THE SUPREMUM OF A FAMILY OF
ADDITIVE FUNCTIONS

ISRAEL HALPERIN

Summary. Any system .S in which an addition is defined for some, but not
necessarily all, pairs of elements can be imbedded in a natural way in a commuta-
tive semi-group G, although different elements in .S need not always determine
different elements in G (see § 2). Theorem 2.1 gives necessary and sufficient
conditions in order that a functional p(x) on S can be represented as the supre-
mum of some family of additive functionals on .S, and one such set of conditions
is in terms of possible extensions of p(x) to G. This generalizes the case with .S
a Boolean ring treated by Lorentz [4]. Lorentz imbeds the Boolean ring in a
vector space and this could be done for the general .S; but we prefer to imbed .S
in a commutative semi-group and to give a proof (see §1) generalizing the
classical Hahn-Banach theorem to the case of an arbitrary commutative semi-
group.

In § 3, S is specialized to be a relatively complemented modular lattice with
zero element in which perspectivity is assumed transitive. Lemmas concerning
simultaneous decompositions of several elements in S are proved which enable
a certain relation in G to be described in terms of canonical decompositions in .S
(see Theorem 3.1). Theorem 2.1 can then be given in a more direct form for
this special case generalizing the concept of “covered m times” given by Lorentz
[4] for a Boolean ring.

1. The Hahn-Banach theorem for semi-groups. The theorem of Hahn-Banach
concerning the extension of a linear functional [1, pp. 27-29] assumes a linear
vector space. We establish now a general form of this theorem which includes the
case of an arbitrary commutative group or semi-group.

T will denote an arbitrary set of real numbers ¢ which includes the positive
integers and the sum and product of any two of its elements.

A set G of elements x, v, 2, . . . will be called a T-semi-group (in place of 7-
commutative-semi-group) if (i) 21 + 22 is defined and in G for all 2y, 2z, in G
and the commutative and associative laws hold, (ii) fz is defined and in G for all
zin G and ¢ in T and the following identities hold:

t(Zl + 22) = [z + tZz, (tl + Ifg)z = 13 + th,

Ifl(lfzz) = (tltz)z, 1z = 2.
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In this paper function will mean one which is single-valued and has values

which are finite real numbers.
A function f(2) on G will be called T-additive if

(1.1) f(z1 4 22) = f(z1) + f(22) for all 24, 22 in G,

(1.2) fltz) = tf(3) forallzinGand ¢tin 7.
A function p(2) on G will be called T-subadditive if

(1.3) : p(z1 4 29) < p(21) + p(22) for all z1, 22 in G,

(1.4) p(tz) < tp(2) forallzin G, tin T, ¢ > 0.

In the above nomenclature the letter 7° may be omitted when T consists
precisely of all positive integers.

Suppose now that G, Gy are T-semi-groups with G; contained in G, that x,
isin G, and that G* consists of all y which possess a representation of at least one
of the forms

(1.5) Yy = x + txo,
(1.6) y = txg,
1.7 y = x,

with x in Gy and ¢ in T. Suppose %(2) is an arbitrary function on G and f(x) a
T-additive function on G;. A generalization to this situation of the Hahn-Banach
extension lemma is given by the following theorem.

THEOREM 1.1. Suppose that there is a function M(u) on G such that

(1.8) Sflxe) + é (B: — an)h(z:) > flx1) + JE:I (t1; — tas) M (u;)

whenever, for arbitrary positive integers m, n,

n m n m
1.9) %1+ 2:1 by + 21 a2; = X2+ z:l bosu; + 21 Bz
j= i= = i=

with x1, X2 1 Gy, all u; and z;in G, all tyy, tay, ay Bsin T, t1; > tay for all j, and
a; < By for all i. Then there exists a T-additive function ¢(y) on G*, which
coincides with f(x) on G, such that (1.8) holds, with the same M (u), when f, G,
are replaced by ¢, G* respectively.

Discussion of condition (1.8). The special case of (1.8) with ¢;; = f,; for
all 7, can be stated as follows:

(1.10) J) <5 + 2 (8= eh(z)

whenever

X1 +1Z—:1 ag; =% + ;,3:‘21
with a; < 8, for all 7.
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This condition (1.10) actually implies the existence of a function M (u) for

which (1.8) holds, if T contains at least one negative number — =, + > 0. Indeed,
from (1.9) we obtain, using arbitrary integers p > 0, ¢; > 0,

p[xl + jz=:1t1ju, + ; aizi] -+ gl 1[— ru,] + ;gj[— TU )

- p[xz ENIIES m] + 3 @+ DI,
the term g, [ — r #,] to be considered absent if ¢, = 0. Hence
prt X oty — g+ 2 U= rl + X (e
= prat 3 Gt + X, @+ DIl + X (0805

The integers p, ¢; can be chosen so that for every j,

2p(ty — tag) > @37 > Py — t2y);
then (1.10) applies and yields

Hw) < 2) + X lar = bl = t)h(ws) + ;:;qju— ru)

+ 35 180~ adh(eo).

Hence
m n q;T
@) + X (B = adh(z) > fle) = 2 (fun - tzj)<m - l)h(u,)
_ D
; (t; t“)P(tu — tz;)h( u;)
so that (1.8) holds with M () = — | h (w)| — (2/7) | b (— ru)]|.

Thus, in the classical Hahn-Banach lemma, where T includes all real numbers,
the function M (#) does not have to be mentioned explicitly in the hypotheses.
In the case of a T-semi-group with 7" containing non-negative numbers only,
condition (1.8), and the extension theorem, too, may fail even though (1.10)
is valid. An example of this is given below (Example 1).

We note that (1.10), and hence (1.8) too, include the restriction

(1.11) Fler) = f(x2)

whenever x; + 2 = x2 + 2 with 2 in G. Also, the choice x; = x + x, x5 = x,
m=1,2=x,a; = 1, 81 = 2 shows that (1.10) includes the condition

(1.12) flx) < h(x) for all x in G;.

If T contains #; — ¢ whenever it contains ¢;, £, with ¢ > £, the condition
(1.8) simplifies to

(1.13) flae) + iZ:wh(zi) > fle1) + jZ:)lt;M(u;)
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whenever, for arbitrary non-negative integers m, #,

(1.14) x1 + ;tju,--{—v = x, + izz:l'yizi—l-v

with x1, x2 in Gy, all ¢, v, in T and > 0, v and all u,, 2; in G (the terms
> vhle), X M)
=1 =1

to be replaced by 0 when m, n, respectively, take the value 0). For such 7, if
h(z) happens to be T-subadditive, it is sufficient that there be a function M (u)
with the properties

(1.15) M(tw) > tM(u) foraluin G, tin T,¢t> 0,
(116) M(ul + u2> > M(lh) + .LM(”Z) for all U Uz in G,
such that

(1.17) flx2) + h(z) > f(x) + M(u)

whenever x; + # + v = %2 + 2 + v with x4, x5 in G; and u, 2, v in G (the terms
h(z), M(u) to be replaced by 0 if z, u respectively are absent in the equality).
Finally, for such T, if T contains at least one negative number and %(z) happens
to be T-subadditive, it is sufficient, without postulating the function M («), that

(1.18) flxn) < flx) + h(2)

whenever x; + v = x3 + 2z + v with x4, x2in Gy and 2, v in G (k(2) to be replaced
by 0 if z is absent in the equality).

Proof of Theorem 1.1. Consider separately two cases.
Case 1. For some Ay, A2 in T with Ay # X, and for some gy, g2 in Gy and v in G,

(119) )\196'0 + I 41 —I— v = )\20(30 + g2 + v =w,

say. We may suppose Ay > Ao Set 7o = [f(g2) — f(g1)] /(M1 — A2) and define
é(y) = f(x) + tro if v is given by (1.5),

(1.20) o (y) = tro if ¥ is given by (1.6),
o(y) = f(x) if v is given by (1.7).

That this ¢ is single-valued and satisfies (1.8) on G* can be seen as follows:
suppose, corresponding to (1.9),

(1.21) y1 + thljuj+ Zlaizi =y, + thzjuj+ Zlﬁizi
= i= = i=

with y1, y2 in G*. If y1 = x1 4 tixe and y» = x5 + f2x¢ we multiply (1.21) by
A1 and by Az and combine to obtain

M(xl + two + ;tlju, + ; a,-z,-> + M(M + taxg + ;tzju,- + > ﬁ;-m)

i=1

+ G+ )@+ g2+ o)
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= )\1(302 + tox0 + 21 t2,u, =+ 21 ﬁizi> + A (xl + tixo + Z:l tljuj + 2:1 a2
Jj= i= = i=

+ (i + 1) (g1 + g2 + ),
that is,

A%y + Noxs + £ige + fags + Zl (Mat1y =+ Natoj)u; + Z‘,l(xla,- + Bz + (b +Lo)w
= =
= Ai¥s + Aox1 -+ f1g1 + foga + 221 (Nif2; 4 Net1j)u;
=

+ Z_:l (MBi + Neai)zs + (1 + t2)w.
Now (1.8) for f on G, applies and gives

F(Awee + Noxy + 11 + tog2) + 21 (A1 — A2)(B: — ai)h(zy)

< f(hxey 4 Aews 4 tage + f2g1) + 21 (N = M) (bay — tay) M (uy).

From this follows at once

(1.22)  ¢(y2) + i (B: — ad)h(z:) > ¢(y1) + ;:.:1 (t1y — ta) M (uy).

Similar reasoning shows that (1.21) implies (1.22) if y,,y, have representations
of any of the forms (1.5), (1.6), (1.7). This implies that ¢ is single-valued and
satisfies (1.8) on G*. It is evident that ¢ is 7T-additive and coincides with f on
G, so that Theorem 1.1 is proved for Case 1.

Case 2. In every relation of the form (1.19), \; = .. Then, with a number
7o to be assigned later, we define ¢(y) as in (1.20). Irrespective of the value of
70, this ¢ is single-valued on G*. For suppose y1 = ys. If y1 = x1 + f1x0 and
Yo = Xs + oo then tueo + 1 + v = f2x9 + %2 + v for any v in G, hence (this is
Case 2) t; = ty and, using (1.11), f(x1) = f(x2), (¥1) = $(y2). Similar reasoning
applies if y1,y, have representations of any of the forms (1.5), (1.6), (1.7) to
show that ¢ is single-valued on G*. It is evident that ¢ is T-additive and coincides
with f on Gi.

Thus we need only show that an 7, exists for which (1.21) implies (1.22) with
arbitrary yi1,y. in G*. It is easily seen that it is sufficient to do this for the y;,y.
with representations y; = x1 + ti%o, Y2 = X2 + toxo with #; £ t,. There are
therefore two conditions to satisfy, according as f; > ¢, or t2 > t1. Explicitly,
we require (use a bar to distinguish the two possibilities),

(1 23) (t t )[f(xz) —f(xl) +Z (Bz - a,)h(zi) - E (tlj - t2j)M(u])] <7’0

whenever
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Zz > fl
(1.24) 7 0 7 0

&y + fwo + ;;1 by + Zl aiZ; = Ty + Lo + 21 bi; + Zl Bz,
and . .

1 m n

(1.25) 7o < m[f(xz) —f(x1)+ ; (Bi—ai)h(z:)— ;1 (tl,-—tQ,)M(u,-)]
whenever

ty > 1e
(1.26)

n m n m
x1 + tixo + z:ltljuj + Z:l a3 = Xo + faxo + Z bath; + Z Bz
= P =1 =1

That {L.H.S. of (1.23)} < {R.H.S. of (1.25)} follows from (1.24) and (1.26),
using (1.8) for f on G,. Hence

sup {L.H.S. of (1.23)} < inf{R.H.S. of (1.25)}

showing that 7, exists, as required, if there are realizations of (1.24) and (1.26).
Now there are realizations of (1.26), for example: x; = x, (an arbitrary element

iflGl)v
=2, tb=1, n=m=1, @y =21=%0, tu=Itu=1, ay=1, B =2

There are also realizations of (1.24) (it was to ensure this that the function
M(u) was postulated!), for example: x; = x; (an arbitrary element in G,),

l—f'l'-:l, t-2=2, ﬁv':?’)—’l/:l, ﬁ1=21=x0, Z]_l=2, 1‘721‘—‘1, &1=B_1=1.
This proves Theorem 1.1 for Case 2 and completes the proof of the theorem.

CoroLLARY. Under the conditions of Theorem 1.1 the T-additive function
f(x) can be extended by transfinite induction to a T-additive function ¢ (2) on G such
that (use (1.8) for ¢ on G) M(2) < ¢(2) < h(2) for all z1n G.

THEOREM 1.2. Let h(2) be a funcition on a T-semi-group G such that, for some
Sfunction M (u),

(1.27) (t2 — t1)h(z) + é (Bi — aih(zi) > jZ::l (try — o)) M (u;)

whenever, for arbitrary positive integers m, n,

(1.28) hiz + 21 by + Z:l a3; = loz + Zl bath; + Zl 8424,
= pm = =

W’Lth 2, all Uy all 24 m G, t1, t2, all t1j, tzj, a gy ﬂi m T, tlj } tzj, a; < Bi- Then
for arbitrary (but fixed) xo in G there is a T-additive function ¢(z) on G with
d(x0) = h(xo) and M(z) < ¢(2) < h(2) for all zin G.

1In the classical Hahn-Banach theorem for linear vector spaces, k(z) is a subadditive function
p(2) with p(tz) = tp(z) for all t > 0 and — p(—u) acts as the function M (x) which we postu-

lated explicitly. G. G. Lorentz has independently had the idea of investigating extensions of
an additive f(x) satisfying ¢(x) < f(x) < p(x) for given subadditive p(z) and superadditive g(z).
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Remark. The hypotheses imply:
(1.29)  k(2) s T-subadditive and h(tz) = th(z) for all z in G,t n T, t >0,
(1.30) k(z1) = h(zs) whenever 21 + v = 2o + v with 21, 22, v in G.

Proof. Let G; be the T-semi-group of all txy with ¢ in T and define f(x),
T-additive on Gi, by f(ixe) = th(xe). This f is single-valued, for if f1xo = f220
the hypotheses of the theorem imply that t1%(x0) = feh(x0). It is also evident
from (1.27) that (1.9) implies (1.8) in the present situation. Thus Theorem 1.1
applies to extend f to a ¢ with the required properties.

THEOREM 1.3. The hypotheses of Theorem 1.2 are necessary and sufficient in
order that h(z) admait a representation

(1.31) h(z) = sup{on(s)}
with a family of T-additive functions ¢ for which inf {px(w)} is finite for every
uin G.

Proof. The hypotheses of Theorem 1.2 imply a representation (1.31), in
fact with 2(2) = max {¢(2)} for a family of T-additive ¢(z) with M(z) < ¢(u)
for all ¢ in the family and all # in G.

Conversely, if there is a representation (1.31), then for each A,

tign(z) + Z;l ti o (uy) + };am(zi) =t (2) + ;tzm(w) + 7:1 Bidn(z1).
Hence (1.27) holds with M (u) = inf{¢x(x)}.

CorOLLARY 1. If h(2) admits a representation (1.31) it admats such a represen-
tation with sup replaced by max (possibly with a different family of T-additive
functions ¢y).

COROLLARY 2. The M(u) in (1.27) may be resiricted to functions satisfying
(1.15), (1.16).

TaEOREM 1.4. If T contains t; — t» whenever it contains iy, ts with t1 > i,
then necessary and sufficient conditions that h(z) admit a representation (1.31) are:
(1.29) and

(1.32) for some M (u) satisfying (1.15), (1.16), h(z1) > h(z2) + M (u) whenever
21+ v =25+ u + v (with h(z1), h(z2), M(u) replaced by 0 if 21, 22, u respectively
are absent in the equalily).

Proof. This follows easily from Theorem (1.3).

Remark. For the particular case when T consists precisely of all positive
integers, (1.29) can be replaced by

(1.33) h(z1 + 20) < h(z1) + h(z2) for all 21,2, in G,
(1.34) hiz+2) = h(z) + ki) for all zin G.
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To prove this we need only show that (1.33) implies % (nz) = nh(z) for all
positive integers #. But repeated applications of (1.33) give k(nz) < nk(z) and
repeated applications of (1.34) give 2(2™2) = 2™k (z). By choosing 2™ > n we
obtain

hr(2™3) < h((2™ — n)z) + h(nz)
by (1.33), and hence

2"h(z) < (2" — m)h(2) + h(nz),

from which follows #k(z) < h(nz) and therefore h(nz) = nh(2), as required.

TueEOREM 1.5. If T contains at least one negative number — 7, 7 > 0, then
necessary and sufficient conditions that h(z) admit a representation (1.31), whether
inf {¢\ (u)} is required to be finite or not, are the same, namely:

(6 — L)) < z':: (B: — a)hz)

whenever, for a positive integer m,

m m
hz + Zl a3y = bz + 2:1 B2,
1= i=
with 2, all 2, 1m G, ty, b all ayy Biin T, a; < B

Proof. The methods used on page 465 in the discussion of condition (1.8),
Theorem 1.1, show that, with the present hypotheses, (1.28) implies (1.27)
if M(u) is taken as — | h(u) | — (2/7) | h( — 7u) |.

CoOROLLARY. If T contains t; — t» whenever it contains t1, ts with t; > ts and T
also contains at least one negative number, then necessary and sufficient conditions
that h(2) admit a representation (1.31) are:

h(zy 4+ 22) < h(z1) + h(ze) for all 24, 25 in G,
h(tz) = th(z) forallzin G, tin T,¢t > 0,
h(z1) = h(z2) whenever 21 + v = 25 + v, 21, 23, v in G.

The following examples show the necessity of postulating the function M (%)
in Theorem 1.1, and the finiteness of inf {¢\ (%)} in the representation (1.31).

Example 1. T consists of all real non-negative numbers; G consists of all
two-dimensional vectors [a1,as] with a1 > 0, as > 0; G; consists of all [a4,0]
and xo = [0,1]; & [a1,a2] = a2 if as > 0 and klay,a:] = a;if a2 = 0; f[a1,0] = a..

Then f is T-additive on G; and condition (1.10) is satisfied. But for any
T-additive extension ¢ of f (G* = G in this example) and for every positive
integer #n, ¢[n,1] = n + ¢(xo), whereas h{n,1] = 1 so that there is no such ¢
with ¢ [n,1] < f[n,1] for all #. Thus Theorem 1.1 cannot be proved on the basis
of (1.10) alone.

In this example % is T-subadditive and satisfies (1.29), (1.30), yet % does not
admit a representation (1.31) (even with inf {¢\(%)} unrestricted). For if ¢

https://doi.org/10.4153/CJM-1952-042-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1952-042-1

ADDITIVE FUNCTIONS 471

is T-additive and ¢[a1,a2] < klay,a2] then
¢[n,1] = n¢[1,0] + ¢[0,1] < 1 for all #;
hence ¢[1,0] < 0 for all such ¢, whereas A[1,0] = 1.

Example 2. T consists of all non-negative integers; G consists of all infinite-
dimensional vectors @ = (a¢,a1, . - -,@p, - - .) with every a,, a non-negative integer
and at most a finite number of a,, different from 0; 2(¢) = max {m(a, — ao)}.

Then k(a) = sup{¢r(a)} with ¢\ (a) the T-additive function A (ax — ao)
(A =10,1,2, . ..). Nevertheless & does not admit a representation (1.31) with
inf {¢r(a)} finite. To see this, let a” denote the vector with (a®),, = 0 for m #n
and (a"), = 1 for m = n. If ¢(a) is a T-additive function with ¢(e) < k(a)
for all a then

(@) + ¢(a®) = ¢(a" + a° < h(a" + a° = 0.

Hence if £(a®) = sup {¢(a®)} for every = it would follow that inf {¢(a®)} < — =
for every #.

An elegant generalization (in a different way) of the classical Hahn-Banach
theorem has been given by Hidegoro Nakano [5, pp. 89-91]. Nakano deals with
a linear vector space, that is, with all real numbers as scalar multipliers, but for
given k(z) and x,, the requirements that there shall be a T-additive ¢ with
o (x0) = h(xo), ¢(2) < h(2) for all z, are replaced by the requirements that
there shall be a T-additive ¢ with ¢(2) < ¢(x0) — k(x0) + 2(2) for all z.

Theorems 1.1 to 1.5 of the present paper can be extended to include Nakano’s
generalization.

THEOREM 1.6. In order that h(z) admit a representation
(1.35) h(z) = sup{4dxr + \(2)}

with a famaily of T-additive ¢\ and constants Ay for which leI < K < » forall\and
inf{on(u)} s finite for every u in G, it is necessary and sufficient that functions
A (u), M(u) exist with [ A(u) [ < K for all w and

(1.36) (e — t)h(z) + f (B: — a)h(z)

> ;1 (trj — ta) M (uy) + (tz —h +§1 Bi— a;) — Z=:1 (t1; — th))A(Z)
whenever (1.28) holds.

Proof. If (1.28) implies (1.36), the argument used in the proof of Theorem
1.2 shows that for every xo in G there is a T-additive ¢y such that ¢o(xo)
= h(xo) — A(xo) and

M(z) — A(x0) < ¢o(2) < h(z) — A(x0)
for all zin G. Hence (1.35) holds with these functions 4 (x,) 4+ ¢0(2).
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Conversely if (1.35) does hold then (1.28) implies (1.36) if M (%) is taken to be
inf{4x + ¢x(x)} and A (2) is taken to be the limit of 4)_for any sequence of ),
for which A+ ¢\ (2) converges to #(z) and Ay converges, as 7 becomes infinite.

Remark. 1f h(z) admits a representation (1.35) then % is T-convex, that is,
(1.37) h(ax + (1 — a)y) < ah(x) + (1 — a)i(y)
whenever x,y are in Gand a,1 —aarein T (0 < a < 1).

2. Systems S with partially-defined addition operator. Now let S be any
system of elements, a, b, ¢, . . . with an addition ¢ + b defined, and in S, for some,
but not necessarily all, ordered pairs a,b in S. No further properties of 4 will
be postulated in this section. We shall call a function ¢(a) on S additive if
é(a + b) = ¢(@) + ¢(b) whenever a + b is defined.

Let G be the set of all formal sums x= a1 + . . . + @, with an arbitrary (but
finite) number of a; from S, the order being immaterial by definition and with
two sums x,y identified in G (x = y) if x can be transformed into y by a finite
number of changes of the form: a is replaced by a1 + a3 or conversely a; + @
is replaced byaifal—i—ag———a. fx=a14+...4a¢,andy=b1+ ...+ b,
let the definition of x 4+ v in G be

x+y=a1+...+a,+b01+...+0.

Then G is a semi-group and each element ¢ in S determines an element x = a
in G. We shall say .S determines G.

THEOREM 2.1. A function p(a) on S admits a representation

2.1 p(a) = sup{gr(a)}

(¢ additive on S, inf{px(a)} finite for each a in S) if and only if it admits a repre-
sentation

(2.2) p(a) = max{yx (a)}

(Y additive on S, inf{yY,(a)} finite for each a in S) and if and only if p(a) has an
extension p1(x) defined for all x in the G determined by S so that p, satisfies (1.32),
(1.33), and (1.34), and if and only if p(a) has the two properties:

(2.3) mp(a) < pla) + ...+ pa)
whenever ma +u=a1+ ...+ a,+ un G;

(2.4)  inf{m(p(ar) +. ..+ pla) —p0) —... —pB))} > —
whenever, for fixed ci, . . ., Cs, the integers m, v, n and the a1, . . . , @y, b1, . . ., by,
vary so that

mci+...+¢c)+bo+...+bp=a1+ ...+ a,

(In connection with this theorem see Lorentz [4]. The definition of p; (x) in
(2.5) below was suggested by [4].)
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Proof. For each additive ¢(a) on S define ¢1(x) = ¢(a1) + ...+ ¢(a,)
ifx=ay+...+ a, Then ¢; is single-valued and additive on G and is
an extension of ¢. Hence if p(a) does admit a representation (2.1) then the
function

p1(x) = sup{(x)}
is an extension of p(a) which, by Theorem 1.4, satisfies (1.32), (1.33), (1.34)-
On the other hand, if p(a) has any extension p;(x) which satisfies these condi-
tions, then by Theorem 1.4, pi(x) admits a representation (1.31) on G, which,
when considered on S only, gives a representation (2.2) for p(a) on S.

Again if pi(x) on G satisfies (1.32), (1.33), (1.34), then clearly it satisfies
(2.3) and (2.4). If such a pi(x) is an extension of p(a) then p(a) must satisfy
(2.3) and (2.4). Conversely, if p(a) on S satisfies (2.3) and (2.4) we define

(2.5) pi(x) = inf{m=(p(ar) + ... + p(an)}

forallay, ..., a, withmx +u=a,+ ...+ a, + u for some positive integer
m and some % in G. Then (2.3) ensures that p;(x) is an extension of p(a),
(2.4) ensures that p;(x) has finite real numbers as values, and from (2.5) it
follows that (1.32), (1.33), (1.34), with M(ci + . . . 4+ ¢,) = L.H.S. of (2.4),
hold for p;(x).

Remark. If the cancellation law, x + # = y + « implies that x = y, holds
in G, the condition (2.3) is equivalent to the (apparently) weaker condition

(2.6) mp(a) < pa) + ...+ pa,)

whenever ma = a; + . . . + a,1in G (see the definition of multiple subadditivity
given in [4]).

3. Modular lattices with zero and relative complements. Suppose now
that S is a modular (but not necessarily distributive) relatively complemented
lattice with zero element 0, so that the von Neumann theory of ‘‘independence”
(or “‘independence over 0" in terms of [3]) is valid at least for finite collections
of elements of S [6; 7; 3, p. 539; 2, p. 114]. Suppose too that e; + e is identical
with lattice union e; \J e, restricted to independent elements.

We recall that

n
e = Uei
i=1

is called a direct decomposition if ey, . . ., e, are independent and e is called
perspective to f (with axis a) written e—f, if e Ua =fUeae and eMNa =
fMa = 0 for some ¢ in S.

In what follows we shall postulate that .S has the additional property that
perspectivity is transitive, that is,

(3.1 e~f, fwg imply e-g

(In a Boolean ring (3.1) holds trivially since e « f implies ¢ = f. But (3.1) holds
also for the continuous geometries of von Neumann or more generally [6; 7; 3]
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if S has certain continuity properties.) With the hypothesis (3.1) we shall

show, for given ey, . . ., €y, f1, - . ..fm in S, that equality in G,
aea+...tet+ht+.. . +h=fi+...Ffutht+... .+ 5k

for some hy, . . ., k, in S, can be expressed in a simple way in terms of direct

decompositions of ey, . . ., €, f1, - « + fme

Lemma 1. Suppose that
e = U €;
i=1

is a direct decomposition and that e — f. Then there exists a direct decomposition
F=U f, with e;— f; for each i.

LeEmMMA 2. Suppose that e = e,\Jes, f = fi\Jfs are direct decompositions with
e~ fand ey~ fr. Then ex ~ fo.

LemMma 3 (Additivity of perspectivity). Suppose that
n n
e= Ue, and f= UFf,
=1 =1
are direct decompositions with e, — f; for each 1. Then e — f.

Under stronger assumptions these lemmas were proved in [7] but the proofs
are valid without change in the present case. Lemma 1 corresponds to a corollary
of [3, Lemma 3.3] and Lemmas 2 and 3 correspond to [3, Lemmas 6.2, 6.4].

LemMa 4. Suppose fi, . . ., fn and e are arbitrary. Then there exist direct
decompositions f; = fi; If/, e=e\J ... \Jeu1 such that e;— fi; for
1<j<mand e\ V... Ue,=eN (L U...US .

Proof. The lemma can be verified as follows: Let a; =f1\U. . . Uf,,
for1 < j < m+ 1andleta; = 0. Replacing f; for 1 < j < m by a complement
of a; N f; with respect to f; we may, and shall, suppose that fi, . . ., fu are
independent. Set e; = e M f1; for 1 < j < m set e; equal to a complement of
e M a; with respect to e M a1; set eny1 equal to a complement of e M @y
with respect to e; set fii=e;; for 1 <j<m set fi;=1;MN (e, ay);
for 1 <j < m set f; equal to a complement of fi; with respect to f;.

We shall show that e; « f1; with axis a;. This is trivial for j = 1 and for
7 > 1 we have

fulda;= (fN(e;Yay)) Ya;

= (fiVa) N (e;Vay) =e;Ua,

by the modular law and since ¢; < f;\Ja; = a1 and a; < f;\U a;. On the
other hand,
Juae;=fi;MNfiMNa; =0

since the fi, . . ., f; are independent and e;MNa; = ¢; M (eMa;) = 0. This
proves that e; « fi1;. The other parts of the lemma are easily verified.
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LEmMMA 5. Suppose ey, . . ., e, are arbitrary. Then there are independent
elements g; (j = 1, . . ., N,,) and direct decompositions

er=g:U...U gy,
e2=g(IZ)U---Ugl(\?EUgNﬁlU---UgNn

=" U...UgP  Ugvt1U ... U gy

such that
Nf -1

;U1 g =eN(aU...Ue-),
g’ =0 o g g,
for1t <r<mand1 <j< N,_1.
Proof. This lemma can be verified by induction on #, using Lemma 4.
LEMMA 6 (Superposition of decompositions). Suppose that
e=Ue; and f=US,
i=1 J=1
are direct decompositions and that e — f. Then there exist direct decompositions
er = ey, f; = UF, such that ey — fo, for all 4,j.

Proof. We shall assume, as we clearly may by Lemma 1 and the transitivity
of perspectivity, that e = f. Apply Lemma 4 to fi, . . ., f and e; (in place of ¢)
and obtain the direct decompositions

m
e = Ulem fi=fi; U fy with ey;  fi;.
j=

By Lemma 3, ¢;~Ufi; and hence by Lemma 2 (eo\U...Ue,) U f/. This
means that the lemma for # has been reduced to the lemma for » — 1. By
successive reductions the lemma can be reduced to the case » = 1 and for this
case the lemma holds by Lemma 1.

THEOREM 3.1. Ifx=e1+ ...+ e, and y=fi+ ...+ fn then x +u

= vy -+ u for some u in G if and only if there exist independent elements gy, . . ., gn
and direct decompositions

N N
(3.2) e; = U €ij fi = Ufij:

J=1 =1

such that each ey is either O or ~ g, each fi; is either 0 or —~ g;, and for each j
the number E; of i for which e;;~ g; is equal to the number F; of i for which

Jis o g5

Proof. Write x ~ y(d) if decompositions (3.2) do exist and write x = y(c)
if x + u =y 4+ u for some u in G. Since e ~ f implies ¢ + a = f + a for some
axis of perspectivity a in S, it follows that ¢ « f implies that e = f(c) and hence
x v y(d) implies x = y(c).
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The converse, x = y(c) implies x “~ y(d), will follow by induction if we prove:
(3.3) x - x(d);

(3.4) if x ~ y(d), this relation remains valid if f1 in y is replaced by f’ + £,
providing that f; = f' 4+ f"/;
3.5) ifx— y(d), this relation remains valid if f1 + f. in y is replaced by f,
providing that f1 + f2 = f;
(3.6) ifx 4+ u—y+ u(d) then x « y(d).

For x + 4 = y 4+ u means that x + # can be transformed into y + u« by the

changes named in (3.3), (3.4), and (3.5) and it will follow thatx + % 3y + u(d).
From (3.6) we will then have x “~ y(d) as required.

Proof of (3.3). Given arbitrary elements ey, . . ., e, we need only show that
there are independent elements g1, . . ., gy and direct decompositions
N
€; = U (7]
=1

such that each ey; is either 0 or  g;. But this follows from Lemma 5.

Proof of (3.4). Suppose x «~ y(d). This implies an independent set gy, . . ., gy
and a particular decomposition (we shall call it the previous decomposition)
for each f;in y. If now f; is replaced by f' 4+ f”/, then Lemma 6 can be applied
to the previous decomposition of fi, say fi = U fi;, and the decomposition
f\Jf" of f1. Direct decompositions fi; = f1,;/\Jf1/’ result, and these, with the
help of Lemma 1, lead to direct decompositions g; = g/ \U g,/ with fi;/ « g/,
f1/" g/ if f1, is different from 0 and with g/ = g; g/ = 0if fi; = 0. From
these decompositions of g; we obtain direct decompositions, fi; = fif \J fi)”
for i > 1 and e;; = e;/ U e,/ so that x “~ y(d) remains valid with g/, ... gv',

g, ..., gy in place of g, . . ., gn.

Proof of (3.5). Suppose x “~ y(d), that the e,, [y, €45, g;satisfy (3.2), and that
f1+ fein y is replaced by f. (Note that

is a direct decomposition for f; but this fails to prove that x «~ y(d) remains
valid with the same g, . . ., gy since, for some j, both f1; and fs; may differ from
zero.) We may suppose that all g; are different from 0, that fi; = g; for j = 1,

. . p (in place of f1; g;), and that fi; = 0 for j > p (apply Lemmas 2 and 1
to the complements of g \U . . . Ug, and f11 \U . . . f1, with respect to g: \U. . .
Ug, Ufuu U ... U fiy). By rearranging indices we may now suppose that
fesnfiy=g;forj=1,..., rwithr < p, that fo;~g;forj=p+1,...,4q,
and that f,;, = 0 for all other j. Then we may even suppose fo; = g;forj = p + 1,

. ., ¢. Next, by changing the g; with j > ¢ and increasing IV if necessary, we
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may suppose that each such g, satisfies either g; M (f1\J f2) = 0 or

g < Uty
j=1

letting gn 4+ 1 be a complement of

egU...Ug) N (jl_-{fw)
with respect to
U fo
=1

and writing V again for the former N 4 1 we may now suppose that

N
U S < U £
j=1 j=g+1

Then
N T
U g; = jl;,lfu U fo

=g+1
are two direct decompositions of the same element (with fy a suitable comple -
ment) and Lemma 6 applies. We derive direct decompositions for all elements
used previously, such that (using the previous notation again) we may even
suppose that fa; g, 4 ;for j =1, ..., r. Now a direct decomposition for f is

U/,
=1

withf; = fi;forj=1,...,p, fi=fesforj=p+1,...,¢ fo+;=fo;forj=
1, ..., r,and f; = 0 for all other j. When the decompositions for fi, f» used in
(3.2) are replaced by this decomposition for f the number F; is altered by — 1 if
j=1,..,rand by +1if j=¢+ 1, ... g+ r. However, the equality of
E;, F, can be restored as follows. For each fixed j = 1,...,7 we have g; g, 1 ;.
If F; <2+ F,4 ;then there mustbean ¢ > 2 with f;; = 0and f; 4+ ;g + 5
in this case we interchange these elements so’ that f;; g;and f;,4; = 0.
If however F; > 2 + F, ; then E; > 2 4+ E, 4 ; and there must be some 7 for
which e;; g;and e; 4+ ; = 0; in this case we interchange these two elements
sothate; =0and e; 4+ ; g4+ 5

This completes the proof of (3.5).

Proof of (3.6). Suppose
BNhe+...+teut+hi+...+bfi+...Ffutb+...4+ h(d).

We wish to deduce e; + ...+ e, f1+ ...+ fu(d). Proof by induction will
apply here and we need only consider (3.7) with » = 1. Then, as detailed in
(3.2), there are independent gy, . . ., gy and direct decompositions of the ey, £,
and £ into elements each of which is perspective to one of the g; We may
replace %, in (3.7) by the lattice union of its corresponding set of g;, We note
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that #; may be assigned two different sets L and R of g; according as %, appears
on the left or right of (3.7). Since the two replacements for %; are perspective
by Lemma 3, we may apply Lemmas 2, 1, and 6 to obtain decompositions of the
g;in L but not in R and of the g; in R but not in L into new elements (which
we will again call g;) which are perspective in pairs. Thus we may suppose
(3.7) given in the form

(38) eat...+etat ...+ fit ...ttt ... +ge(d)

with gy, . . .,g2, @ subset of the g4, . . ., gy mentioned in (3.2) and with g; g, 4
fore=1,...r

For fixed j let E; be the number of ¢ for which e;; « g; and let F; be the
number of ¢ for which f;; g, Then for j > 2 we deduce from (3.8) that
E;=F; If j<rweobtain E;,+ 1= Fy, E,y ;= F,; ;+ 1. Hence at least
one of E; < E, 4 4, F;> F, 4 ;holds. If E; < E,  ; there must be an e; for
which e;; = 0 and e; , 4+ ;> g, + 4; in that case we interchange these elements
€ijy €1,y + ;50 thatnow e;; g, 4 ;~ gyand e; , + ; = 0, thus obtaining E; = Fy,
E,, ; = F,, ; for the new decompositions. In the same way, if F, > F,, ; we
can rearrange the decomposition of some f; to obtain E; = F; and E,; ; =
F, , ;. After this is done for each j < r we obtain decompositions in terms of
g1, . - -, gy for which (3.2) can be easily verified.

This completes the proof of Theorem 3.1.

COROLLARY TO THEOREM 3.1. Two elements e, f in S satisfye +u=f+ u
for some u in G if and only if e — f.

(It is easy to prove directly that e = f if and only if e = f.)

Remark. The relation x = y in G can also be characterized in terms of
decompositions in .S but we omit the somewhat involved statement. In the
special case of S a Boolean ring, e f holds if and only if e = f, and Theorem
3.1 shows that x + 4 = y 4 u if and only if x = y. Thus the cancellation law
holds in G if S is a Boolean ring but not if .S is a general relatively complemented
modular lattice.

THEOREM 3.2. me -+ u=-e,+ ...+ e, + u as in the condition (2.3) if and
only if there are direct decompositions

m n
es= Uey,/ G=1,...,n), e= Ue,"G=1,...,m)
i=1 i=1

with ei/ A eij” fOr all i,j.

Proof. Apply Theorem 3.1 with f1 = ... = f,, = e to obtain the decomposi-
tions of (3.2) with g1, . . ., gv which we may suppose all non-zero. For given
b, q let J(p, q) be the set of j for which f,; and e,; are both different from zero,
and the number of » < p for which f,; is different from zero is equal to the
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number of 7 < ¢ for which e,; is different from zero. Set

& = UfM G € J® D)

V ey = U e ( € J(p, 9))-

With this construction the theorem can be easily verified.
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