 2008) – this differs
from Womersley flow in a pipe. Majdalani (2008) also provided solutions for arbitrary
periodic pressure gradients. This work was extended by Lee (2017) to include pressure
gradients that are not periodic in both pipes and channel flow, for motionless initial
conditions. Finally, Daidzic (2022) derived an analytical solution for arbitrary periodic
pressure gradients or wall motion. We emphasize that the analytical solutions presented in
this work are for arbitrary wall motion and pressure gradients (not necessarily periodic)
and for arbitrary initial conditions. Furthermore, we will show how to compute the
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pressure gradient for a prescribed flow rate. This is an important extension for investigating
accelerating and decelerating pressure-driven flow (PDF).

Once a laminar flow profile is known, the next challenge consists of performing stability
analysis about this profile. When the laminar profile exhibits periodic time-varying
dynamics, traditional methods of linear stability analysis about a fixed point can be
extended with Floquet analysis (Davis 1976). von Kerczek & Davis (1974) applied Floquet
analysis to Stokes’ second problem and found that the flow was even more stable than a
motionless fluid. Later, von Kerczek (1982) applied Floquet analysis to pulsatile channel
flow and again showed that the motion had a stabilizing effect, and Tozzi & von Kerczek
(1986) later performed Floquet analysis for pulsatile pipe flow. More recently, Pier &
Schmid (2017) provided a comprehensive Floquet analysis of pulsatile channel flow in
which they found destabilization of the flow at low frequencies. In this linearly unstable
regime, they found a ‘cruising’ regime where nonlinearity is sustained over a period and
a ‘ballistic’ regime where trajectories exhibit large growth to a nonlinear phase before
returning to small amplitudes within a cycle.

While Floquet analysis is appropriate for periodic flows it does not apply to aperiodic
flows. One approach to investigating the stability of time-varying flows is to consider
the stability of the instantaneous profile as if it were ‘frozen’ (i.e. the quasi-steady state
approximation). For example, linear stability analysis has been performed using this
quasi-steady state approximation in start-up pipe flow (Kannaiyan, Natarajan & Vinoth
2022). However, this approach breaks down when the laminar profile changes faster
than perturbations grow or decay in the linear stability analysis, and the linear stability
analysis does not provide this time scale. Shen (1961) discusses further challenges with
this approach.

An alternative to linear stability analysis is the energy method (Serrin 1959; Joseph
1976). Whereas linear stability indicates long-time growth, the energy method reveals
when a perturbation will lead to immediate growth in energy E (i.e. this method finds
perturbations where dE/dt > 0 at the instant the perturbation is applied). To apply this
method to unsteady base flows, the quasi-steady state approximation must again be
taken. Because this method quantifies the instantaneous behaviour, the assumption is
less detrimental than the frozen stability analysis, which reveals the asymptotic stability.
Additionally, an advantage of this method is that it can be formulated in terms of the
relative energy of the perturbation in relationship to the base flow (Shen 1961). Conrad
& Criminale (1965) applied this method to accelerating and decelerating channel profiles
with wall boundary conditions of 1 − e−κt and e−κt (among other profiles). Their results
showed that acceleration increased the critical Reynolds number, while deceleration
decreased it. However, we note that the energy method dramatically underestimates the
critical Reynolds number at which flows go through transition. Moreover, it does not
provide the shape of the perturbation or the amount of growth that perturbations exhibit.

We overcome these problems associated with both linear stability analysis and the
energy method by instead investigating stability using optimal perturbation theory of the
time-varying linearized equations. In this method, we find the perturbation energy growth
over a finite time window (Schmid & Henningson 2001). This differs from the energy
method in that it restricts the perturbations to physically realizable fields, it does not
account for nonlinearity and it amounts to the growth over a finite window. The optimal
perturbation method captures the effects of non-normal growth missed by linear methods
(Trefethen et al. 1993). Butler & Farrell (1992) computed the optimal perturbations for
constant wall motion in a channel flow and found that pairs of streamwise vortices produce
the largest growth. Reddy & Henningson (1993) also found the optimal perturbations
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for constant wall motion and for a constant pressure gradient in channel flows. They
again showed that the largest growing perturbations only vary in the spanwise direction.
Similarly, Schmid & Henningson (1994) found that azimuthal-dependent perturbations
lead to the largest growth when computing the optimal perturbations for constant pressure
gradient pipe flow. In both Reddy & Henningson (1993) and Schmid & Henningson (1994),
the energy growth was shown to scale as the Reynolds number squared.

Optimal perturbations have also been determined for some unsteady flows. Biau (2016)
computed the optimal perturbations for Stokes’ second problem and found that streamwise
perturbations resulted in the largest growth, which scales exponentially with the Reynolds
number. Xu, Song & Avila (2021) investigated growth in pulsatile pipe flows and found
that, at certain Womersley numbers and amplitudes, helical perturbations dominated with
an exponential scaling at high Reynolds numbers and quadratic scaling at low Reynolds
numbers. Finally, one of the few studies of an unsteady, aperiodic flow was performed by
Nayak & Das (2017). They computed the optimal perturbation for channel flow impulsively
stopped from a constant pressure gradient. The optimal perturbations in this case are again
streamwise structures. Our investigation of accelerating and decelerating flows will link
together the differences in Re scaling observed between the constant and unsteady flows
described here.

In the present work,we investigate the transient growth of perturbations in unsteady
channel flows that exhibit exponentially decaying acceleration and deceleration. Section 2
derives the analytical solutions for arbitrary wall motion (§ 2.1) and pressure gradients
(§ 2.2) for channel flows. In § 3 we investigate the transient growth of perturbations
to laminar solutions associated with acceleration and deceleration of the wall velocity
and flow rate. Section 3.1 presents the approach taken to compute this transient growth
through the linearized equations of motion and examples of this growth at a specific
wavenumber. Following this, in § 3.2 we compute the maximum growth as we vary
Reynolds numbers and acceleration or deceleration. Notably, as we increase deceleration,
perturbations become far more amplified, and the most amplified perturbations shift from
spanwise structures to streamwise structures. Acceleration shows less amplification and
the most amplified perturbations maintain a spanwise structure. In § 3.3 we study the
evolution of these perturbations and find that energy in the decelerating case grows via
the Orr mechanism at high Reynolds number and deceleration rates. We then validate the
growth of these perturbations in direct numerical simulations (DNS) in § 3.4. We find the
optimal timing of these perturbations in § 3.5. Finally, in § 4 we summarize our results and
discuss future prospects.

2. Exact solutions for time-varying wall-driven and pressure-driven channel flow

We first need to determine the underlying laminar flow solutions to investigate the
stability of unsteady laminar flows. Figure 1 illustrates the configuration of interest – an
incompressible fluid confined between two plates moving with arbitrary speed in opposite
directions and with an arbitrary pressure gradient.

We seek laminar profiles in this domain that satisfy the incompressible Navier–Stokes
equations (NSEs)

∂u
∂t

+ u · ∇u = −∇p + 1
Re

∇2u, ∇ · u = 0, (2.1)

which have been non-dimensionalized by some characteristic velocity Ub, the channel
half-height h and the kinematic viscosity ν, defining the Reynolds number as Re = Ubh/ν.
For an arbitrary wall motion and pressure gradient, the characteristic velocity Ub varies,
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y
x
z

–gw(t)

U(y, t)

y = –1

y = 1

∂P/∂x = gp(t)

gw(t)

Figure 1. Diagram of a mixed wall and pressure-driven channel flow, with an example snapshot of the
laminar flow for exponentially decaying wall motion.

and we will mention natural choices for specific examples. In (2.1) we define spatial
coordinates in the streamwise x ∈ [−∞,∞], wall-normal y ∈ [−1, 1] and spanwise
z ∈ [−∞,∞] directions with the velocity vector u = [u, v,w] and pressure p.

For finding laminar solutions to (2.1), we restrict our search to streamwise velocity
profiles that only depend on the wall-normal location and time U( y, t). Inserting functions
of this form into (2.1) yields

∂U
∂t

= −gp(t)+ 1
Re
∂2U
∂y2 , (2.2)

where gp(t) is the pressure gradient. Here, we prescribe boundary conditions

U( y = ±1, t) = ±gw(t)+ ge(t). (2.3)

It is important to prescribe the boundary conditions as in (2.3), as it allows for arbitrary
top and bottom wall motion. Furthermore, this formulation allows us to seek even and odd
solutions to satisfy these boundary conditions. We also prescribe the initial condition

U( y, t = 0) = ho( y)+ he( y), (2.4)

where function ho( y) is an odd function with boundary conditions ho(±1) = ±gw(0) and
the function he( y) is an even function with boundary conditions he(±1) = ge(0). The
superposition of these terms allows for all possible y-dependent initial conditions. For
example, if we wish to start from uniform shear then ho( y) = y and he( y) = 0, or if we
want to start with a parabolic profile then ho( y) = 0 and he( y) = 1 − y2. Detailed reasons
for this split in symmetries will be presented in §§ 2.1 and 2.2.

Equation (2.2) is simply a heat equation with a forcing due to the pressure gradient
gp(t). The linear nature of this equation allows us to add solutions together via linear
superposition (Deen 2012). Thus, solving this equation requires adding solutions together
in order to recast the problem into a canonical form we can subsequently solve with a
sum over basis functions, e.g. Fourier modes. Specifically, this involves adding solutions
such that the resulting partial differential equation can be exactly reconstructed by our
choice of basis functions. To this end, we first find a solution for odd wall motion (gw /= 0,
ge = 0, gp = 0), after which we seek a solution for arbitrary pressure gradients and even
wall motion (gw = 0, ge /= 0, gp /= 0). These solutions can be summed to drive the flow
with both wall motion and a pressure gradient. We will refer to odd wall motion cases as
wall-driven flow (WDF) and to pressure gradient cases as PDF.

Finally, although we only consider streamwise wall motion, this formulation is valid
for arbitrary streamwise and spanwise wall motion. This is straightforward to show if we
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consider laminar solutions u = [U( y, t), 0,W( y, t)]. Inserting this solution into (2.1), we
obtain (2.2) and

∂W
∂t

= −gp,z(t)+ 1
Re
∂2W
∂y2 , (2.5)

where gp,z(t) denotes the pressure gradient in the spanwise direction. The boundary
conditions and initial condition would match those above (except in the spanwise
direction), thus, the solution we present in the streamwise direction is also valid in the
spanwise direction. Combining these two solutions then allows us to find the laminar
solution for arbitrary in-plane wall motion and pressure gradients.

2.1. Wall-driven flow
In the case of time-varying WDF, we seek odd functions U( y, t) = −U(−y, t), which
is a natural choice because the boundary conditions satisfy this behaviour. In Cartesian
coordinates, this implies that we solve the heat equation using a sine basis. We achieve
this by seeking solutions of the form

U( y, t) = fw( y, t)+ Re
6

dgw

dt
( y3 − y)+ gw(t)y. (2.6)

Inserting this expression into (2.2)–(2.4) results in an equation for fw,

∂fw
∂t

+ Re
6

d2gw

dt2
( y3 − y) = 1

Re
∂2fw
∂y2 , (2.7)

with boundary conditions

fw( y = ±1, t) = 0 (2.8)

and initial condition

fw( y, 0) = ho − Re
6

dgw

dt

∣∣∣∣
t=0

( y3 − y)− gw(0)y. (2.9)

Through this linear superposition of solutions, fw is now in a suitable form to be
represented as

fw( y, t) =
∞∑

n=1

f̂w,n(t) sin(nπy). (2.10)

Notably, by including the additional terms in (2.6) both the boundary condition for fw,
the initial condition for fw and all terms in (2.7) go to zero at the boundary, just like the
sine basis. Had we omitted (Re/6)(dgw/dt)( y3 − y) in (2.6), (2.7) would contain y, which
has different boundary conditions at y = 1 and y = −1. Thus, if we were to recreate y
with a periodic function there would be a discontinuity at the boundary, resulting in Gibbs
phenomena (Graham & Rawlings 2013). In Appendix A we elaborate on this alternative
approach and show that the error is larger than using (2.6).
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On the laminar solutions and stability

Next, we find the coefficients f̂w,n(t) of the sine expansion. By combining (2.10) with
(2.7) and taking the inner product with sin(mπy), we obtain

df̂w,m
dt

= −2Re(−1)m

(πm)3
d2gw

dt2
− amf̂w,m, (2.11)

where am = (πm)2/Re. Solving for this equation, we arrive at

f̂w,m = e−amt
(

−2Re(−1)m

(πm)3

∫ t

0
eamt′ d2gw

dt2

∣∣∣∣
t=t′

dt′ + C1,m

)
, (2.12)

where C1,m can be determined by taking the inner product of the initial condition ((2.9))
with sin(mπy),

C1,m = −2Re(−1)m

(πm)3
dgw

dt

∣∣∣∣
t=0

+
∫ 1

−1
(ho − gw(0)y) sin(mπy) dy. (2.13)

If the initial condition is the simple shear profile and gw(0) = 1, then C1,m = 0. Finally,
substituting f̂w,n into (2.6), we find the laminar flow solution

U( y, t) =
∞∑

n=1

e−ant
[
−2Re(−1)n

(πn)3

(∫ t

0
eant′ d2gw

dt2

∣∣∣∣
t=t′

dt′ + dgw

dt

∣∣∣∣
t=0

)
+ C1,n

]
sin(nπy)

+ Re
6

dgw

dt
( y3 − y)+ gw(t)y. (2.14)

For many gw(t) profiles of interest, the integral in (2.14) may be evaluated directly. In
Appendix A we provide some specific profiles of interest (see table 1 in Appendix A)
and we validate the solution against other known laminar solutions. Here, we intend to
study the effect of acceleration and deceleration on stability characteristics. Hence, the
two profiles we concentrate on are exponentially decaying acceleration and deceleration
from simple shear. These profiles are given by

gw(t) = 1 − e−κt (2.15)

for acceleration and
gw(t) = e−κt (2.16)

for deceleration. In both cases, we set the characteristic velocity for the Reynolds number
as the maximum wall velocity over an infinite time horizon. We further discuss the nuances
of this choice of non-dimensionalization in § 2.3.

The analytical laminar solution derived here, in combination with the derivation
in the subsequent section enables us to consider arbitrary in-plane wall motion and
pressure gradients. Thus, the approach we take with the prescribed exponentially decaying
acceleration and deceleration can be applied to any in-plane flow, opening the possibility
of investigating a wide range of unsteady flows. In particular, we hope this approach
will inspire further investigation into aperiodic flows, which have largely been ignored
compared with periodic flows. We choose to focus on the exponentially decaying
acceleration and deceleration since it is one of the simplest forms of acceleration and
deceleration that is bounded. Had we constantly accelerated or decelerated the wall, the
flow would grow unbounded. Furthermore, constant deceleration would eventually turn
into acceleration in the opposite direction.
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This form of acceleration and deceleration is also of practical interest. This type of
flow can be experienced in the start-up and shutdown of internal flows, including pipe
flow (Greenblatt & Moss 2004) and flow around moving bodies, such as accelerating and
decelerating airfoils (Sengupta et al. 2007). Also, unsteady separation bubbles can impose
rapid acceleration or deceleration on the flow near the body, for example, during dynamic
stall. McCroskey (1981) directly compares the vortex structures of an impulsively started
plate to vortex structures during dynamic stall. Furthermore, exponentially decaying
acceleration and deceleration are relevant problems when a controller is used to target
a set point. If the system is first order then exponential decay occurs when we apply
a step change to the system (Seborg et al. 2010). Additionally, exponentially decaying
acceleration and deceleration are a reasonable proxy for the type of profile exhibited by an
overdamped proportional-integral-derivative controller.

Use of an analytical solution, as opposed to a numerical simulation, also offers many
advantages. First, our analytical solution depends upon both Re and κ , so we would have
to perform a numerical simulation any time we changed these parameters. This would be
far slower than evaluating the analytical solution, especially if we considered a flow with
even more non-dimensional parameters. Second, at sufficiently high Reynolds numbers
the numerical simulations could become unstable and trigger turbulence due to transient
growth prevalent in these flows, which we will further discuss in § 3. Third, even if the
solution does not diverge, numerical errors will accumulate in time, while we would not
see these errors in our analytical laminar solution (instead, errors in the analytical solution
will stem from truncating the summation). This last point is especially important since
the stability analysis requires both first and second derivative information on the laminar
profile. Finally, just knowing the form of the analytical solution is useful. For example,
we can use (2.14) to prescribe wall motion that achieves desired laminar profiles. Perhaps,
this fact could be utilized to achieve the fastest transition between flow profiles or to find a
transition that minimizes the transient growth of perturbations. Regardless, knowledge of
the analytical solution can be a powerful tool in understanding and controlling flows.

Figure 2 shows the accelerating laminar profiles at Re = {10, 500} and κ = {0.01, 0.1}.
Similarly, figure 3 shows the deceleration laminar profiles for the same parameters. At
low Reynolds numbers Re and low values of κ the flow closely resembles simple shear
at different shear rates (i.e. U = gw(t)y), whereas with increased Re and κ the profiles
become more curved. This curvature stems from a delay in the transfer of momentum
from the wall to the middle of the channel. At higher Re this transfer is slower and at
higher κ the rate of change of velocity at the wall increases. At the largest values of Re
and κ the difference between acceleration and deceleration is exemplified. In this case, we
observe that the accelerating profile maintains a positive gradient throughout the domain,
while the decelerating profile shows a negative gradient near the wall. In § 3 we investigate
the influence of these profiles on the stability of the flow.

2.2. Pressure-driven flow
We follow a similar approach to find the laminar flow solution for time-varying pressure
gradients. In the case of PDF, we expect the solution to be even U( y, t) = U(−y, t). In
Cartesian coordinates, this suggests a solution of the heat equation using a cosine basis.
We thus seek solutions of the form

U( y, t) = fp( y, t)+ Re
2

gp(t)( y2 − 1)+ ge(t). (2.17)
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Figure 2. Laminar accelerating WDF. The Reynolds number and acceleration parameter for each flow are
noted in the figure. The solution is shown at times t = [0, 2, 5, 10, 20, 40, 60, 80, 100].
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Figure 3. Laminar decelerating WDF. The Reynolds number and deceleration parameter for each flow are
noted in the figure. The solution is shown at times t = [0, 2, 5, 10, 20, 40, 60, 80, 100].

Inserting this expression into (2.2)–(2.4) results in an equation for fp of the form

∂fp
∂t

+ Re
2

dgp

dt
( y2 − 1)+ dge

dt
= 1

Re
∂2fp
∂y2 , (2.18)

with boundary conditions
fp( y = ±1, t) = 0 (2.19)

and initial condition

fp( y, 0) = he − Re
2

gp(0)( y2 − 1)− ge(0). (2.20)
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To solve (2.18), we represent fp as

fp( y, t) =
∞∑

n=0

f̂p,n(t) cos
[(

n + 1
2

)
πy

]
. (2.21)

The boundary conditions associated with all terms in (2.18) and (2.20) are satisfied by
our cosine basis. To solve for the coefficients f̂p,n(t), we repeat the procedure used for
WDF. First, we combine (2.21) with (2.18) and take the inner product of the result with
cos((m + 1/2)πy) leading to

df̂p,m
dt

= 16Re(−1)m

(2πm + π)3
dgp

dt
− 4(−1)m

2πm + π

dge

dt
− bmf̂p,m, (2.22)

with bm = (2πm + π)2/(4Re). Solving (2.22) produces

f̂p,m = e−bmt
[

16Re(−1)m

(2πm + π)3

∫ t

0
ebmt′ dgp

dt

∣∣∣∣
t=t′

dt′ − 4(−1)m

2πm + π

∫ t

0
ebmt′ dge

dt

∣∣∣∣
t=t′

dt′ + C2,m

]
.

(2.23)

Then, to solve for the constant C2,m, we take the inner product of the initial condition
((2.20)) with cos((m + 1/2)πy) to obtain

C2,m =
∫ 1

−1

[
he − Re

2
gp(0)( y2 − 1)− ge(0)

]
cos

[(
m + 1

2

)
πy

]
dy. (2.24)

If the initial profile is parabolic and there is no wall motion, then C2=0. Finally, by inserting
f̂p,n into (2.17), we find the laminar profile

U( y, t)

=
∞∑

n=0

e−bnt
[

16Re(−1)n

(2πn + π)3

∫ t

0
ebnt′ dgp

dt

∣∣∣∣
t=t′

dt′ − 4(−1)n

2πn + π

∫ t

0
ebnt′ dge

dt

∣∣∣∣
t=t′

dt′ + C2,n

]

cos
[(

n + 1
2

)
πy

]
+ Re

2
gp(t)( y2 − 1)+ ge(t). (2.25)

In Appendix A we provide analytical expressions for the integral in (2.25) for
representative flows (see table 1 in Appendix A) and we validate the solution against
Womersley flow.

As with the WDF, we study the effect of acceleration and deceleration in the
pressure-driven case (here we let ge(t) = 0). A natural first choice for examining the
impact of acceleration and deceleration might be to set the pressure gradient to the same
profiles used for the wall velocities (i.e. gp(t) = 1 − e−κt and gp(t) = e−κt). In the case of
PDF, we non-dimensionalize the velocity by the maximum centreline velocity. However,
the pressure gradient required to satisfy this non-dimensionalization is gp = −2/Re either
at t = 0 or as t → ∞. This means that gp(t) = 1 − e−κt and gp(t) = e−κt do not properly
satisfy the correct profiles, and multiplying these quantities by −2/Re would result in a
different pressure gradient profile for different Reynolds numbers.
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On the laminar solutions and stability

Instead of prescribing the same pressure gradient across all cases, we enforce an
exponentially decaying accelerating or decelerating flow rate according to

Q(t) = 2
3 (1 − e−κt) (2.26)

and
Q(t) = 2

3 (e
−κt), (2.27)

respectively. These flow rates correspond to a unit centreline streamwise velocity for a
parabolic profile. Note that flow rate and mean velocity are synonymous here. As with
wall motion, we delve into the details of this non-dimensionalization in § 2.3.

Prescribing a flow rate requires a corresponding pressure gradient to achieve this flow
rate. We first show that accounting for all continuous flow rates requires pressure gradients
that can undergo a step change at t = 0, after which we compute the pressure gradients
gp and use it to approximate U. We calculate the flow rate by integrating (2.25) in the
wall-normal direction and dividing by twice the channel height to result in

Q(t) =
∞∑

n=0

e−bnt
[

32Re
(2πn + π)4

∫ t

0
ebnt′ dgp

dt

∣∣∣∣
t=t′

dt′ + 2(−1)nC2,n

2πn + π

]
− Re

3
gp(t). (2.28)

Evaluating (2.28) at t = 0 and simplifying the resulting expression leads to

Q(0) =
∞∑

n=0

2(−1)n

2πn + π

∫ 1

−1
he( y) cos

[(
n + 1

2

)
πy

]
dy, (2.29)

which shows that the initial flow rate only depends on the initial velocity profile, as
expected. Taking the derivative of (2.28), we get after simplifications

dQ
dt

= −
∞∑

n=0

8
(2πn + π)2

e−bnt
∫ t

0
ebnt′ dgp(t′)

dt
dt′. (2.30)

From this expression, we note that a jump discontinuity is required for gp as t → 0. If
gp were a continuous function, (2.30) would indicate that limt→0 dQ/dt = 0. However,
our desired flow rate results in limt→0 dQ/dt = ±2k/3. Thus, satisfying this derivative
constraint necessitates a step change in the pressure gradient at t = 0 that can be
formulated by

gp(t) = H(t)ĝ0 + ĝp(t), (2.31)

with H(t) as the Heaviside function, ĝ0 as a constant and ĝp as a continuous temporal
function. Furthermore, we may use dQ/dt to compute the constant ĝ0 by taking the
derivative of (2.31) and combining it with 2.30 to produce

lim
t→0

dQ
dt

= −ĝ0. (2.32)

The above expression indicates that only flow rates with limt→0 dQ/dt = 0 can be
constructed with a continuous pressure gradient.

Now that we know the form that the pressure gradient must take, we can numerically
solve for gp(t) to satisfy the flow rates given by (2.26) and (2.27). In short, we use
the trapezoidal rule on all the integrals and then solve for gp(t). We include a detailed
description of this procedure in Appendix D. In figure 4 we present examples of the
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Figure 4. Plots (a) and (b) are the pressure gradient for flow rates of Qt = (2/3)(1 − e−κt) and
Qt = (2/3) e−κt at Re = 500 and κ = 0.1 (the grey dashed line is the expected long-time value).
Plots (c) and (d) are the flow rates Qp computed from applying the pressure gradients in (a) and (b).
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Figure 5. Laminar accelerating PDF. The Reynolds number and acceleration parameter for each flow are
denoted in the figure. The solution is shown at times t = [0, 2, 5, 10, 20, 40, 60, 80, 100].

numerically computed pressure gradients and the flow rates of the velocity profiles
computed using these gradients at Re = 500 and κ = 0.1. Both pressure gradient profiles
start with a constant pressure gradient for achieving zero flow (in the case of acceleration)
or a parabolic profile (in the case of deceleration). At start-up, there is a step change in the
pressure gradient that subsequently grows or decays toward the pressure gradient needed
to maintain the long-time solution. The excellent match of the prescribed flow rates and
the computed flow rates in figures 4(c) and 4(d) validate the computed pressure gradients.

In figure 5 we display the laminar flow solutions with the numerically computed pressure
gradient for accelerating cases at Re = {10, 500} and κ = {0.01, 0.1}; in figure 6 we show
the laminar profiles for decelerating cases with the same parameters. For the accelerating
cases, increasing Re and κ produces transient dynamics that are more plug like. For the
decelerating cases, the gradient is diminished near the wall compared with the accelerating
cases, and at sufficiently high Re and κ , the profile exhibits backflow to maintain the
appropriate flow rate. Similar to the decelerating WDF, we show in § 3 that this profile
leads to destabilization.

Finally, we emphasize that the solutions provided in (2.14) and (2.25) are applicable for
odd and even functions, respectively. Owing to linear superposition, any function may be
represented by simply adding the two solutions together. Thus, the solutions presented in
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Figure 6. Laminar decelerating PDF. The Reynolds number and deceleration parameter for each flow are
denoted in the figure. The solution is shown at times t = [0, 2, 5, 10, 20, 40, 60, 80, 100].

§§ 2.1 and 2.2 are valid for arbitrary streamwise wall motion and pressure gradients and
can accommodate arbitrary wall-normal varying initial conditions.

2.3. Comments on non-dimensionalization
Before investigating the stability of these flows, we discuss the non-dimensionalization of
the problem set-up. Thus far, the equations presented do not depend on the characteristic
velocity Ub. The choice of Ub depends on the selection of the boundary conditions, or
pressure gradient, and should be selected to eliminate one of the dimensional parameters
driving the flow. To illustrate this point, let us consider the case of accelerating and
decelerating wall motion. In dimensional form we may write the velocity at the wall as

g∗
w(t) = u∗

i e−κ∗t∗ + u∗
f (1 − e−κ∗t∗), (2.33)

which, after non-dimensionalization, becomes

gw(t) = ui e−κt + uf (1 − e−κt), (2.34)

with non-dimensional scaling of ui = u∗
i /Ub, uf = u∗

f /Ub and κ = κ∗h/Ub. As such, the
most natural choice for non-dimensionalization is to select a characteristic velocity that
forces ui = 1, uf = 1 or κ = 1. We consider flows that start from rest (ui = 0) or end
at rest (uf = 0), so we choose the other velocity as our characteristic velocity Ub and
vary the non-dimensional exponential decay parameter κ . Notably, this decay parameter
is inversely proportional to the characteristic time scale, for example, the half-life
t1/2 = ln(2)/κ . This suggests that, as we vary Re and κ , we vary two time scales: the
time scale over which the fluid in the middle of the channel reacts to wall motion due to
viscosity and the time scale over which the wall motion reaches the final velocity. While it
may also be possible to consider the viscous time scale, we adopt the advective scale due
to the fast motion imposed during the acceleration and deceleration process. The laminar
flow depends on both non-dimensional parameters Re and κ , so we must vary both when
investigating stability.
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In contrast to the WDF, the selection of the characteristic velocity in the pressure-driven
case is less obvious. The pressure gradient drives a flow with a characteristic velocity,
but it is difficult to determine this characteristic velocity before prescribing the pressure
gradient. To address this issue, we instead use the flow rate to determine the characteristic
velocity. Additionally, by prescribing an accelerating or decelerating flow rate, we
are directly accelerating or decelerating the mean velocity, whereas accelerating or
decelerating the pressure gradient has an unclear effect on the mean velocity.

As with wall motion, we non-dimensionalize around either the long-time or the initial
profile, which in the case of the accelerating or decelerating profile corresponds to a
parabolic profile. This results in the dimensional flow rate equation

Q∗ = 1
2h

∫ h

−h

U( y = 0)
h2 (h2 − y∗2) dy∗. (2.35)

After evaluating the integral and using the non-dimensionalization of Q = Q∗/Ub, (2.35)
simplifies to

Q = 2U( y = 0)
3Ub

. (2.36)

We may then set the characteristic velocity as either the final or initial centreline velocity
(U( y = 0) = Ub), which is satisfied when the flow rate is Q = 2/3. Thus, we satisfy this
non-dimensionalization for the exponentially decaying acceleration and deceleration cases
when either Q∞ or Q0 equal 2/3 in Q(t) = Q∞(1 − e−κt)+ Q0 e−κt. As we investigate
accelerating from rest and decelerating to rest in this work, we only need to sweep over the
non-dimensional exponential decay parameter κ .

3. Stability of accelerating and decelerating flows

With the exact laminar solutions for accelerating and decelerating flows established, we
proceed to analyse their stability characteristics. As mentioned in § 1, studying the stability
of these flows is challenged by the fact that many standard methods provide insight into
long-time stability properties, but do not account for a general time dependence of the
base flow. To overcome these challenges, we investigate the stability properties of these
time-varying base flows via the transient growth of perturbations that evolve according
to the linearized NSEs. We start with presenting the linearized equations of motion,
which is followed, in § 3.1, with examples of transient growth in our specific application
cases. In § 3.2 we then sweep over various wavenumbers, Reynolds numbers and
acceleration/deceleration rates to assess the prevalence of transient growth in parameter
space. Here we find that higher κ and Re result in a larger energy growth of perturbations,
and that decelerating flows exhibit substantially larger growth than constant or accelerating
flows. Finally, in § 3.3 we follow the linear evolution of the optimal perturbations through
time and verify our results, in § 3.4, against a DNS.

To investigate the evolution of perturbations with respect to a given base flow, we
decompose the flow into a laminar base state U and a perturbation u′ according to

u = U + u′, (3.1)
where U = [U, 0, 0]T . We then combine (3.1) with (2.1) and assume that |u′| = O(ε) for
0 < ε � 1, which results in the linearized NSEs

∂U
∂t

+ gp − 1
Re

∇2U + ∂u′

∂t
+ U · ∇U + U · ∇u′ + u′ · ∇U = −∇p′ + 1

Re
∇2u′,

(3.2)
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On the laminar solutions and stability

with gp = [gp, 0, 0]T . In the above equation we neglect O(ε2) terms. Because the laminar
solutions found in § 2 satisfy (2.2), the first three terms in (3.2) cancel out, and the
fifth term is zero by construction. This simplifies the linearized NSEs such that the only
difference between the above equation and the typical form used for time-invariant base
flows rests in the time dependency of U . Taking the divergence of (3.2) and combining
it with the continuity equation, we can find an equation for the pressure perturbation.
Inserting this pressure perturbation back into the wall-normal velocity v′ equation yields
one equation for v′ only. The remaining two momentum equations can be combined into
an evolution equation for the wall-normal vorticity ω′

y = ∂u′/∂z − ∂w′/∂x, resulting in a
system of two equations given as

(
∂

∂t
+ U

∂

∂x

)
∇2v′ − ∂2U

∂y2
∂v′

∂x
= 1

Re
∇4v′ (3.3)

and (
∂

∂t
+ U

∂

∂x

)
ω′

y + ∂U
∂y
∂v′

∂z
= 1

Re
∇2ω′

y, (3.4)

with boundary conditions

v′( y = ±1) = ∂v′

∂y
( y = ±1) = ω′

y( y = ±1) = 0. (3.5)

We further simplify these equations by seeking streamwise and spanwise periodic
perturbations, which introduces the streamwise wavenumbers α and the spanwise
wavenumbers β such that

v′(x, y, z, t) = v̂( y, t) ei(αx+βz) (3.6)

and

ω′
y(x, y, z, t) = ω̂y( y, t) ei(αx+βz). (3.7)

This assumption results in the set of equations

∂v̂

∂t
= (D2 − k2)−1

[
1

Re
(D2 − k2)2 − iαU(D2 − k2)+ iα

∂2U
∂y2

]
v̂ (3.8)

and

∂ω̂y

∂t
= −iβ

∂U
∂y
v̂ +

[
−iαU + 1

Re
(D2 − k2)

]
ω̂y, (3.9)

with boundary conditions

v̂( y = ±1, t) = Dv̂( y = ±1, t) = ω̂y( y = ±1, t) = 0, (3.10)

where D = ∂/∂y denotes the wall-normal derivative operator and k2 = α2 + β2 stands for
the wavenumber modulus squared. Rearranging and grouping terms in the above equation
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leads to
∂

∂t

[
v̂

ω̂y

]
= −i

[
Los 0
Lc Lsq

] [
v̂

ω̂y

]
(3.11)

or
∂q
∂t

= −iL q, (3.12)

with

Los = −(D2 − k2)−1
[

1
iRe

(D2 − k2)2 − αU(D2 − k2)+ α
∂2U
∂y2

]
, (3.13)

Lsq = αU − 1
iRe

(D2 − k2) (3.14)

and

Lc = β
∂U
∂y
. (3.15)

The above derivation follows the nomenclature in Reddy & Henningson (1993).
Our goal is to investigate the linear evolution of perturbations through (3.12). This linear

equation has solutions of the form

q( y, t) = A(t)q( y, 0), (3.16)

where A(t) is the fundamental solution operator that satisfies

∂

∂t
A(t) = e−iL (t)tA(t), A(t = 0) = I. (3.17)

In the above, we assume a discretization in the wall-normal y direction that results in a
finite-dimensional representation of the fundamental solution in terms of a matrix A(t).
Numerically, we approximate A(t) as the finite product of exponentials given by

A(n	t) = Πn
j=1 e−iL ( j	t)	t, (3.18)

with time step 	t. By computing the approximate solution matrix A(t), we can track
the linear evolution and stability characteristics of infinitesimal perturbations. In the
following section we use the above formalism to determine the maximum linear growth of
perturbations through time.

3.1. Maximum linear amplification
Non-normal linear operators can support large levels of transient growth, even though
the operator’s eigenvalues indicate asymptotic stability (all eigenvalues have negative real
parts). We hence investigate this transient behaviour by computing the maximum possible
amplification of initial energy density

G(t;α, β, t0,Re, κ) = max
q(t0) /= 0

‖q(t)‖2
E

‖q(t0)‖2
E

= max
q(t0) /= 0

‖A(t)q(t0)‖2
E

‖q(t0)‖2
E

, (3.19)

where ‖ · ‖E is the energy norm, the details of which we address below. We refer to the
quantity G(t) as amplification or growth. In the above expression, we emphasize that
this amplification depends upon the wavenumbers of the perturbation, α and β, the time
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On the laminar solutions and stability

horizon [t0, t] over which the perturbation is observed and the parameters of the base flow
Re and κ . For brevity, we omit this explicit parameter dependence in what follows. The
transient amplification is taken as the maximum relative increase (or gain) in perturbation
energy that can be experienced by any initial perturbation q(t0) over a given time frame
[t0, t]. Notably, a temporal series of G(t) need not arise from the same perturbation q(t0),
but stem from a range of initial perturbations. Consequently, the curve G(t) can be thought
of as an envelope bounding the energy amplification of all initial conditions.

A common approach to solving for G(t) is based on the adjoint method (Andersson,
Berggren & Henningson 1999). However, when the matrix describing the linearized
equations of motion is rather small, it becomes computationally tractable to compute A(t)
directly. With A(t) explicitly available, we can capitalize on the fact that (3.19) closely
resembles the spectral norm of A(t), which only requires a singular value decomposition.
However, as noted above, the energy norm, not the L2 norm is used in (3.19). For this
reason, we must recast this problem as an equivalent L2-norm problem to proceed.

We define the energy norm according to

‖q‖2
E =

∫ 1

−1
(|Dv̂|2 + k2|v̂|2 + |ω̂y|2) dy. (3.20)

As shown in Gustavsson (1986), dividing this quantity by 2k2 and integrating over all
wavenumbers produces the kinetic energy of u′. As we consider the relative energy
amplification for perturbations at a specific set of wavenumbers, this normalization and
integration approach is not necessary for the computation of the growth G(t) (i.e. the
normalization constant cancels out in (3.19)). In Appendix B we show how this energy
norm can be recast into an equivalent L2 norm by defining a matrix V such that
‖q‖2

E = ‖V q‖2. We then compute the maximum amplification as

G(t) = max
q(t0) /= 0

‖V A(t)q(t0)‖2

‖V q(t0)‖2 = max
x(t0) /= 0

‖V A(t)V −1x(t0)‖2

‖x(t0)‖2 = ‖V A(t)V −1‖2, (3.21)

where x = V q and the spectral norm of the matrix corresponds to the largest singular
value.

In what follows, we compute G(t) by approximating V and A(t) on a grid of M = 64
Chebyshev collocation points using a time step of 	t = 0.01 for both WDF and PDF. We
again approximate the base flow with 100 basis functions as in § 2. To illustrate how the
amplification varies over time, we consider accelerating and decelerating WDF and PDF
at Re = 500 and κ = 0.1 in figures 7 and 8. Note that these laminar profiles were shown
in figures 2, 3, 5 and 6.

In figure 7 we plot the amplification G(t) with different parameters for constant,
accelerating and decelerating WDF considering strictly streamwise perturbations
(figure 7a) and strictly spanwise perturbations (figure 7b). Most notably, streamwise
perturbations subjected to the decelerating base flow result in orders of magnitude larger
growth than any perturbation of the constant or accelerating flows, both of which only
show small growth at early times. Additionally, the largest amplification in the decelerating
cases comes from perturbing the flow at early times, but not at t0 = 0. In contrast, the
accelerating case exhibits the largest growth for perturbations at later times, when the flow
behaves more like a steady flow with a constant profile.

When only spanwise perturbations are considered (figure 7b) the constant profile
exhibits the largest amplification of all cases. The accelerating and decelerating cases
gradually transition between the amplification of the constant profile and the amplification
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Figure 7. Amplification G(t) for perturbations applied at different times t0 to accelerating (‘Acc’), decelerating
(‘Dec’) and constant WDF at Re = 500 and κ = 0.1. Amplification shown for (a) [α, β] = [1.2, 0] and
(b) [α, β] = [0, 1.6]. Perturbations at times t0 = [0, 10, 20, 40, 60, 80, 100] are shown.
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Figure 8. Amplification G(t) for perturbations applied at different times t0 to accelerating (‘Acc’), decelerating
(‘Dec’) and constant PDF at Re = 500 and κ = 0.1. Amplification shown for (a) [α, β] = [2, 0] and
(b) [α, β] = [0, 1.8]. Perturbations at times t0 = [0, 10, 20, 40, 60, 80, 100] are visualized.

in the case of no flow, as the time of the initial perturbation t0 varies. Naturally, the
accelerating case transitions from lower amplification to higher amplification, and the
decelerating case transitions from higher amplification to lower amplification, as t0
increases. This suggests that the shapes of the accelerating and decelerating base flows
are less important to the growth of spanwise perturbations.

In figure 8 we show the maximum amplification for constant, accelerating and
decelerating PDF. Once again figure 8(a) illustrates that streamwise perturbations about
the decelerating base flow exhibit orders of magnitude larger amplification than the other
cases, and streamwise perturbations in the constant and accelerating flows experience
little growth. In figure 8(b) we again see that spanwise perturbations exhibit the largest
amplification for the constant profile, and the accelerating and decelerating cases gradually
move between the constant profile and the case of no flow.

Both results for WDF and PDF indicate that perturbations about decelerating laminar
base flows may exhibit orders of magnitude greater amplification than perturbations about
accelerating or constant laminar profiles. This amplification about decelerating flows
occurs predominantly for perturbations with streamwise variations. In contrast, spanwise
perturbations lead to the largest energy amplification in constant and accelerating flows.
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Figure 9. Maximum growth normalized by the maximum growth of perturbations in the constant flow varied
over different Re and κ: (a) for accelerating WDF, (b) for decelerating WDF, (c) for accelerating PDF and
(d) for decelerating PDF.

3.2. Maximum growth for accelerating and decelerating flows
In the previous section we computed G(t) at specific values of Re, α, β and κ . Here,
we perform a detailed examination of the maximum growth when sweeping over these
parameters for perturbations to the laminar flows at the beginning of the acceleration or
deceleration phase at t0 = 0. Although perturbations at later t0 can exhibit larger growth,
the mechanisms of growth at t0 = 0 and at the optimal t0 tend to be similar in this work.
In § 3.5 we further investigate the effect of optimizing over t0 to illustrate this point. In
figure 9 we present the maximum growth Gmax = maxα,β,t G(t) over a set of Re and κ
for accelerating and decelerating WDF and PDF. As a point of reference, we normalize
the growth by the maximum value G0 obtained from the constant WDF or PDF case. Both
accelerating WDF and PDF exhibit less growth than the constant laminar flow. The growth
relative to the constant laminar profile is lowest at the lowest value of κ and moderately
low Reynolds number Re. As κ and Re increase, the growth appears to level out at around
a tenth of the constant flow.

In contrast to the accelerating laminar cases, the decelerating laminar cases exhibit far
larger amplification of perturbations than the constant laminar case. For WDF at Re = 800,
we see 104 times larger amplification over the constant profile. Upon further increasing κ
and Re, the relative amplification continues to grow. Decelerating PDF also exhibits this
large amplification at high Re and κ .

The two competing factors are the rate κ at which the walls move and the rate at which
the flow can react to this motion, i.e. 1/Re. At large values of κ , the wall motion is fast
and the laminar profile is sensitive to changes in Re while insensitive to changes in κ .
At the other extreme of small κ , the laminar flows change so slowly that the growth of
perturbations behaves similarly to the growth of perturbations in the constant laminar case
or the no-flow case.

We focus on this range of Re and κ values because these values show where a
transition in growth is exhibited in the decelerating cases. As κ continues to increase,
the results converge toward impulsive wall motion (i.e. Stokes’ first problem). Similarly, if
we continue to increase the Reynolds number, we will find that, at moderate κ values,
there is a consistent scaling in the maximum amplification as the Reynolds number
changes. Figure 10 shows how Gmax varies with Re at κ = 0.1 for constant, accelerating
and decelerating WDF and PDF. We also show the Re2 scaling discussed in Reddy &
Henningson (1993) as ‘Const Fit’ (using the same values) and the best exponential fit
for the decelerating cases at Re > 400 as ‘Dec Fit’ (Gmax = 0.0015 × 100.012Re for WDF
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Figure 10. Plots of Gmax as a function of Re for accelerating flow (‘Acc’), decelerating flow (‘Dec’) and
constant flow (‘Const’) at fixed κ = 0.1 for (a) WDF and (b) PDF. The fitting lines are described in the text.

and Gmax = 0.0199 × 100.009Re for PDF). Both the constant and accelerating cases exhibit
similar trends over all Reynolds numbers Re, while the decelerating case exhibits two
distinct behaviours. At low Re, the decelerating case shows the same Re2 scaling as the
constant case, and at high Re the decelerating case shows a 10Re scaling. As mentioned
in § 1, this behaviour was also observed in oscillatory flows shown in Xu et al. (2021).
However, the optimal perturbations in their work did not exhibit a shift wavenumber as
Re increased, which, as we will show, is not the case for these decelerating flows. For
low values of Re, viscous forces quickly modify the flow in response to the wall velocity,
and the growth behaves similarly to a constant flow. When the Reynolds number is high,
the flow reacts more slowly to the wall motion, allowing the laminar base flow to exhibit
high curvature, leading to the 10Re scaling. However, unlike the decelerating case, the
accelerating case only exhibits the Re2 scaling. Thus, we must further examine the shape
of the perturbations to explain this difference in scaling.

To better understand the cause for decreased amplification in the accelerating case
and increased amplification in the decelerating case, we consider the wavenumbers at
which the amplification occurs. Figure 11 shows the maximum amplification maxt G(t)
at multiple values of Re, κ , α and β for accelerating WDF. Analogously, figure 12
shows the same results for decelerating WDF. Each figure is normalized by the maximum
amplification over all wavenumbers, which is indicated near the top right corner of each
plot.

For accelerating WDF, the most amplified perturbations are ones that vary in the
spanwise direction at [α, β] ≈ [0, 1.6]. Likewise, the constant laminar profile exhibits
maximal amplification for perturbations that vary in the spanwise direction at the same
spanwise wavenumber (Reddy & Henningson 1993). Referring back to (3.11), we see that
for α = 0, Los and Lsq no longer depend on the laminar base flow. Thus, the influence of
the laminar profile only enters through the derivative of the laminar profile in the coupling
term Lc. This observation likely explains the weaker dependence on shape exhibited in
the amplification shown in figures 7(b) and 8(b).

Perturbations in decelerating laminar flows exhibit a much different dependency on
the wavenumbers as Re and κ vary. At a low rate of deceleration κ , the largest
maximum amplification arises from spanwise perturbations. Upon increasing κ, the
largest maximum amplification moves towards perturbations with streamwise variations.
A similar trend holds for the Reynolds number, such that for Re = 500 and κ = 1, the
maximum amplification is due to a streamwise varying perturbation with wavenumbers
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Figure 11. Maximum amplification of perturbations maxt G(t) for accelerating WDF at different
wavenumbers and acceleration rates (denoted in the figure).
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Figure 12. Maximum amplification of perturbations maxt G(t) for decelerating WDF at different
wavenumbers and deceleration rates (denoted in the figure).

[α, β] ≈ [1.2, 0]. Referring back to (3.11), we notice that, for β = 0, the operator Lc
vanishes, hence decoupling v̂ and ω̂y. Furthermore, spanwise wavenumbers cause Los
and Lsq to both depend on the laminar profile. This indicates that the high levels of
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Figure 13. Maximum amplification of perturbations maxt G(t) for accelerating PDF at different
wavenumbers and acceleration rates (denoted in the figure).

amplification to perturbations in the decelerating profiles are directly due to the influence
of the velocity and second derivative of the velocity for the decelerating laminar flow, and
not due to the interactions between wall-normal velocity and vorticity, as is the case for
accelerating and constant profiles.

Next, we investigate the wavenumbers that lead to the largest amplification for
accelerating and decelerating PDFs. In figures 13 and 14, we show the maximum
amplification for accelerating and decelerating PDFs, respectively. For accelerating
flow, there is no growth, or very small growth, at low κ . As κ and Re increase, the
maximum amplification increases, and the maximum amplification localizes to spanwise
wavenumbers. The maximum amplification occurs at a streamwise wavenumber of
β ≈ 1.8, while the constant laminar flow exhibits maximum amplification at a
wavenumber of β ≈ 2.04 (Trefethen et al. 1993).

In the case of decelerating flow, we again see a gradual shift from spanwise dominant to
streamwise dominant perturbations. At low values of κ and Re, the maximum amplification
is centred at [α, β] ≈ [0, 2.1], similar to the constant profile. On the other extreme,
i.e. high values of κ and Re, the maximum amplification is centred on streamwise
perturbations with a wavenumber of [α, β] ≈ [2.2, 0]. As κ and Re increase, the maximum
amplification shifts between these two types of perturbations. Moreover, if the Reynolds
number is too low, the maximum amplification will never drift towards streamwise
perturbations, and at higher values of Re, the range of κ over which this transition occurs
becomes much smaller. This transition is reflected in figure 9 where the maximum growth
is plotted vs Re and κ.

3.3. Structure of optimal perturbations
In the previous sections we explored how the accelerating laminar flow displays maximum
amplification for spanwise perturbations, while the decelerating laminar flow shows

999 A43-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

70
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.709


On the laminar solutions and stability

2

(a) (b) (c) (d ) (e)

( f ) (g) (h) (i) ( j)

(k) (l) (m) (n) (o)

4.5 × 101 2.5 × 102 4.5 × 102 5.0 × 102 4.3 × 102

2.9 × 101 2.6 × 101 5.2 × 101 6.4 × 101 6.9 × 101

1.7 × 101 1.5 × 101 1.4 × 101 1.4 × 101 1.2 × 101

1

(R
e 

=
 5

0
0
)

β

0

2

1

(R
e 

=
 4

0
0
)

β

0

2

1

(R
e 

=
 3

0
0
)

β

α

(κ = 0.01)

0 1 2
α

(κ = 0.04)

1 2
α

(κ = 0.07)

1 2
α

(κ = 0.1)

1 2
α

(κ = 1)

1 2

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2

2

1

0

2

1

0

2

1

0

2

1

0

2

1

0

2

1

0

2

1

0

2

1

0

2

1

0

2

1

0

2

1

0

2

1

0

Figure 14. Maximum amplification of perturbations maxt G(t) for decelerating PDF at different
wavenumbers and deceleration rates (denoted in the figure).

maximum amplification for streamwise perturbations. These results indicate the shape
of the maximally amplified perturbation in the periodic ccordinate directions, but not
in the wall-normal direction. In this section we investigate the structure of the specific
perturbations that develop to maxt G(t). We first outline the calculation of the optimal
perturbation and then follow the amplification of that perturbation through time, along
with its spatial profile.

For calculating the optimal perturbation, recall that the amplification at some time
t′ is the energy gain of a perturbation that leads to the largest energy growth over all
unit-norm initial perturbations q0. We compute this quantity by performing the singular
value decomposition

V A(t′)V −1 = USΣV T
S , (3.22)

where US contains the left singular vectors, V S contains the right singular vectors and Σ
contains the singular values, ordered by size σ1 ≥ σ2 ≥ · · · ≥ σN, along its diagonal. The
maximum amplification is then given by σ 2

1 , and if we consider only the growth along this
leading direction we obtain

V A(t′)V −1vS,1 = σ1uS,1, (3.23)

where uS,1 and vS,1 are the principal left and right singular vectors, respectively. The right
singular vector vS,1 is transformed via the mapping V A(t′)V −1 onto uS,1 and stretched by
a factor of σ1. Owing to this relationship, we conclude that the initial perturbation leading
to the maximum amplification at some time t′ is given by vS,1. We can subsequently evolve
this perturbation in time according to the linearized equations of motion

v(t) = V A(t)V −1vS,1, (3.24)

and, given ‖vS,1‖2 = 1, we can evaluate the perturbation energy as Gp(t) = ‖v(t)‖2. In
what follows, we compute the perturbation vS,1 from time t′ at which G(t) is maximized
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Figure 15. (a) Energy of the optimal perturbation and the envelope of growth for accelerating WDF
(Re = 500, κ = 0.1). (b) Streamfunction of the perturbation as it evolves in time.

(t′ = argmaxtG(t)). We then display the evolution of the energy and the profile of v(t)
through time. It is important to realize that the amplification that maximizes G(t′) at some
time t′ need not necessarily maximize G(t) for any other time.

3.3.1. Optimal perturbations in WDFs
First, we consider the accelerating and decelerating WDF cases. In figure 15(a) we show
the energy of the optimal perturbation over time for accelerating WDF at Re = 500 and
κ = 0.1. For this flow, we compute the optimal perturbation that reaches the maximum
amplification at t′ = 118. At short times, the energy of the optimal perturbation falls
below the envelope of G(t), and at long times the energy of the optimal perturbation
matches G(t). This indicates that other perturbations lead to larger growth at shorter times,
but the energy of these perturbations will not reach the long-time energy achieved by
the optimal perturbation. In figure 15(b) we show the evolution of the perturbation at
the times indicated in figure 15(a). We visualize the perturbation with contours of the
streamfunction. The perturbation takes the form of streamwise vortices that initially decay
in magnitude, but subsequently grow as the flow accelerates towards the simple shear
profile. The shape of this perturbation closely resembles that of the optimal perturbation
in constant WDF and grows via a ‘vortex-tilting’ mechanism (Butler & Farrell 1992).
Unlike constant WDF, the perturbation in the accelerating flow exhibits an initial drop in
energy due to the transient period in which the accelerating profile develops towards the
simple shear profile.

The dynamics of the perturbation in the decelerating case behave much differently
from the constant WDF. Figure 16(a) shows the energy of the optimal perturbation for
decelerating WDF and the largest real part of the eigenvalue of the time-varying linear
operator λmax at Re = 500 and κ = 0.1. In this case, we compute the optimal perturbation
that reaches its maximum amplitude at t′ = 132. Similar to the accelerating case, the
energy of the perturbation falls below G(t) at early times but matches G(t) at long times.
Unlike the accelerating case, the perturbation in the decelerating case exhibits initial
growth, followed by decay, before growing again to reach much larger energy values.
Notably, the second peak in the growth begins when the instantaneous eigenvalue becomes
positive and decays when the eigenvalue becomes negative.
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Figure 16. (a) Energy of the optimal perturbation, the envelope of growth and the instantaneous eigenvalue for
decelerating WDF (Re = 500, κ = 0.1). (b) Thin lines are the streamfunction of the perturbation as it evolves
in time. The filled contour plot visualizes the production ((3.25)) normalized by the maximum absolute value
(red indicates positive values and blue indicates negative values). The thick black line is the reference laminar
profile (U), with a dot at the inflection point.

Along with the energy of the optimal perturbation, in figure 16(b) we show the evolution
of the optimal perturbation for decelerating WDF. We also plot the laminar profile and the
spatial energy production

P = −u′v′ ∂U
∂y
, (3.25)

to identify the cause of energy growth. Note that this term lies in the production term of
the energy equation (Serrin 1959; Conrad & Criminale 1965)

dE
dt

= d
dt

∫
V

u′ · u′

2
dV = −

∫
V

1
Re

∇2u′ : ∇2u′ dV −
∫

V
u′ · ∇U · u′ dV. (3.26)

In the inviscid case, for a y-dependent streamwise baseflow, this equation simplifies to

dE
dt

=
∫

V
−u′v′ dU

dy
dV =

∫
V

∂ψ

∂y
∂ψ

∂x
dU
dy

dV =
∫

V
− dy

dx

∣∣∣∣
ψ

dU
dy

dV, (3.27)

where ψ represents the streamfunction. Thus, energy increases when the term under the
integral is negative or when the streamlines align opposite to the gradient of the laminar
flow. This mechanism of growth is referred to as the Orr mechanism or the down-gradient
Reynolds stress mechanism in Butler & Farrell (1992).

At t = 0 the streamfunction of the initial perturbation opposes the laminar shear, causing
the initial gain in energy. The streamlines are advected by the laminar profile causing them
to rotate and break up at t = 2 and t = 5. Over this time window, the energy grows. Then,
at t = 10 the streamlines become vertical and eventually align with the laminar shear at
t = 15 causing the energy to decrease. Finally, the streamlines once again advect and align
opposite to the laminar shear, over much of the domain, causing the energy to increase.
After t ≈ 50, there is little change in the shape of the perturbation, which we show at
t = 70.
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Figure 17. (a) Energy of the optimal perturbation and the envelope of growth for constant WDF (Re = 500).
(b) Thin lines are the streamfunction of the perturbation as it evolves in time. The filled contour plot visualizes
the production ((3.25)) normalized by the maximum absolute value (red is positive and blue is negative).

Throughout this time series, the energy production follows the anti-aligned streamlines
supporting the claim that the Orr mechanism is responsible for this energy growth. In
Morón, Feldmann & Avila (2022) the production was also shown to coincide with the
inflection point for pulsatile flows. For WDF, the inflection point always remains in the
centre of the channel. At early times, the location of the inflection point does not match
energy production, but, at later times, energy is produced at the inflection point. It remains
unclear if the inflection point plays an important role in our understanding of the stability
of this problem. One approach to further investigate the significance of the inflection point
could be to use a master-slave model that eliminates this inflection point, as was performed
in Morón & Avila (2024).

Next, we show why this Orr mechanism leads to minimal growth in accelerating and
constant WDFs. figure 17 shows the energy and evolution of the optimal perturbation for
constant WDF at the same wavenumbers as in the decelerating case and for t′ = 7.25.
The perturbation in constant WDF reaches a similar amplification to the first peak in
the decelerating case, but then rapidly dies off. Figure 17(b) shows the evolution of this
perturbation. The initial perturbation closely resembles the perturbation in the decelerating
case, and it follows a similar evolution up to t = 7 wherein the streamlines initially oppose
the laminar shear before aligning vertically. However, in contrast to the decelerating case,
the constant laminar profile rotates the streamlines and retains this alignment with the
laminar shear causing the energy of the perturbation to drop drastically, as shown at t = 10
and t = 13.

We emphasize the key difference in the evolution of the decelerating flow and the
accelerating or constant flow is this long-time alignment of the streamfunction. Streamwise
perturbations in decelerating flows exhibit large growth because the streamfunction aligns
opposite to the laminar shear. Streamwise perturbations in accelerating or constant flows
exhibit small growth because the streamfunction aligns with the laminar shear. Thus, a
key conclusion of our results is that there is a range of critical Reynolds numbers and
deceleration rates where the optimal perturbations switch from spanwise to streamwise
perturbations for decelerating flows. This transition occurs when growth due to vortex
tilting is outpaced by growth due to the Orr mechanism. Once the Orr mechanism
dominates, the maximum amplification scales exponentially with the Reynolds number
resulting in massive amplification not experienced in accelerating or constant flows.
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Figure 18. (a) Energy of the optimal perturbation and the envelope of growth for accelerating PDF
(Re = 500, κ = 0.1). (b) Streamfunction of the perturbation as it evolves in time.

3.3.2. Optimal perturbations in PDFs
Next, we turn toward the accelerating and decelerating PDF cases. Figure 18(a) shows
the energy of the optimal perturbation for accelerating PDF at Re = 500 and κ = 0.1.
Here, the optimal perturbation reaches the maximum amplitude at t′ = 78. Qualitatively,
an accelerating PDF shows the same characteristics as an accelerating WDF. The energy
of the perturbation initially drops and then increases as the flow accelerates, and the
perturbations again take the form of streamwise vortices. Figure 18(b) shows the evolution
of the perturbation at the times indicated in figure 18(a). Again, the shape of this
perturbation comes in the form of streamwise vortices, which agrees with the constant
PDF case in Butler & Farrell (1992).

Lastly, we consider the case of decelerating PDF. In figure 19(a) we show the energy
of the optimal perturbation that maximizes G(t′) at t′ = 61. Unlike the previous cases,
even at short times the energy of the perturbation closely follows the envelope over all
perturbations G(t). The decelerating PDF does not exhibit a drop in energy, as seen in the
decelerating WDF, because λmax becomes positive sooner. figure 19(b) shows the evolution
of the optimal perturbation corresponding to the points in figure 19(a). Again, we show
the laminar profile for reference. Similar to the decelerating WDF case, the initial profile
opposes the laminar shear leading to growth. As this perturbation evolves, it is advected
downstream and the streamfunction orients vertically, which momentarily damps growth.
Then, the perturbation again aligns opposite to the laminar shear and stops moving as the
base profile tends towards no flow. For constant PDF, the streamwise perturbations damp
out rapidly (Butler & Farrell 1992), but here the time-varying nature of the base flow
allows the perturbation to align opposite to the flow and experience extended periods of
growth. Again, we see that the energy is produced at the locations of anti-alignment with
the laminar shear. Unlike the WDF case, this production tends to stay near the wall-normal
location of the inflection points, similar to Morón et al. (2022).

3.4. Nonlinear evolution of perturbations
Thus far, we have shown the evolution of perturbations through the linearized equations
of motion. In this section we investigate the evolution of optimal perturbations in DNS
and the role of these optimal perturbations when perturbing the flow with random noise.
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Figure 19. (a) Energy of the optimal perturbation, the envelope of growth and the instantaneous eigenvalue for
decelerating PDF (Re = 500, κ = 0.1). (b) Thin lines are the streamfunction of the perturbation as it evolves
in time. The filled contour plot visualizes the production ((3.25)) normalized by the maximum absolute value
(red indicates positive, blue indicates negative values). The thick black line is the reference laminar profile (U),
with a dot at the inflection point.

We perform DNS of decelerating WDF and PDF at Re = 500 and κ = 0.1 Our DNS
uses a Fourier–Chebyshev pseudo-spectral code implemented in Python (Linot, Zeng
& Graham 2023a,b), which is based on the Channelflow code developed by Gibson
(2012), Gibson et al. (2021). We use the Spalart-Moser Runge–Kutta (SMRK2) scheme
(Spalart, Moser & Rogers 1991) to integrate solutions forward in time. This is a multistage
scheme that treats the linear term implicitly and the nonlinear term explicitly. The SMRK2
scheme only requires one flow field at one instant in time, which we require to satisfy the
decelerating boundary condition at every time step. In the case of PDF we directly impose
the exponentially decaying flow rate, not the numerical estimate of the pressure gradient
shown in figure 4. For more details on the implementation of the DNS, we refer the reader
to Linot et al. (2023b) and Gibson (2012).

First, we validate the results of the DNS by showing that it maintains the analytical
laminar profiles. Here, we perform simulations with a time step of 	t = 0.01 on a grid
size of [Nx,Ny,Nz] = [2, 81, 2] and a domain of [Lx, Ly, Lz] = [1, 2, 1] with no noise. As
the laminar flow only varies in the wall-normal direction, the choice of Nx = 2 and Nz = 2
was chosen to speed up the computation. Using more grid points in these directions does
not influence the results. Figure 20 compares the laminar solutions derived in § 2 to the
DNS, showing that the DNS and the laminar solution are in excellent agreement.

Next, we consider the effect of applying the optimal perturbations to both of these
flows. In both cases, the optimal perturbations are predominantly streamwise structures.
Due to this two dimensionality, we perform the DNS on a grid of size [Nx,Ny,Nz] =
[32, 81, 2] and a domain size of [Lx, Ly, Lz] = [2π/αopt, 2, 1] with a time step of
	t = 0.01. Simulating on more grid points in the spanwise direction does not change
the results, since the initial perturbation does not vary in this direction. We initialize
both DNS with an initial condition u = U + u′, where we reduce the magnitude of the
optimal perturbations shown in figures 16(a) and 19(a), such that u′ = 10−3u′

p. With this
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Figure 20. Analytical and DNS solutions for laminar (a) WDF and (b) PDF at Re = 500 and κ = 0.1.
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Figure 21. (a) Energy of the optimal perturbation for decelerating WDF (Re = 500, κ = 0.1) determined by
the linearized equations of motion Gp and by the DNS GDNS. (b) Streamfunction of the perturbation as it
evolves in time (black is from the linearized equations and red is from the DNS).

initialization the energy ratio of the perturbation is ‖u′‖2
E/‖U‖2

E = O(10−7) in both cases.
Figure 21 displays, for WDF, the energy of the perturbation from the DNS, and the shape
of the perturbation as it evolves in time. The energy in the DNS matches the linearized
solution extremely well until t ≈ 125, at which point the energy of the DNS starts to
drop more rapidly. At t = 125, the energy ratio of the perturbation is ‖u′‖2

E/‖U‖2
E ≈ 0.11

due to the reduced energy in the laminar profile and the growth of the perturbation. The
sizeable portion of energy contribution from the perturbation suggests that the assumption
of linearity at this point likely breaks down. In figure 21(b) we show the evolution of the
perturbation through time. Until t ≈ 75, we see excellent agreement between the optimal
perturbation computed via the linearized equations and the DNS. As mentioned, after this
time the relative size of the perturbation becomes sufficiently large, and nonlinear effects
distort the field, as shown in the final snapshot at t = 125.

In figure 22 we show the optimal perturbation in a DNS of PDF. Again, the energy of
the DNS agrees well with the energy of the solution in the linearized equations at early
times and begins to deviate around t = 50. At the peak of t = 60, the energy ratio of the
perturbation is ‖u′‖2

E/‖U‖2
E ≈ 0.03. Figure 22(b) shows the evolution of the perturbation

through time. Here, the perturbation in the DNS remains similar to the evolution in the
linearized equations, even when the energy starts to differ at t = 60.
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Figure 22. (a) Energy of the optimal perturbation for decelerating PDF (Re = 500, κ = 0.1) determined by
the linearized equations of motion Gp and by the DNS GDNS. (b) Streamfunction of the perturbation as it
evolves in time (black indicates the linearized equations and red is from the DNS).
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Figure 23. (a) Energy of the optimal perturbation for decelerating WDF (Re = 500, κ = 0.1) determined by
the linearized equations of motion Gp and energy of a random perturbation in a DNS GDNS, along with the
energy of the random perturbation projected onto the optimal perturbation GProj. (b) Streamfunction of the
perturbation as it evolves in time (black is from the linearized equations and red is from the DNS).

We have established that the optimal perturbation exhibits large growth even in a DNS.
As a next step, we investigate the relevance of this growth in the presence of random
perturbations. We perform DNS on a grid of size [Nx,Ny,Nz] = [32, 81, 32] and a domain
size of [Lx, Ly, Lz] = [2π/αopt, 2, 2π/βopt] with a time step of	t = 0.01. Here, we chose
βopt as the strictly spanwise perturbation that causes the largest amplification for κ = 0.1
and Re = 500. This choice of domain size allows the largest growing spanwise and
streamwise perturbations to grow simultaneously. We then perturb this flow with Gaussian
noise at every grid point such that u′ ∼ N (0, ε2), where ε = 10−7. Even though this noise
is initially not incompressible, the DNS enforces incompressibility after the first time step.

In figure 23(a) we show the energy of the optimal perturbation, the randomly perturbed
field and the projection of the random perturbation onto the optimal perturbation for WDF
at Re = 500 and κ = 0.1. The random perturbation exhibits a decay in energy until t ≈ 50,
followed by a growth in energy that peaks when the energy of the optimal perturbation
peaks. At early times, this energy decay occurs because most modes decay, despite
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Figure 24. (a) Energy of the optimal perturbation for decelerating PDF (Re = 500, κ = 0.1) determined by
the linearized equations of motion Gp and energy of a random perturbation in a DNS GDNS, along with the
energy of the random perturbation projected onto the optimal perturbation GProj. (b) Streamfunction of the
perturbation as it evolves in time (black is from the linearized equations and red is from the DNS).

the energy associated with the optimal perturbation growing. It is not until later in the
evolution of this noise that the optimal perturbation can grow sufficiently large to increase
the energy of the random perturbation. The projection of the random perturbation onto
the optimal perturbation shows that despite the drop in energy of the overall perturbation,
the part associated with the optimal perturbation exhibits the expected growth. The slight
mismatch between the projection and the energy of the optimal perturbation is conjectured
to come from interactions between the modes, as they do not remain orthogonal during
their temporal evolution. We also show the evolution of the random perturbation in
figure 23(b). The random perturbation differs substantially from the optimal perturbation
at early times, but begins to tilt against the laminar shear at t ≈ 25, before exhibiting
close agreement with the optimal perturbation at t ≥ 45. We compute the streamlines
for the random perturbation assuming the flow is two dimensional at z = 0. Choosing a
different z location would influence the field at early times, but the random field becomes
a streamwise perturbation, like the optimal perturbation, at later times.

Figure 24 shows the same results for PDF at Re = 500 and κ = 0.1. The energy of the
random perturbation decreases until t ≈ 16 before increasing and peaking at the same time
as the optimal perturbation. Due to the faster time scale over which growth happens in this
case, the projection of the random perturbation onto the optimal perturbation matches the
energy of the optimal perturbation even at early times. Furthermore, the streamlines of the
random perturbation agree with those of the optimal perturbation at t ≥ 25. These figures
show that, despite exhibiting far less growth, the random perturbation evolves into the
optimal perturbation.

3.5. Optimal perturbation timing
Up to this point we have predominantly considered perturbations applied at the first instant
of acceleration or deceleration. However, as noted in figures 7 and 8, perturbations can
grow larger when applied at later times. In this section we investigate this behaviour by
sweeping over the time t0 when we apply the perturbation. Figure 25 shows the maximum
amplification Gmax,t0 = maxα,β,t,t0 G(t) and the time at which the perturbation is applied
at various Re and κ for decelerating WDF and PDF. Similar to the results in figure 9, there
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Figure 25. Panels (a) and (b) show the maximum growth normalized by the maximum growth of perturbations
in the constant flow at various Re and κ for decelerating WDF and decelerating PDF. Panels (c) and (d) show
the optimal perturbation timing at various Re and κ for decelerating WDF and decelerating PDF.
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Figure 26. Panels (a) and (b) show the optimal perturbation streamwise wavenumber at various Re and κ
for decelerating WDF and decelerating PDF. Panels (c) and (d) show the optimal perturbation spanwise
wavenumber at Re and κ for decelerating WDF and decelerating PDF.

is a massive increase in the amplification as Re and κ increase. For WDF, this increase in
amplification now appears at lower values of both Re and κ , in comparison to the t0 = 0
case. Figures 25(c) and 25(d) show that this increase coincides with a substantial delay
in the application of the perturbation. At low κ , this delay is largest, and decreases and
converges as κ increases. When κ is small, the time scale associated with wall motion
dominates; when κ is large, the viscous time scale dominates.

In figure 26 we show the optimal wavenumbers at which Gmax,t0 is achieved.
Qualitatively, these results agree with the results at t0 = 0. At low κ and Re, the optimal
perturbations are spanwise with β ≈ 1.6 for WDF and β ≈ 2.2 for PDF. At high Re, the
optimal perturbations are streamwise with α ≈ 0.8, at low κ , and α ≈ 1.4, at high κ , for
WDF. In PDF the optimal perturbations are at α ≈ 1.6, at low κ , and α ≈ 2.1, at high κ .
Again, this highlights that branch switching occurs at sufficiently high Re and κ .

Next, we investigate the shape of the optimal perturbations at the optimal timing and
inform the results with linear stability analysis using the quasi-steady state approximation.
Figure 27(a) shows the energy of the optimal perturbation, the real part of the largest
instantaneous eigenvalue and the energy of evolving different eigenvectors forward in
time for WDF at Re = 500 and κ = 0.1. Figure 27(b) shows the evolution of the optimal
perturbation and the eigenvectors of the instantaneous linear operator at various times
for WDF. This figure highlights three important times in the evolution of the optimal
perturbation. First, the initial phase of the optimal perturbation occurs around when
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Figure 27. (a) Evolution of the optimal perturbation and of eigenvectors of the instantaneous linear operator
for decelerating WDF (Re = 500, κ = 0.1) determined by the linearized equations of motion and the largest
eigenvalue of the instantaneous linear operator. (b) Streamfunction of the perturbation as it evolves in time, and
the streamfunction of the eigenvector of the instantaneous linear operator at that time.

the maximum eigenvalue of the instantaneous linear operator becomes positive. Second,
when the maximum eigenvalue peaks, the shape of the optimal perturbation and the
instantaneous eigenvector closely resemble one another. Third, when the maximum
eigenvalue drops below zero, the energy of the optimal perturbation begins to decrease.

Due to this close relationship between the optimal perturbation and the quasi-steady
state approximation, we now consider the influence of perturbing the flow with
the instantaneous eigenvectors. At the initial perturbation time t = 20, the optimal
perturbation and the instantaneous eigenvector are much different. In particular, the
instantaneous eigenvector exhibits a much lower streamwise wavenumber, resulting in a
larger structure. When we perturb with this eigenvector Gv20, we see minimal growth.
At the peak of the maximum eigenvalue, the optimal perturbation and the instantaneous
eigenvector closely match one another. However, if we perturb with the eigenvector at
the peak Gv45, it results in orders of magnitude less growth. Also, if we perturb with
this eigenvector at t = 20, it too results in far less growth. Although the instantaneous
stability of the flow plays an important role in the evolution of the optimal perturbation, the
instantaneous eigenvectors do not sufficiently align with the optimal perturbation needed
to experience the maximum growth in energy. The optimal perturbation exhibits larger
energy than the instantaneous eigenvectors because it can exhibit significant levels of
transient growth before matching the shape of the eigenvector at the peak of the maximum
eigenvalue. Past this point, the shape of the eigenvector remains nearly constant, so the
optimal perturbation too maintains this shape. This also indicates that the quasi-steady
state approximation is reasonable over this time interval, as the eigenvector does not
change substantially. Lastly, we show the energy of the eigenvector once the eigenvalue
becomes negative Gv130, which experiences minimal growth, as expected.

In figure 28 we show the same results as in figure 27 for PDF at Re = 500 and κ = 0.1.
The optimal perturbation timing occurs when the maximum eigenvalue turns positive.
The optimal perturbation starts with streamlines that are much more anti-aligned with the
flow than the instantaneous eigenvector at this time. Then, the optimal perturbation grows
and aligns with the instantaneous eigenvector at the peak of the maximum eigenvalue.
This growth continues until the maximum eigenvalue drops below zero. As with WDF,
the initial growth of the optimal perturbation plays an important role that is missed when
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Figure 28. (a) Evolution of the optimal perturbation and of eigenvectors of the instantaneous linear operator
for decelerating PDF (Re = 500, κ = 0.1) determined by the linearized equations of motion and the largest
eigenvalue of the instantaneous linear operator. (b) Streamfunction of the perturbation as it evolves in time, and
the streamfunction of the eigenvector of the instantaneous linear operator at that time.

only considering the instantaneous eigenvectors. In both WDF and PDF, as Re increases
(at a sufficiently high κ), the peak of the maximum eigenvalue increases to larger times,
thus leading to longer times over which this initial growth increases the energy of the
perturbation.

Finally, we end by showing that Gmax,t0 can be accurately approximated by integrating
the instantaneous eigenvalue curve. Morón et al. (2022) showed for pulsatile flows with
specific waveforms that Gmax,t0 can be well approximated by

GLSA = e2λi, (3.28)

where

λi =
∫ t0+	tu

t0
λmax(t) dt. (3.29)

Here, 	tu stands for the time window where λmax > 0. Note that Morón et al. (2022)
include a time period T that cancels out; this is not relevant to our case as our flow is
not pulsatile. In figure 29 we show how Gmax,t0 and GLSA change as we increase Re at
κ = 0.1. Similar to t0 = 0 (figure 10), the scaling of Gmax,t0 changes from Re2 to 10Re as
Re increases. For WDF, this transition occurs at Re ≈ 250, which is far lower than the
t0 = 0 case, where it takes place at Re ≈ 400. For PDF, transition arises near the same
point, because the optimal perturbation timing is closer to zero. Additionally, figure 29
shows that GLSA is a good proxy for the optimal energy growth. It shows the correct scaling
at high Re, even though it slightly underestimates the growth.

4. Conclusions

We undertook a systematic investigation of the stability of unsteady accelerating and
decelerating flows. An exact analytical solution for laminar flows with arbitrary wall
motion and pressure gradients in channels has been derived, from which we selected
a specific exponentially decaying profile for wall motion and flow rate that isolated the
effects of acceleration and deceleration. With these analytical profiles, we investigated the
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Figure 29. Plots of Gmax,t0 and GLSA as a function of Re for a decelerating flow at fixed κ = 0.1 (‘Dec’) and
Gmax,t0 for constant flow (‘Const’) for (a) WDF and (b) PDF. The fitting lines are described in the text.

stability of the flow with respect to these base flows through the linearized equations of
motion by computing optimal perturbations. This investigation showed that deceleration
can cause perturbations to exhibit massive amplification, while perturbations in the
accelerating case never exceeded the maximum amplification of perturbations for a
constant profile. Furthermore, the maximum amplification seen in the decelerating case
exhibits both the Re2 scaling seen in the constant case at low Re, and the 10Re scaling seen
in some unsteady cases at high Re.

This change in scaling arises due to a branch switching of the dominant perturbation
in the decelerating case. At low Re and κ , we found that spanwise perturbations are
most amplified, but upon increasing these values streamwise perturbations became most
amplified. This was not the case for accelerating flows where spanwise perturbations
always showed the largest amplification. We then studied the evolution of the optimal
perturbations in time. In the case of acceleration, we found that the optimal perturbations
stayed as streamwise vortices through time, similar to what was observed by Butler &
Farrell (1993). However, in the case of deceleration, the perturbations grew due to the Orr
mechanism, or the down-gradient Reynolds stress mechanism (Butler & Farrell 1993).
When streamlines are aligned with the laminar shear, there is growth. In the case of
deceleration, the flow stops advecting the streamlines causing them to align opposite to
the laminar shear of the base flow for extended periods of time, leading to growth. This
behaviour does not happen in constant or accelerating flows since the laminar profile
eventually aligns the streamlines with the laminar shear of the base flow. Furthermore, we
found that this large growth of perturbations appears in DNS, both when the perturbation is
applied directly or when random noise is imposed. Finally, we discovered that the optimal
timing, when the perturbation is applied, is given by the instant when the maximum real
eigenvalue of the instantaneous linear operator becomes positive.

In the future we intend to further explore how much the flow needs to decelerate for
perturbations to exhibit the massive amplification shown here by using other temporal
functions for the wall motion and flow rate. Additionally, these results could be extended
to inform control strategies to avoid laminar transition. In the case of decelerating flows,
this would require breaking up the formation of streamwise perturbations, and, in the case
of acceleration, this would require breaking up spanwise perturbations. The fundamental
insights from this study could also have implications for understanding the emergence
of instabilities around accelerating and decelerating bodies of more complex geometries.
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Figure 30. Error in the laminar profile for K = 100 modes using different forms of the laminar solution.

In particular, it may be the case that the destabilization around decelerating bodies could
also be due to extended growth via the Orr mechanism.
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Appendix A. Additional discussion on laminar flow solutions

We further discuss the choice of functions in (2.6), validate the laminar solutions against
other analytical solutions for specific flows and provide a list of solutions for a family of
unsteady flows. As mentioned in § 2, we could seek solutions in the wall-motion case of
the form

U( y, t) = fw( y, t)+ gw(t)y. (A1)

Following the procedure from § 2, this results in the laminar solution

U( y, t) =
∞∑

n=1

e−ant
(

2(−1)n

πn

∫ t

0
eant′ dgw(t′)

dt
dt′ + Cn

)
sin(nπy)+ gw(t)y. (A2)

Although this equation has fewer terms than (2.14), the error is larger since it requires
approximating y in terms of sin(nπy). In figure 30 we show the error between U
approximated with K = 105 using (A2) (U) and K = 100 modes using both (2.14) and
(A2) (Ũ) for decelerating WDF (Re = 500 and κ = 0.1). In the K = 105 case, there is no
discernible error between the two solutions. Figure 30 shows that a judicious choice of the
form of (2.14) results in multiple orders of magnitude higher accuracy than the solution in
(A2). The one exception to this is at t = 0 where there is a discontinuity in dgc/dt, when
evolving from constant simple shear, that does not change the results in (A2).

Next, we validate the laminar solution with three canonical problems: Stokes’ first
problem (gw = H(t)), Stokes’ second problem (gw = sin(2πt)) and Womersley flow
(gp = −(2/Re) sin(2πt)) (Batchelor 2000; Majdalani 2008). In figure 31 we compare
the solutions (A2), (2.14) and (2.25) against these three canonical problems at Re = 10.
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Figure 31. Laminar solutions using reference equations and the equations presented here for (a) Stokes’ first
problem, (b) Stokes’ second problem and (c) Womersley flow.

Flow Equation Integral

gw(t) = H(t) (A2) 1

gw(t) = ∑∞
m=−∞ ĝm eiωmt (2.14)

∑∞
m=−∞

−ω2
mĝm

an+iωm
(e(an+iωm)t − 1)

gw(t) = tm (2.14) −m(m−1)antm
(−ant)m (Γ (m − 1)− Γ (m − 1,−ant))

gw(t) = ∑∞
m=0 ĝmL(0)m (t) (2.14)

∑∞
m=2

∑∞
l=0

(−1)l ĝm

al+1
n

(eantL(2+l)
m−2−l(t)− L(2+l)

m−2−l(0))

gw(t) = ui e−κt + uf (1 − e−κt) (2.14) κ2(ui−uf )

an−κ (e(an−κ)t − 1)

gp(t) = ∑∞
m=−∞ ĝm eiωmt (2.25)

∑∞
m=−∞

iωmĝm
bn+iωm

(e(bn+iωm)t − 1)

Table 1. Integral expressions in the laminar solutions for specific flows.

Notably, we present both Stokes’ second problem and the Womersley flow after the
transient from the initial condition has approached zero.

We summarize in table 1 the integrals in (A2), (2.14) and (2.25) for some interesting
boundary conditions, and for generic Womersley flow. The cases that we include are
Stokes’ first problem, a generalization of Stokes’ second problem for all periodic
functions, the polynomial tm, Laguerre polynomials (L(α)m (t)), which is the natural basis for
polynomial functions with t ∈ [0,∞], the exponential decaying flow considered above and
a generalization of Womersley flow for all periodic functions. Note that, in the polynomial
cases, we are assuming that the polynomial is twice differentiable. For tm, this implies
m ∈ Z

+ and m > 1. Also, Γ represents the ordinary gamma function, if it takes one
argument, and the incomplete gamma function, if it takes two input values.

Appendix B. Converting the energy norm to the L2-norm

Here we outline the procedure for converting the energy norm to the L2 norm.
This procedure depends upon how we discretize L . Specifically, in (3.11) we must
approximate the two derivative operators D2 and D4. Early approaches (Farrell 1988)
used finite-difference methods for approximating these derivatives, but we instead choose
Chebyshev differentiation matrices (Reddy & Henningson 1993; Weideman & Reddy
2000) to approximate derivatives. Spectral methods exhibit superior convergence, which
reduces the number of collocation points required for our computations. Additionally,
Chebyshev collocation points (also known as Gauss–Lobatto points Peyret 2002) are well
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suited for our flows of interest since they are more densely clustered near the walls of the
domain where we exhibit larger gradients. However, defining q on these collocation points
necessitates accounting for the non-uniform grid when evaluating (3.20).

To address this non-uniform spacing, consider the inner product

〈ω̂y, ω̂y〉L =
∫ 1

−1
ω̂∗

y ω̂y dy ≈
M−1∑
i=1

ω̂y( yi)
∗ω̂y( yi)	yi, (B1)

where

yi = cos
(

πi
M

)
, i = 0, . . . ,M, (B2)

with M grid points. With this definition, we can construct a diagonal weight matrix W to
account for 	yi and transform the inner product on a non-uniform grid into a standard L2
norm with

〈ω̂y, ω̂y〉L ≈ ‖W 1/2ω̂y‖2. (B3)

While this allows us to convert all terms in the integral in (3.20) to standard L2 norms we
are still left with the presence of derivates of q in the energy norm.

To proceed, we must convert (3.20) to one inner product in terms of v̂ and one in terms
of ω̂y. For this reason, we consider the inner product

〈(D +
√

k2)v̂, (D +
√

k2)v̂〉L

= 〈Dv̂,Dv̂〉L + 〈
√

k2v̂,
√

k2v̂〉L + 〈Dv̂,
√

k2v̂〉L + 〈
√

k2v̂,Dv̂〉L. (B4)

The right-hand-side of (B4) includes the two terms in (3.20), with two additional
cross-terms. We can evaluate these cross-terms by rewriting the above equations in integral
form:

〈Dv̂,
√

k2v̂〉L + 〈
√

k2v̂,Dv̂〉L =
∫ 1

−1

∂v̂

∂y

∗√
k2v̂ dy +

∫ 1

−1

√
k2v̂∗ ∂v̂

∂y
dy. (B5)

Integrating by parts, which we demonstrate on the second integral, we see that the resulting
terms sum to zero:

〈Dv̂,
√

k2v̂〉L + 〈
√

k2v̂,Dv̂〉L

=
∫ 1

−1

∂v̂

∂y

∗√
k2v̂dy +

√
k2v̂∗v̂|1−1 −

∫ 1

−1

√
k2v̂

∂v̂

∂y

∗
dy = 0. (B6)

This allows us to rewrite (3.20) as

‖q‖2
E = 〈(D +

√
k2)v̂, (D +

√
k2)v̂〉L + 〈ω̂y, ω̂y〉L, (B7)

which we combine with (B3) to convert the energy norm into the L2 norm

‖q‖2
E =

∥∥∥∥
[

W 1/2(D +
√

k2) 0
0 W 1/2

]
q
∥∥∥∥

2

= ‖V q‖2. (B8)

We use V to in 3.21 to compute the maximum amplification.
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Figure 32. Maximum amplification of energy density G using the adjoint method and the matrix exponential
method.

Appendix C. Computation of non-normal growth

We compare our use of the matrix exponential method for computing the energy
amplification to the adjoint method for computing non-normal growth. For this
comparison, we use the laminar PDF that is impulsively stopped to a zero flow rate given
in Nayak & Das (2017). Figure 32 shows the growth for perturbations of the laminar base
flow using both the matrix exponential method ((3.21)) and the adjoint method (Nayak
& Das 2017). The two curves are in excellent agreement suggesting both choices give
equivalent solutions. The matrix exponential method has the advantage that only matrix
multiplications for the forward solution are needed, while the adjoint method requires
solving a forward problem and a backward problem iteratively. For the channel flow cases
we considered in this work, the linearized equations of motion result in a small matrix,
however, this method would not be feasible when a larger matrix is required, in which case
the adjoint method would be preferable.

Appendix D. Solving for the pressure gradient when given a flow rate

Here, we introduce a method for numerically approximating the pressure gradient gp for a
prescribed flow rate assuming no even wall motion (i.e. ge(t) = 0). Even though we could
numerically approximate both the integral and the time derivative in (2.28), we instead
perform integration by parts to eliminate the time derivative in (2.28), which leaves us with
an approximation of the integral only. Using integration by parts we obtain the following
equation:

e−bnt
∫ t

0
ebnt′ dgp

dt
dt′ = ĝp(t)− e−bntĝp(0)+ e−bntH(t)ĝ0 − bn e−bnt

∫ t

0
ebnt′ ĝp dt′.

(D1)

Combining (2.28) with (D1), we find that

Q(t) =
∞∑

n=0

32 e−bntRe
(2πn + π)4

(
H(t)ĝ0 − ĝp(0)− bn

∫ t

0
ebnt′ ĝp(t′) dt′

)
+ 2(−1)n e−bntC2,n

2πn + π
.

(D2)
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Using the trapezoidal rule to approximate the integral in (D2) we arrive at an expression
for the temporal evolution of the pressure gradient:

ĝp(l	t)
∞∑

n=0

dn ≈ ĝp((l − 1)	t)
∞∑

n=0

dn e−bn	t

−
∞∑

n=0

l−1∑
j=1

dn(e−bn(l−j)	tĝp( j	t)+ e−bn(l−( j−1))	tĝp(( j − 1)	t)+ R(l	t). (D3)

Here dn = 4	t/(2πn + π)2 and

R(t) = −Q(t)+
∞∑

n=0

32 e−bntRe
(2πn + π)4

(H(t)ĝ0 − ĝp(0))+ 2(−1)n e−bntC2,n

2πn + π
. (D4)

Note that the factor of 2 from the trapezoidal rule has been incorporated into dn. Finally,
we can compute the velocity profile corresponding to this pressure gradient by again using
integration by parts ((D1)) to simplify (2.17) and by approximating the resulting integral
with the trapezoidal rule leading to

U( y, l	t) ≈ −
∞∑

n=0

l∑
j=1

{
dn(−1)n

2
[e−bn(l−j)	tĝp( j	t)+ e−bn(l−( j−1))	tĝp(( j − 1)	t)]

}

cos
[(

n + 1
2

)
πy

]
+

∞∑
n=0

e−bnl	t
[

16(−1)nRe
(2πn + π)3

(H(l	t)ĝ0 − ĝp(0))+ C2,n

]

cos
[(

n + 1
2

)
πy

]
. (D5)
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